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Abstract

Mangrove forests are important habitats for fish. However, their utilisation by fish, and the

specific values they confer, are still not fully understood. This study describes how fish use

mangrove forests in an Indo-Pacific mangrove-coral reef seascape. Sampling was con-

ducted using underwater video cameras (UVCs) to describe spatial and temporal variations

in fish assemblages across a small-scale (~ 2.5 km2) system, and over the tidal and lunar

cycle. UVCs were deployed in the two main component habitats of mangrove forests: at the

mangrove forest edge, and inside the forest (5 m from the forest edge), to establish patterns

of utilisation of fish across the tidal and lunar cycle. Proximity to coral reefs had a strong

influence on the mangrove fish community, as most fish recorded were reef-associated.

Juveniles of 12 reef species were observed, including two species classified as vulnerable

on the IUCN list, and one endemic species. Fish assemblages on the mangrove edge dif-

fered significantly from those inside the forest. Most fish utilised the forest edge, with few

species making regular use of in-forest habitats, supporting the contention that most fish

species remain on the edge and potentially retreat into the forest for opportunistic feeding,

or when threatened by larger predators. Species-specific patterns of utilisation varied across

the tidal and lunar cycle. Small differences in depth profiles and substrate across the small-

scale system had a significant effect on fish assemblages, highlighting the importance of

accounting for spatial heterogeneity in these factors. These data provide important informa-

tion for managers to implement adequate conservation strategies that include broader inter-

connected habitat mosaics.

Introduction

Mangrove systems are part of a mosaic of productive coastal habitats [1] that provide a variety

of services to fish and human populations [2, 3]. Mangrove forests are a fundamental

PLOS ONE | https://doi.org/10.1371/journal.pone.0207168 April 19, 2019 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Dubuc A, Waltham NJ, Baker R,

Marchand C, Sheaves M (2019) Patterns of fish

utilisation in a tropical Indo-Pacific mangrove-coral

seascape, New Caledonia. PLoS ONE 14(4):

e0207168. https://doi.org/10.1371/journal.

pone.0207168

Editor: Samantha E. M. Munroe, University of

Adelaide, AUSTRALIA

Received: October 24, 2018

Accepted: April 8, 2019

Published: April 19, 2019

Copyright: © 2019 Dubuc et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: This research was conducted as part of a

PhD thesis supported by an Australia Awards

Scholarship awarded by the the Department of

Foreign Affairs and Trade (DFAT) to AD. The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

http://orcid.org/0000-0002-2536-3698
https://doi.org/10.1371/journal.pone.0207168
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0207168&domain=pdf&date_stamp=2019-04-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0207168&domain=pdf&date_stamp=2019-04-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0207168&domain=pdf&date_stamp=2019-04-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0207168&domain=pdf&date_stamp=2019-04-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0207168&domain=pdf&date_stamp=2019-04-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0207168&domain=pdf&date_stamp=2019-04-19
https://doi.org/10.1371/journal.pone.0207168
https://doi.org/10.1371/journal.pone.0207168
http://creativecommons.org/licenses/by/4.0/


component habitat of mangrove systems [4], and confer many of the attributes that make

them highly valuable fish habitats [5–9]. However, studies have shown varying degree of man-

grove forest utilisation, with for instance a higher contribution of reef fish species to mangrove

fish assemblages in the Caribbean compared to several places in the Indo-Pacific [10–21].

These observations suggest that not all mangrove forests provide equivalent values to fish.

Moreover, recent work in mesotidal Australia suggests that few fish penetrate beyond the for-

est boundary [15], suggesting that the use of mangrove forests is spatially heterogeneous. This

new evidence raises the question relating to the specific ways in which mangrove forests are

utilised by fish. More studies are needed to characterise fish assemblages in mangrove forests

with different settings (coastal, estuarine, island, embayment), different tidal ranges (micro-,

meso- or macrotidal), proximity of other high value habitats such as seagrass beds and coral

reefs, or climatic zones [21–24]. A better understanding of how mangrove forest utilisation

varies spatially and temporally would provide new insights to help explaining the contrasting

results found in the literature.

