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Electric and magnetic dipole strengths, below and
around the neutron-emission threshold of52Cr (Sn =
12.034 MeV), are studied in the framework of the nuclear
energy-density-functional (EDF) theory and an extended
version of the Qusiparticle-Phonon Model (QPM) [1, 2].
The QPM results presented here are consistent with our
previous analyses ofE1, E2, andM1 excitations in var-
ious nuclei [1, 2, 3, 4, 5, 6, 7]. The theoretical results
are compared with measurements from52Cr(γ, γ′) pho-
ton scattering experiments which have been performed us-
ing the nearly monoenergetic, 100% linear polarized pho-
ton beams produced at the HIγS facility of TUNL [8].
Twenty beam energies have been used to cover the en-
ergy range from 5.0 to 9.5 MeV and to uniquely iden-
tify and measure the dipole states in52Cr. Twenty six
dipole excitations were identified and their parity quan-
tum values were unambiguously determined from the mea-
sured azimuthal intensity asymmetry of nuclear resonance
fluorescence transitions. For the analysis of the experi-
ment a sufficiently large QPM model basis, constructed of
up to three-phonon (microscopically described) configura-
tions with Jπ from 1± to 6± and excitation energiesEx

up to 9.8 MeV is implemented [8]. From EDF mean-field
calculations we derive that the52Cr nucleus exhibits a neu-
tron skin with a thickness ofδr = 0.056 fm. As a result,
the first QRPA 1−1 state with excitation energyEx = 8.366
MeV, and the second QRPA 1− state with excitation energy
Ex = 9.473 MeV are almost pure neutron two-quasiparticle
states, where the major contribution is due to transitions
from weakly bound neutron orbitals. Further analysis of
transition densities of these states shows features typical
for skin nuclei [2, 6]. Thus, the QRPA 1− excitations be-
low ∼ 9.5 MeV in52Cr could be associated with a genuine
Pygmy Dipole Resonance (PDR) mode [1, 2, 9]. The to-
tal PDR strength obtained from the QRPA calculations is
Σ9.5MeV

0MeV B(E1; g.s. →1−PDR)QRPA ↑= 13× 10−3 e2fm2

which exhausts about 0.1% of the Energy-Weighted Sum
Rule (EWSR)[10]. As the excitation energy is increased,
the isovector contribution to the dipole strength increases,
and the state vectors show an increase of the out-of-phase
neutron to proton contribution which is generally associ-
ated with the Giant Dipole Resonance (GDR) [2, 6].

Theoretically, it is clear that the QRPA is unable to ac-
count for higher multi-particle-multi-hole correlationsand
interactions resulting from core polarization effects [11].
The later could induce dynamical effects related to re-
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Figure 1: (color online) Distribution of observedB(E1) ↑
strength for resonantly excited states between 5.1 and 9.5
MeV in 52Cr is compared with values obtained from three-
phonon QPM calculations. A comparison of the measured
and calculated QPM cumulativeE1 strength is shown in
the upper panel.

distribution of strength, and strongly affect the gross and
fine structure of dipole strength functions. By comparing
the QRPA with the multi-phonon QPM calculations, it is
seen that the pure two-quasiparticle QRPA strengths in the
PDR region is strongly fragmented over many 1− excited
states, once the coupling to multiphonon configurations
takes place. Thus, the lowest-lying 1− state, which is with-
out a QRPA counterpart, is predominantly given by a two-
phonon quadrupole-octupole excitation of the [2+

1 ⊗3−1 ]1−
configuration, which accounts for≈ 75% of the QPM wave
function [8]. The strongest QPM 1−max state in the energy
range below 9.8 MeV is located atEQPM = 8.270 MeV and
the corresponding transition probability isB(E1; g.s. →
1−max)QPM↑ = 28.14× 10−3 e2fm2. The theoretical re-
sults compare well with the experimental findings, which
give for this stateEexp= 7.897 MeV andB(E1; g.s. →
1−max)QPM ↑= 19.7(10)× 10−3 e2fm2, and also with the
results of Paiet al. [12]. The QPM calculations indicate
that the 1−max state contains contributions of the low-energy
tail of the GDR, which is the reason for the strongB(E1)
transition rate.

