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Electric and magnetic dipole strengths, below and w000

around the neutron-emission threshold BCr (S, = 0]
12.034 MeV), are studied in the framework of the nuclear
energy-density-functional (EDF) theory and an extended
version of the Qusiparticle-Phonon Model (QPM) [1, 2]. an- .
The QPM results presented here are consistent with our 2 %]

previous analyses af'1, £2, and M1 excitations in var- g
ious nuclei [1, 2, 3, 4, 5, 6, 7]. The theoretical results
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are compared with measurements fré8Cr(+, ) pho- I

ton scattering experiments which have been performed us- 10

ing the nearly monoenergetic, 1%dinear polarized pho- T ——— 'BO‘O'O' P e
ton beams produced at the 48 facility of TUNL [8]. Energy (keV)

Twenty beam energies have been used to cover the en-

ergy range from 5.0 to 9.5 MeV and to uniquely idenigyre 1: (color online) Distribution of observeg(E1) 1

tify and measure the dipole states #Cr. Twenty siX  grength for resonantly excited states between 5.1 and 9.5
dipole excitations were identified and their parity quanyev in 52cris compared with values obtained from three-
tum values were unambiguously determined from the MeBhonon QPM calculations. A comparison of the measured

sured azimuthal intensity asymmetry of nuclear resonangg,q calculated QPM cumulativel strength is shown in
fluorescence transitions. For the analysis of the expegie upper panel.

ment a sufficiently large QPM model basis, constructed of

up to three-phonon (microscopically described) configura-

tions with J™ from 1% to 6 and excitation energieB,  distribution of strength, and strongly affect the gross and
up to 9.8 MeV is implemented [8]. From EDF mean-fieldfine structure of dipole strength functions. By comparing
calculations we derive that tféCr nucleus exhibits a neu- the QRPA with the multi-phonon QPM calculations, it is
tron skin with a thickness ofr = 0.056 fm. As a result, seen that the pure two-quasiparticle QRPA strengths in the
the first QRPA T state with excitation energlf,, = 8.366 PDR region is strongly fragmented over many éxcited
MeV, and the second QRPA Istate with excitation energy states, once the coupling to multiphonon configurations
E, =9.473 MeV are almost pure neutron two-quasiparticleakes place. Thus, the lowest-lying $tate, which is with-
states, where the major contribution is due to transitionsut a QRPA counterpart, is predominantly given by a two-
from weakly bound neutron orbitals. Further analysis ophonon quadrupole-octupole excitation of tBé& [2 3,1, -
transition densities of these states shows features fypic@nfiguration, which accounts fer 75% of the QPM wave
for skin nuclei [2, 6]. Thus, the QRPA lexcitations be- function [8]. The strongest QPM ], state in the energy
low ~ 9.5 MeV in52Cr could be associated with a genuinerange below 9.8 MeV is located &, p5,= 8.270 MeV and
Pygmy Dipole Resonance (PDR) mode [1, 2, 9]. The tcthe corresponding transition probability (E1; g.s. —

tal PDR strength obtained from the QRPA calculations i4,, .. )ornm T = 28.14x 1073 €fm?. The theoretical re-
YOSV B(E1; g.s. —=1ppp)orpa 1= 13x 1073 €2fm?  sults compare well with the experimental findings, which
which exhausts about 07l of the Energy-Weighted Sum give for this stateE.,,= 7.897 MeV andB(E1;g.s. —
Rule (EWSR)[10]. As the excitation energy is increased,..,.)orn 1= 19.7(10)x 10~3 €*fm?, and also with the
the isovector contribution to the dipole strength increaseresults of Pakt al. [12]. The QPM calculations indicate
and the state vectors show an increase of the out-of-phabkat the 1, . state contains contributions of the low-energy
neutron to proton contribution which is generally associtail of the GDR, which is the reason for the stroB§F£'1)
ated with the Giant Dipole Resonance (GDR) [2, 6]. transition rate.