In many parts of the Indo-Pacific, the tidal range is greater than in the Caribbean, where

mangrove forests are usually continually available to fish [3]. Intertidal mangrove forests are

challenging environments, most notably because they are only available to most aquatic organ-

isms while they are flooded at high tide [1, 24, 25]. The intermittent availability of mangrove

forests may explain the low use by fish in the Indo-Pacific [23]. Indeed, tidal variation (extent,

duration and frequency of flooding) generates a range of constraints for fish utilising man-

grove forests. Most evident is the decrease in water depth and eventual drainage of the forest as

the tide ebbs, forcing fish out of intertidal mangrove forest zones. Several studies have indeed

demonstrated that fish undertake regular migrations in tidally driven mangrove systems, with

different patterns of mangrove use according to fish species, lunar cycle (neap vs spring tide)

and tidal phase (flooding vs ebbing) [15, 26–29]. Migration of fish in response to tidal move-

ments results in substantial connectivity between the three major tropical coastal habitats:

coral reefs, seagrass beds and mangrove forests [25, 30], giving rise to the idea that mangrove

forests are part of a wider interconnected habitat mosaic [1]. Therefore, investigating tidal and

spatial variations in fish assemblages in mangrove forests is a crucial step towards fully appreci-

ating the value and functioning of the whole tropical coastal ecosystem.

The difficulty of sampling these habitats goes a long way towards explaining the paucity of

information available on fish assemblages inside mangrove forests [20, 31]. The use of conven-

tional techniques such as underwater visual censuses or netting techniques is restricted across

much of the Australasian region where saltwater crocodiles (Crocodylus porosus) are common,

and where dense mangrove forests reduce the efficiency of most net-based approaches [15].

Recently, underwater video has been successfully applied to study in-forest fish assemblages

[15, 32, 33], most notably because it overcomes a lot of sampling issues, substantially reduces

field labour intensity, and allows for high-temporal and -spatial resolution data collection

simultaneously in different habitats, such as the edge and the inside of a mangrove forest [34].

In this study we deployed underwater cameras on the edge and inside a mangrove forest

[15, 26] coupled with high frequency depth loggers to record spatio-temporal variations in fish

assemblages in a microtidal Indo-Pacific mangrove-coral reef seascape. We identified fish spe-

cies that use the mangrove forest, and used an array of exploratory data analyses and modelling

techniques to describe how fish utilisation changes between the forest edge and in-forest habi-

tats, and how fish assemblages vary across the tidal cycle.

Fish utilisation of a mangrove forest in New Caledonia
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Materials and methods

Study site

Our study focused on a relatively pristine mangrove forest in Bouraké, South Province of New

Caledonia (21˚ 56.971S, 165˚ 59.481E; Fig 1). New Caledonia is an archipelago located in the

South West Pacific, 1,500 km east of Australia. New Caledonia has the largest lagoon in the

world, partly registered on the UNESCO World Heritage list. New Caledonia experiences a

semi-arid to tropical climate with annual total rainfall of 1,000 mm, and a mixed semi-diurnal

microtidal regime (maximum 1.8 m tidal range). Bouraké receives little freshwater inflow with

no defined drainage.

The area comprises approximately 2.5 km2 of mangrove forest dominated by Rhizophora
stylosa on the seaward edge and Avicennia marina on the landward margin, with a large semi-

enclosed central lagoon (1.2 km long, 60 m wide, 1–2 m depth). A channel (20–70 m wide, 2–6

Fig 1. Map and picture of the study system in Bouraké, South Province, New Caledonia. The nine study sites in the mangrove channel sampled

from the 21 February to 1 March 2017 are represented by their respective number. Light grey areas represent mangrove forest, dark grey areas

represent mainland, and white areas represent water.

https://doi.org/10.1371/journal.pone.0207168.g001
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m depth, 700 m long) connects the main lagoon to the coastal waters of Pritzbuer Bay (~ 20

km2). The channel comprises two sheltered inlets (approximately 0.01 km2 each), and a shal-

low (1–2 m depth) coral reef platform that extends from the middle of the channel to the edge

of the mangrove forest. Corals could be seen right on the edge of the forest in some places. We

chose a study location where coral reefs occur in close proximity to mangrove forests (Fig 1),

effectively a seascape comparable to the Caribbean coastline [35], so we could relate our find-

ings to this other ecoregion [36] where the tidal range is smaller.