The comparison between the measurements and the
QPM E1 spectral distribution and the cumulativeB(E1)
strength in52Cr is presented in Fig. 1. In general, the
shape of the QPM cumulativeB(E1) strength as well as
the 1− level distribution are found to be in a good agree-
ment with the experimental data. In particular, for the
whole measured energy rangeEx = 5.1 - 9.5 MeV the
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QPM calculations predict a summedB(E1) strength of∑
B(E1)QPM ↑ = 111.4×10−3e2fm2. In comparison, the

experiment finds
∑

B(E1)exp ↑ = 51.2(16)×10−3e2fm2,
approximately a factor of two less strength.. The ob-
served difference between the measured and calculated to-
tal B(E1) values could be related to experimental sensitiv-
ity limits and branchings to excited states, which are unac-
counted for by the existing dipole data in52Cr.

The main aim of this work is to perform unambiguous
parity assignments of the low-energy dipole states in52Cr
and a precise separation between electricE1 and magnetic
M1 excitations. Experimentally it is achieved in measure-
ments of azimuthal asymmetries of NRFγ-rays using a
100% linearly polarized and quasi-monochromatic photon
beam [3, 4, 8]. TheM1 data are analysed theoretically
by three phonon QPM calculations. In the determination
of the nuclear magnetic transition moments a quenched
effective spin-magnetic factorgs

eff = 0.8gs
bare is used,

wheregs
bare denotes the bare spin-magnetic moment. The

quenching factor agrees very well with accepted QPM val-
ues [11], shell-model calculations and experimental data
[13, 14, 15]. A reliable description of the fragmentation
pattern of the magnetic dipole response function is impor-
tant for understanding the spin dynamics of the nucleus.
The analysis of the QRPAM1 strength of1+ excitations
with energies up toEx = 20 MeV indicates that this part
of the spectrum is mostly due to transitions of spin-flip
type related to the neutron and proton1f7/2 → 1f5/2 two-
quasiparticle components, respectively [8]. The detailed
studies of theM1 response function, performed by three-
phonon QPM calculations, show that the coupling of nat-
ural parity phonons to multi-phonon1+ states induces ad-
ditional orbital contribution to theM1 transitions. Con-
sequently, the observedM1 strength at excitation energies
between 5 and 10 MeV contains an orbital part of about
11%. In comparison the QRPA calculations provide us a
very small amount of orbital M1 strength of about 3.3 % of
the total QRPAB(M1) transition probability, up toEx =
20 MeV [8]. The total QPMM1 strength summed over1+

states fromEx = 5 to 9.5 MeV can be compared directly
with the present data. The results are presented in Fig.
2. The theoretical findings giveΣ9.5MeV

5MeV B(M1)QPM ↑ =
3.1µ2

N . which is in good agreement with the experimental
value ofΣ5.1MeV

9.5MeVB(M1)exp ↑ = 2.94(9)µ2
N [8].

The observation of the spin-flipM1 resonance structure
around 9.1 MeV in52Cr has been discussed along with the
systematics of dipole excitation transition strength distri-
butions infp-shell nuclei [8]. Such concentration ofM1
strength around 9.2 MeV is confirmed in the three-phonon
QPM calculations and explained as fragmented spin-flip
1+ excitations [8].

In conclusion, a common observation is that the QRPA
is unable to describe the low-energyE1 andM1 spectral
distributions. However, a detailed explanation could be ob-
tained in multi-phonon model like the three-phonon QPM,
which can describe well the observed experimentally frag-
mentation pattern of the low-energy dipole strength. The

Figure 2: (color online) Distribution of observedB(M1) ↑
strength in52Cr in the energy range between 5.1 and 9.5
MeV is compared with the values obtained from three-
phonon QPM calculations. A comparison of the measured
and calculated QPM cumulativeM1 strength is shown in
the upper panel.

good agreement between the calculated and measured to-
tal M1 strength is a signature that the quenching is han-
dled reliably well in the chosen approximation. A bet-
ter understanding could be achieved with more compre-
hensive knowledge of the nature of the intrinsic nuclear
moments, meson-exchange currents and branching ratios
from excited states, which might be of importance for fur-
ther improvements. Supported by the U.S. Department of
Energy Grant No DE-FG02-97ER41033 and BMBF grant
05P12RGFTE.
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