Theoretically, it is clear that the QRPA is unable to ac- The comparison between the measurements and the
count for higher multi-particle-multi-hole correlatioaad QPM E1 spectral distribution and the cumulatiBéF1)
interactions resulting from core polarization effects][11 strength in®2Cr is presented in Fig. 1. In general, the
The later could induce dynamical effects related to reshape of the QPM cumulativB(F1) strength as well as

*Work supported by the HIC for FAIR, GSI-JLU Giessen (:ollabo—the1 I_evel dlstrlbutm_)n are found to be in a good agree-
ration agreement, the U.S. Department of Energy Grant NoFo2- ~Ment with the experimental data. In particular, for the
97ER41033 and BMBF grant 05P12RGFTE. whole measured energy randgg, = 5.1 - 9.5 MeV the
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QPM calculations predict a summd8l(E1) strength of
S B(E1l)gpm T=111.4x10-3€*fm?. In comparison, the
experiment findS_"B(E1).., T = 51.2(16)x 10-3€*fm?,
approximately a factor of two less strength.. The ob-
served difference between the measured and calculated to-
tal B(E1) values could be related to experimental sensitiv-
ity limits and branchings to excited states, which are unac-
counted for by the existing dipole data#Cr.

The main aim of this work is to perform unambiguous
parity assignments of the low-energy dipole state¥ @r
and a precise separation between elediricand magnetic
M1 excitations. Experimentally it is achieved in measure-
ments of azimuthal asymmetries of NRFrays using a

MU-NUSTAR-GS-06
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100% linearly polarized and quasi-monochromatic photorrigure 2: (color online) Distribution of observeg{A11) 1

beam [3, 4, 8]. Thel/1 data are analysed theoreticallystrength in>2Cr in the energy range between 5.1 and 9.5
by three phonon QPM calculations. In the determinatioyeV is compared with the values obtained from three-
of the nuclear magnetic transition moments a quenchgghonon QPM calculations. A comparison of the measured

effective spin-magnetic factay:,, = 0.8g;,,. is used, and calculated QPM cumulativie 1 strength is shown in
whereg; .. denotes the bare spin-magnetic moment. Thgye upper panel.

guenching factor agrees very well with accepted QPM val-
ues [11], shell-model calculations and experimental data
[13, 14, 15]. A reliable description of the fragmentatio

rgood agreement between the calculated and measured to-

pattern of the magnetic dipole response function is impof2! /1 strength is a signature that the quenching is han-

tant for understanding the spin dynamics of the nucleu
The analysis of the QRPA/1 strength ofl ™ excitations
with energies up tdv,
of the spectrum is mostly due to transitions of spin-fli
type related to the neutron and protbfy , — 1f5 /2 two-
guasiparticle components, respectively [8]. The detailel]

ter

studies of thel/ 1 response function, performed by three-
phonon QPM calculations, show that the coupling of na
ural parity phonons to multi-phondn” states induces ad-
ditional orbital contribution to the\/1 transitions. Con-

sequently, the observed 1 strength at excitation energies[l]
between 5 and 10 MeV contains an orbital part of about
11%. In comparison the QRPA calculations provide us ?]
very small amount of orbital M1 strength of about 3.3 % o

the total QRPAB(M 1) transition probability, up ta, = 3]
20 MeV [8]. The total QPMM 1 strength summed ovér"
states fromE,, = 5 to 9.5 MeV can be compared directly[4]
with the present data. The results are presented in Fi@.
2. The theoretical findings givB2MeY B(M1)gpm 7= [6]
3.143;. which is in good agreement with the experimentaj7]
value of S5 IMeV B(M1)cqp T =2.94(9)u3; [8]. 8]

The observation of the spin-flip/ 1 resonance structure

around 9.1 MeV ir??Cr has been discussed along with thgg)
systematics of dipole excitation transition strengthrdist
butions in fp-shell nuclei [8]. Such concentration 8§ 1

dled reliably well in the chosen approximation. A bet-

understanding could be achieved with more compre-

= 20 MeV indicates that this part hensive knowledge of the nature of the intrinsic nuclear
dnoments, meson-exchange currents and branching ratios
from excited states, which might be of importance for fur-
er improvements. Supported by the U.S. Department of
Energy Grant No DE-FG02-97ER41033 and BMBF grant
{Q5P12RGFTE.
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