Data collection

Fish using the mangrove forest were examined on an inland/offshore gradient along the chan-

nel (Fig 1). To assess differences in fish assemblage composition between edge and inside the

forest, 4 paired sampling were conducted (sites 1 to 8). Each paired sampling consisted of two

sites within 5–7 m distance; the even site number of the paired sampling was located on the

mangrove forest edge (defined as the boundary between mangrove prop-roots and bare sub-

strate), and the odd site number located about 5 m inside the forest. Site 9 (considered an edge

site in the analyses) was located on the reef platform of the innermost bay, at the edge of scat-

tered mangrove trees slightly away from the main forest. The substrate at sites 1 and 9 con-

sisted of dead corals, small live coral boulders and sand, while on other edge sites it comprised

mainly dead corals and small and larger live coral boulders. The substrate was homogeneous

and consisted of silt material at in-forest sites.

Fish assemblages were sampled using underwater video cameras (UVCs; Model ATC9K

Oregon Scientific) to investigate tidal variations in fish assemblages simultaneously on the

edge and inside the forest. Unbaited UVCs mounted on stable bases were deployed at each site

during neap (21 to 23 February 2017) and spring tides (28 February to 1 March 2017). A sam-

pling day consisted of cameras first deployed at sites early in the morning (first light), continu-

ing until the battery was discharged, and, with a replacement battery, again deployed mid-

afternoon at all sites until the battery was discharged (recording lasted between 2h and 2.5h).

Four sampling days were completed (two during neap tides and two during spring tides).

Cameras were positioned around 7 cm above the substrate, facing towards the channel. A

marker mounted on a flexible rod (3 mm diameter, 0.5 m long) was placed 0.5 m in front of

the camera lens as a visibility indicator to ensure a minimum visibility of 0.5 m was achieved

in all videos. Visibility was very good and consistent during the sampling period, and fish

could be identified confidently up to approximately 2 m from the UVCs in all videos. As depth

is one of the main limiting factors to mangrove accessibility, tidal variations in water depth

(cm) were measured every 15 minutes at each site with depth loggers (In-Situ Inc. Rugged

Troll 100 model). James Cook University issued a permit for a limited impact research to

deploy underwater cameras in New Caledonia (no endangered or protected species were

involved as no collection of any specimen was conducted). The study area does not benefit

from any special protection, therefore, access and activities are not restricted, and no specific

permit was required to sample.

Data extraction from videos

While UVCs allow large amounts of data to be gathered quickly in the field, considerable time

is required to process these videos. Therefore, we subsampled the acquired video footage.

From the two neap tide sampling days, one day was randomly selected and videos at all sites

were processed for that day. For the remaining sampling day, all videos were processed from

five sites; being the reef platform (site 9) and two pairs of in-forest and forest edge sites (sites

5–8). These sites were selected so one replicate for a site located on the reef platform, and two

Fish utilisation of a mangrove forest in New Caledonia
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replicates of paired sites not located on the reef-platform were available. Considering this

selection, the sites were then randomly chosen. The same selection was applied to the two sam-

pling days conducted during spring tides.

Once sediments had settled after camera deployment (typically 2–3 min), videos were

viewed using VLC media player (VideoLAN, 2001) and subdivided in 5-min intervals to follow

tidal variations in fish assemblages. The occurrence of each fish taxon in each 5-min interval

was recorded. Only presence/absence data were recorded to avoid biases induced by count

data when using UVCs [15]. Fish were identified to the lowest possible taxonomic level. Fea-

tures useful in discriminating species within some genera or families such as Plectorhinchus
spp., Mugilidae spp., or Gobiidae spp. were difficult to distinguish in videos, therefore these

taxa were identified to genus or family level only. When possible, juvenile fish were identified

based on colour patterns and body shape. Any activity such as feeding, hiding, cruising or

escaping was also noted. All fish identifications were validated by two additional experts. For

each 5-min interval video processed, the information concerning the date of sampling, site,

time of day, habitat (edge vs in-forest), lunar phase (neap vs spring), tide direction (flooding vs

ebbing), and corresponding water depth was recorded (S1 Appendix).

