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Abstract

The target position in spectroscopy experiments such as
PreSPEC-AGATA [1] influences the signal-to-noise ratio.
Therefore precise information on the position of the tar-
get is needed to find low cross-sectionγ-ray transitions.
The optimal positioning of a target is a non-trivial question.
This report establishes a unidimensional model allowing a
robust determination of the target even with a low signal-
to-noise ratio.

The model is probabilistic and allows us to findN
Doppler-correctedγ rays while accounting for atomic
background. The model assumes the transitions to gen-
erate Gaussian spectral features on top of an exponential
decay background. We proceed to the fit of the model
with the PreSPEC-AGATA nuclear structure experiment
S428, while naturally folding in measurement uncertain-
ties. Within the Bayesian analysis framework, we are able
to optimize the width of theγ-ray transitions and charac-
terize related uncertainties as a function of the position of
the target.

For this particular experiment, we find that the opti-
mal position is shifted by -1 mm along the horizontal axis
(x) and -4 mm along the vertical axis (y) with respect to
the measured position. We demonstrate the power of our
model and analysis method, that is applicable to the cali-
bration of other experiments.

Introduction

In the PreSPEC-AGATA experiments [1], we measure
the target position at the beginning of the experiment. This
measurement is subject to uncertainties. To refine the posi-
tion measurement and reduce uncertainties, we use the sen-
sitivity of the AGATA array [2] to Doppler correct the two
K-α X-rays of the uranium beam emitted in flight at half the
speed of light. Specifically, the Doppler correction requires
knowledge of the emission angle of the X-rays. Therefore
we need to measure the position of the interacting uranium
ion on the target, and the position of the X-rays detected
in AGATA. The comparison of the pulse shape inside an
AGATA crystal with a data-base provides the interaction
position of the X-rays in the detector [2]. In this present
work, we neglect variations due to the AGATA detectors
and we focus on the target positioning uncertainties only.

∗This work was supported by the BMBF under Nos. 05P09RDFN4,
05P12RDFN8, and by the LOEWE center HIC for FAIR.

Minimization technique

Generation of a mesh of offsetsWe suppose that the(x, y)
position1 of the target might be shifted with respect to the
measured position. In order to consider all realistic target
positions, we generate a mesh of offsets in the(x, y) plane.
We set the mesh resolution to 1 mm, which corresponds to
the resolution achieved to determine the ion position on the
target. At each position offset of the mesh, we Doppler cor-
rect the X-rays with their re-calculated angle of emissions.

Model the data at each point of the meshIn order to de-
termine precisely the width of the transitions, we need to
model our data at each point of the mesh with a model that
includes the two X-ray transitions, the background radia-
tions, and the measurement uncertainties. We consider our
modelM( ~E, ~Π) as parametric function of~E a set of ener-
gies, and~Π a set of parameters.

Definition of the Likelihood The determination of the pa-
rameters of our model that reproduce our data requires
the definition of similarity. In a Bayesian approach,
we can define this similarity as a Likelihood function
p(Data( ~E)|Model( ~E, ~Π)). It quantifies the similarity be-
tween ourData and theModel given a set of parameters
~Π. The law of large numbers allows us to approximate
the observed number of countsNobs at given energyE by
a Gaussian distribution. Thus, we define our Likelihood
function as:

p(Nobs( ~E) |Npred( ~E, ~Π)) =
1√

2πNpred( ~E, ~Π)

exp

(
−1

2
(Nobs( ~E) − Npred( ~E, ~Π))2

Npred( ~E, ~Π)

)
,

whereNpred( ~E, ~Π) is the predicted number of counts by
the model at an energyE.

Determination of the model parameterFor each parame-
ter of our model, we provide ana-priori range of variation,
that defines our parameter space. In order to constrain our
two X-rays transition, we add a condition on the energy
difference between the first and second X-ray transition.

The parameter space needs to be explored in order to
find the set of parameters~Π that maximizes the Likelihood

1The(x, y) plane is perpendicular to the beam axis.
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probability. The exploration needs to converge quickly to
the absolute maximum of Likelihood and to avoid local
maxima. Therefore, we explore the parameter space with a
Monte-Carlo Markov-Chain algorithm calledemcee[5].

Establishment of the model

The model takes into account the two X-ray transitions
of uranium at 94.6 and 98.4 keV.Their energy separation
is close to the limit of resolution that can be achieved un-
der Doppler broadening effect [4]. In addition, the beam
induces a substantial background and we observed an un-
known transition at energy of∼115 keV, that both need to
be modelled properly too. The blue curve in Fig. 1 corre-
sponds to the data.

50 100 150 200 250
Energy (keV)

0

500

1000

1500

2000

2500

C
o
u
n
ts

data

only transitions

Median fit

Figure 1: Doppler corrected histogram of the uranium X-
ray transitions is plotted in the figure together with the fit.
The blue curve is the observed dataset, while the red line
indicates our “best-fit” model. The green curve shows only
the transition components of our model.

Transitions model We first assume that each of theN
transitions generates a Gaussian line in the energy spec-
trum. Thus, we have three parameters to describe thei-th
line: the count amplitudeAi, the mean energyµi, and the
energy varianceσ2

i . The i-th transition can be described
by:

gi(E; Ai, µi, σi) =
Ai√
2πσ2

i

exp
(
− (E − µi)2

2σ2
i

)
.

Background continuumThe background in our case rep-
resents a source of noise to find our transitions in the spec-
tra. This noise is mostly induced by the beam. We model
this component with a unique exponential decay function:

noise(E) = A · λ exp (−λE) ,

with an amplitudeA and the decay parameterλ.

Mixture model Once we have defined the transition fea-
tures and the noise, we can combine the different compo-
nents as the sum of all transitions on top of the continuum:

M(E; Π) =
n∑

i=1

gi(E; Ei, σi, Ai) + noise(E; A, λ),

where~Π is the vector of all the parameters:
~Π = {(Ei, σi, Ai)}i∈[1..n] + (A, λ)}.

Result on the optimum target position

We used a Monte-Carlo Markov-Chain (MCMC)
method to optimize our model, and in particular, we used
a specific implementation:emcee[5]. With this method,
we determine at each point of the mesh, the optimum set
of parameters~Π and therefore optimum width of the two
X-ray transitions. The plot of the width of the transition as
a function of the offset in bothx andy direction is shown
in Fig. 2.
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Figure 2: Each(x, y) bins corresponds to an offset applied
to the measured target position. We weight each bins by
the product of the two X-ray median widths. The white
star highlights the minimum obtained in an offset(x, y) =
(−1,−4) mm. The X-Ray median widths are indicated by
the color bar on the right-hand side.

The product of the transition width is minimum at a po-
sition offset of(x, y) = (−1,−4) mm. The curve in red in
Fig. 1 corresponds to our model evaluated for the median
value of our set of parameters~Π, with the optimum target
offset.

Conclusion

The model we describe in this paper, along with the in-
troduction of a Bayesian data analysis techniques allows us
to determine the optimum target position for the PreSPEC-
AGATA experiment. This newly determined position im-
proves the energy resolution obtained after Doppler cor-
rection. Indeed the width of the transition of the 94.6 keV
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X-ray transition pass fromσ = 1.99+10
−9 keV for the mea-

sured target position toσ = 1.92+9
−8 keV after the target

shift 2.
The thick target (700 mg/cm2 beryllium) implies a large

velocity spread, and therefore a substantial Doppler broad-
ening. It becomes necessary to include the latter into the
model. Moreover, we will consider the angle of emission
of the X-rays to further increase the precision and accuracy
of the calibration.
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2The error on the width values are given at the percentile of 16, and
84.
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