Data analyses

An index depending on observation per unit effort, similar to the catch per unit effort index

(CPUE) when dealing with fishing techniques, was developed to calculate frequencies of

occurrence of taxa from the video data. The frequency of occurrence of each taxon was calcu-

lated per site (the total number of 5-min intervals in which a taxon was observed at a site was

divided by the total number of 5-min intervals recorded at this site). Only taxa with a fre-

quency of occurrence� 0.05 at one or more sites were retained for analyses (referred to as

“common taxa”). Taxa with a frequency of occurrence< 0.05 (referred to as “rare taxa”) were

excluded from analyses.

Non-metric multidimensional scaling (nMDS) was used as an exploratory analysis to assess

differences in fish assemblages among sites during spring and neap tides. The frequency of

occurrence of each common taxon was calculated per site per lunar phase. Data were square

root transformed (SQRT) to decrease the impact of extreme values, and an nMDS analysis

based on Bray-Curtis dissimilarities, the most appropriate distance measure when using abun-

dance data [37], was conducted. Clusters within the nMDS were determined by conducting an

overlay cluster analysis at 40% and 45% similarity on the dissimilarity matrix of all frequencies

of occurrence. A two-way analysis of similarity (ANOSIM) was used to test whether there were

significant differences in fish assemblages between sites and lunar phase. Pearson correlations

exceeding R > 0.7 between the ordination and taxa were used to fit vectors on the nMDS plot.

All analyses were performed using PRIMER 6 software [38]. Additionally, frequencies of

occurrence of each common taxon at in-forest and edge sites were calculated and plotted

using horizontal bar plots to further investigate differences in fish assemblage composition

between the two habitats.

To investigate the factors impacting fish presence/absence, a General Linear Mixed Model

(GLMM) was conducted using the package “glmm” in R [39]. The GLMM was conducted on

all the 5-min intervals recorded (S1 Appendix) with presence/absence of any common taxa for

each 5-min interval (1 if any common taxa were observed in the 5-min interval, or 0 if no com-

mon taxa were observed) as the response variable, “Depth”, “Habitat” (edge vs in-forest),

“Lunar phase” (neap vs spring), and “Time of day” (morning vs afternoon) as the fixed factors,

and “Site”, “Date”, “Tide direction” (flooding vs ebbing) and a nested effect of “Site” within

“Habitat” as the random factors, using a Bernoulli distribution and a logit link function.

Fish utilisation of a mangrove forest in New Caledonia
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Cumulative depth frequency curves were plotted for each site to highlight differences in

temporal dynamics. To further understand how fish utilisation varies across depth, variations

of SQRT frequencies of occurrence across depth, over flooding and ebbing tide on the edge

and in-forest were assessed using a General Additive Mixed Model (GAMM). Each 5-min

interval was allocated to a class of water depth of 10 cm (from 10–20 cm to 120–130 cm)

according to the water depth value recorded, and the SQRT frequencies of occurrence of each

common taxon was calculated per class of water depth during flooding and ebbing tide per

habitat (the total number of 5-min intervals in which a taxon was observed at a class of depth

during flooding and ebbing tide per habitat was divided by the total number of 5-min intervals

recorded for this same sample unit). Frequencies of occurrence were SQRT to reduce the

impact of extreme values. To avoid false absence recordings, taxa never recorded in the habitat

of interest were not considered (i.e. if a taxon was never recorded in-forest during the study it

was not included in the in-forest analysis). To run the GAMM, SQRT frequencies of occur-

rence were used as the response variable, “Depth” as a smooth term, and “Habitat” and “Tide

direction” as parametric terms using a Gaussian distribution and an identity link function.

“Habitat” was included in the model to avoid any nesting issue. The model was built using the

package “mgcv” in R [40]. Patterns of variations of SQRT frequencies of occurrence were then

investigated graphically using boxplots to examine the variations of average SQRT frequencies

of occurrence among taxa at each depth interval, and a LOESS curve was fitted to the data to

analyse the general pattern of habitat use. Patterns of mangrove habitat use for each taxon

were then plotted using a LOESS curve and individually assessed graphically to examine simi-

larities and classify patterns of fish occurrence across depth. Taxa were grouped in similar pat-

terns if their maximum average occurrence was observed at a similar depth stage. Three

equivalent depth stages were defined for this purpose: Low depth (between 10–20 and 40–50

cm); Intermediate depth (between 50–60 and 80–90 cm); High depth (between 90–100 and

120–130 cm).

Results

Fish composition

Fifty-six video deployments were analysed (totalling more than 118h of video). Seventy-two

taxa from 29 families were recorded, with 36 common taxa (frequency of occurrence� 0.05

on at least one site) retained for further statistical analyses (Table 1). Most species recorded

were marine and reef-associated [41] including fish of families Scaridae, Chaetodontidae,

Pomacanthidae, Siganidae, Acanthuridae, Lutjanidae, or Labridae.

Fish composition varied significantly among sites (ANOSIM: R = 0.793, p< 0.001), with

distinct assemblages generating three and four different clusters at 40% and 45% similarity

respectively on the nMDS plot (Fig 2). At 40% similarity, the 1st cluster comprised all the sam-

ples conducted in-forest. The samples were characterised by a lower taxonomic richness (23

common taxa; Fig 3) dominated by Fibramia lateralis and all the taxa belonging to the Gobii-

dae family (except Cryptocentrus leptocephalus and Asterropteryx spp.), that were the only taxa

recorded almost exclusively at in-forest sites (Fig 3). The 2nd cluster comprised all the samples

conducted on the edge but site 7 at spring tide. The samples were characterised by a higher tax-

onomic richness (34 common taxa; Fig 3), among which 10 taxa, mostly reef-associated, signif-

icantly contributed to the fish assemblage composition at edge sites (Fig 2). Site 7 at spring tide

was an outlier and made the 3rd cluster driven by the abnormally high occurrence of Neopoma-
centrus spp. (Fig 2). Interestingly at 45% similarity, another cluster was generated, separating

deep edge and shallow edge sites (Fig 4, Fig 2). Three species of snappers, Lutjanus fulvi-
flamma, Lutjanus argentimaculatus and Lutjanus russellii were the only three species not

Fish utilisation of a mangrove forest in New Caledonia
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Table 1. Summary of all the families and taxa identified at Bouraké, New Caledonia.

Family Taxon Table 1 (continued)

Acanthuridae Acanthurus auranticavus� 1 Family Taxon

Acanthurus grammoptilus 2 Haemulidae Plectorhinchus lineatus
Acanthurus sp. cf blochii Plectorhinchus spp. 2

Ctenochaetus sp. Pomadasys argenteus 2

Zebrasoma velifer Hemiramphidae Hyporhamphus sp.

Apogonidae Fibramia lateralis� 3 Labridae Choerodon graphicus
Ostorhinchus septemstriatus Labridae spp.

Belonidae Belonidae spp. Lethrinidae Lethrinus harak� 2

Blenniidae Blenniidae spp. Lethrinus lentjan 1

Carangidae Caranx ignobilis Lethrinus obsoletus
Caranx papuensis 1 Lutjanidae Lutjanus argentimaculatus� 3

Caranx sp. Lutjanus fulviflamma 4

Chaetodontidae Chaetodon auriga� 2 Lutjanus fulvus 1

Chaetodon bennetti 2 Lutjanus russellii 2

Chaetodon ephippium Monodactylidae Monodactylus argenteus� 1

Chaetodon flavirostris Mugilidae Mugilidae spp.� 3

Chaetodon lineolatus 2 Mullidae Mulloidichthys flavolineatus 2

Chaetodon lunula 2 Parupeneus ciliatus
Chaetodon melannotus Parupeneus indicus 4

Chaetodon speculum Upeneus tragula 1

Chaetodon vagabundus 2 Pomacanthidae Pomacanthus sexstriatus 2

Heniochus acuminatus 1 Pomacentridae Neopomacentrus spp. 2

Clupeidae Clupeidae spp. 2 Scaridae Bolbometopon muricatum

Diodontidae Diodon hystrix Scarus sp. cf ghobban 1

Ephippidae Platax pinnatus Scatophagidae Scatophagus argus
Fistulariidae Fistularia spp. Serranidae Epinephelus caeruleopunctatus

Gerreidae Gerres filamentosus Epinephelus lanceolatus

Gerres oyena� 4 Epinephelus malabaricus
Gobiidae Amblygobius linki Epinephelus sp.

Amblygobius nocturnus Siganidae Siganus canaliculatus 1

Amoya gracilis 3 Siganus lineatus� 2

Asterropteryx sp. cf striata 4 Siganus punctatus
Cryptocentrus leptocephalus 2 Sparidae Acanthopagrus sp. cf akazakii 2

Eviota sp. Sphyraenidae Sphyraena barracuda
Exyrias puntang Tetraodontidae Arothron hispidus
Gobiidae spp.� 3

Gobiidae spp.2

Redigobius balteatus 3

Taxa highlighted in bold represent the common taxa (frequency of occurrence� 0.05 on at least one site) that were kept for statistical analyses.

Taxa highlighted with a � represent the 10 most common taxa.

Taxa or families underlined mean that juveniles were potentially observed for that taxon or for at least one taxon within the family that could not be identified.

The superscript number corresponds to the pattern of mangrove habitat utilisation across depth followed by the taxon as described in Fig 6:

1) High-depth users

2) Intermediate-depth users

3) Low-depth users

4) Generalist users.

https://doi.org/10.1371/journal.pone.0207168.t001
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showing apparent preference for edge or in-forest sites as they were almost evenly recorded on

the two habitats (Fig 3), and therefore did not significantly characterised any of the two habi-

tats (Fig 2). Replicate samples plotted close to each other and were grouped in the same clus-

ters (Fig 2). Lunar phase did not significantly influence fish assemblages (ANOSIM: R = 0.2,

p> 0.2).

“Habitat” (GLMM: z = -2.637; p< 0.005), “Lunar phase” (GLMM: z = -9.406; p< 0.001)

and “Depth” (GLMM: z = -2.118; p< 0.05) significantly influenced the presence/absence of

taxa. However, “Time of day” (GLMM: z = -1.519; p> 0.1), date of sampling (GLMM:

z = 1.555; p> 0.05), “Tide direction” (GLMM: z = 0.991; p> 0.1) and sites within a same habi-

tat (GLMM: z = 1.394; p> 0.05) did not significantly influence presence/absence of taxa. Fur-

ther data exploration following the GLMM results showed that at edge sites there was a higher

proportion of 5-min intervals in which a taxon was observed compare to in-forest sites. Simi-

larly, during neap tides, there was a higher proportion of 5-min intervals in which a taxon was

observed compare to spring tides (S2 Appendix).

Fig 2. nMDS analysis performed on square root transformed frequencies of occurrence for each taxon per site per tide. Edge sites are represented by

squares and in-forest sites by circles. Sites sampled at neap tide are coloured in deep pink, and sites sampled at spring tide in navy blue. Solid green and dotted

blue ellipses represent overlay clusters determined at 45 and 40% similarity respectively. Vectors represent taxa with a Pearson correlation with the ordination

R> 0.7.

https://doi.org/10.1371/journal.pone.0207168.g002
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Tidal variations in fish assemblages

Average depth was substantially shallower at in-forest than edge sites (neap tides (mean ± SE):

34 ± 0.57 and 55 ± 0.66 cm respectively; spring tides: 48 ± 1.11 and 71 ± 1.23 cm respectively),

as was maximum depth (95 cm and 133 cm respectively; Fig 4). Moreover, in-forest sites were

exposed (i.e. not flooded) for 4–5 h per day during neap tides, and 2–3 h per day during spring

tides, while sites on the edge were always submerged. Sites could be classified into three groups

according to depth profiles (Fig 4): deep edge sites (sites 3, 5, 7; maximum depth 133 cm); shal-

low edge sites (sites 1 and 9; maximum depth: 107 cm); in-forest sites (sites 2, 4, 6, 8; maximum

depth: 95 cm; Fig 4).

Fig 3. Proportion of time spent by each of the common taxa on the edge versus inside the forest. Edge = green and

in-forest = brown. Proportions range from 0 to 1, 1 corresponding to a taxon exclusively recorded on the edge or in-

forest and 0.5 corresponding to a taxon recorded on the edge as frequently as in-forest.

https://doi.org/10.1371/journal.pone.0207168.g003

Fig 4. Site-specific cumulative depth frequencies. Each colour represents a paired edge and in-forest site, and edge sites are represented by dashed lines and in-forest

sites by solid lines. The dashed dark line indicates the mean cumulative depth frequencies across all edge sites. The solid black line indicates the mean cumulative depth

frequencies across all in-forest sites. An example is provided to help interpret the figure (for 25% of the recorded time depth was on average equal or below 37 cm at

edge sites).

https://doi.org/10.1371/journal.pone.0207168.g004
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As the GLMM showed that depth had a significant effect on presence/absence of taxa, a

GAMM was used to further explore the response of frequencies of occurrence of fish across

increasing and decreasing depth (equivalent to flooding and ebbing tide) and by habitat.

SQRT frequencies of occurrence of fish significantly varied across depth (GAMM:

F = 6.756; p < 0.001; S3 Appendix), and significantly differed between “Habitat” (GAMM:

F = 39.792; p < 0.001) and “Tide direction” (GAMM: F = 9.056; p < 0.005). Magnitude of

variations in SQRT frequencies of occurrence across depth was higher at edge than in-forest

sites (Fig 5A and 5B, S3 Appendix). However, the patterns were similar between the two

habitats, with overall frequencies of occurrence highest at intermediate depth values, espe-

cially at ebbing tide, and lowest at extreme depth values (low or high depth; Fig 5A and 5B,

S3 Appendix).

Similarities in mangrove forest utilisation among common taxa clearly determined 4 main

patterns of utilisation: 1) taxa with higher frequencies of occurrence at highest depth values

(90–130 cm; High-depth users); 2) taxa with higher frequencies of occurrence at intermediate

depth values (50–90 cm; Intermediate-depth users); 3) taxa with higher frequencies at low

depth values (10–50 cm; Low-depth users); 4) taxa with similar frequencies of occurrence

across depth (Generalist users; Fig 6, S4 Appendix).

Discussion

Understanding the spatial and temporal variations in the use of mangrove habitats by fish is

important when considering conservation and resource management to protect mangrove

ecosystems from human and natural disturbances. This study highlights that the edge and

inside of mangrove forests, the two major component habitats of mangrove forests, featured

distinct taxonomic diversity and fish assemblage composition. Fish assemblages varied signifi-

cantly across the tidal cycle, with species-specific patterns of mangrove habitat utilisation. Spa-

tial differences in water depth among sites within a same habitat also seemed to influence fish

assemblages across this mangrove/coral system. While only a small portion of the species

observed on nearby coral reefs were recorded in Bourake, we found that this mangrove forest

does have a role in supporting reef fish species, emphasising the importance of Indo-Pacific

mangroves as valuable fish habitats.

The setting of this tropical mangrove/coral system influenced the nature of the fish assem-

blages recorded. At least 72 taxa made use of this relatively small mangrove/coral system, with

most species classified as tropical marine and reef-associated [41]. Most taxa recorded have

not been identified as mangrove-associated in previous studies in coastal mangroves in the

west Pacific [15, 16, 42], suggesting that their presence is linked to the proximity of coral reefs,

further supporting the contention that mangrove-coral habitats are interconnected. Con-

versely, many fish families important in other Indo-Pacific mangrove systems remote from

coral reefs, such as Leiognatidae, Ambassidae, Sillaginidae, Terapontidae, or Toxotidae [15, 16,

28, 43] were not recorded in Bouraké. Most individuals observed were at a sub-adult stage,

however, juveniles where occasionally recorded for several taxa. Juveniles of at least 12 reef fish

species were commonly recorded (Lutjanus fulviflamma, Lutjanus argentimaculatus, Lutjanus
russellii, Lethrinus spp. (2 species), Bolbometopon muriculatum, Siganus lineatus, Caranx sp.,

Epinephelus caeruleopunctatus, Scarus sp., Acanthurus sp., Neopomacentrus sp.). Additionally,

relatively small individuals of Epinephelus lanceolatus and Acanthopagrus akazakii were

observed. Thus, the fish community using this system consisted of a substantial number of

juvenile reef species, including juveniles of two species classified as vulnerable on the IUCN

list (E. lanceolatus and B. muricatum), and one endemic species (A. akazakii) [44]. These find-

ings highlight that near-coral mangrove habitats in the Central Indo-Pacific, such as Bouraké,
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Fig 5. Boxplots of average square root transformed frequency of occurrence of common taxa across depth on a) edge sites; b) in-forest sites. The blue line

is the LOESS curve representing the general pattern of habitat use for all common taxa considered. Shaded area around the LOESS curve represents the 95%

confidence interval. On Fig 5B, interval 90–80 cm has been removed as no data were recorded.

https://doi.org/10.1371/journal.pone.0207168.g005
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have a role in providing habitats for juvenile reef fish in parallel to the situation in the Tropical

Atlantic [12, 45, 46].

While early studies concluded that high connectivity between coral reefs and mangroves

had little influence on mangrove fish assemblages [18, 28, 47], recent evidence suggest that in

many instances there is a high occurrence of reef-associated fish in mangroves adjacent to

reefs [10, 19, 20, 48]. While supporting this idea, the current study emphasises that the utilisa-

tion and value of mangrove forests vary locally and cannot be generalised from one system to

another [10, 15, 21].

This study highlighted clear spatial variations in fish assemblages across the two different

habitats mangrove edge and mangrove in-forest. Indeed, fish assemblages were distinctly dif-

ferent between the mangrove edge and just a few meters inside the mangrove forest. Most fish

were recorded cruising on the edge of the mangrove forest, while sightings inside the man-

grove forest were sparser. Two main hypotheses, namely increased food supply and providing

shelter, have been suggested to explain why fish use mangrove forests. However, neither of

Fig 6. Patterns of mangrove habitat utilisation across the depth profile. The curves represent the LOESS curves constructed with the square root

transformed frequencies of occurrence of fish across depth. Common taxa followed four main patterns of mangrove habitat utilisation across depth: 1) taxa

using mangrove habitats mainly at high depth values (High-depth users); 2) taxa using mangrove habitats mainly at intermediate depth values

(Intermediate-depth users); 3) taxa using mangrove habitats mainly at low depth values (Low-depth users); 4) taxa without any apparent preferences for

depth (Generalist users). Table 1 identifies the taxa allocated to each category.

https://doi.org/10.1371/journal.pone.0207168.g006
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these two hypotheses were confirmed by the current study as few foraging activities were

recorded and few individuals were observed actively sheltering among mangrove prop-roots.

In fact, few species made regular use of the mangrove forest, supporting the idea that most fish

species simply remain on the edge and potentially retreat into the forest for opportunistic feed-

ing, or to escape presence of larger predators [7]. This result aligns with the observations in

estuarine mangrove forests of northern Australia where few species made regular use of the in-

forest habitat [15]. These two habitats (edge and in-forest) probably confer different values to

fish, however, fish could benefit from most attributes that physically attract them in mangrove

systems [8] by using the mangrove fringe without venturing into the forest. This result sup-

ports the idea that high tidal range leading to forest drainage limits the use of mangrove forests

in the Indo-Pacific compare to the Caribbean. Accessing the forest could be disadvantageous

because of increased risk of becoming trapped after the tide falls, but could also be linked to

adverse water quality such as low dissolved oxygen that develops at low tide [49, 50].

Fish assemblages exhibited small-scale spatial (dozens of meters) heterogeneity, particularly

along the forest edge compared to in-forest sites. There was a clear distinction in terms of fish

assemblages in the nMDS plot between sites 1 and 9, and sites 3, 5 and 7. This pattern could be

explained by water depth profile and substrate differences, with sites 1 and 9 featuring dead

corals, small live coral boulders and sand, and shallow depth, while other edge sites also had

dead corals, along with small and larger live coral boulders but lacked sand, and experienced

deeper depth. Conversely, all the in-forest sites were quite similar in terms of fish assemblages,

suggesting that they provide a homogeneous habitat with similar substrate and depth profile

throughout the system. Johnston and Sheaves (2007) [51] also identified species-specific

responses to different small-scale habitats according to their depth and substrate composition.

The importance of accounting for spatial heterogeneity of fish assemblages when characteris-

ing the habitat value of a system, or when using fish assemblages as a bio-indicator of ecologi-

cal change or ecosystem health [52], was highlighted by Becker et al. (2012) [53] who observed

the influence of small spatial scale changes in water depth and substrate composition on fish

assemblages at seagrass beds in South Africa.

Fish assemblages varied temporally across the tidal cycle. Tide-induced depth variations

have been linked to changes in fish assemblages [26, 28, 53, 54]. This result was corroborated

here as fish assemblages varied across depth, with more fish observed during intermediate

depth values, especially at ebbing tides, and most species generally avoiding extreme shallow

or deep water. In fact, fish displayed species-specific responses to depth with four main pat-

terns identified: 1) taxa using mangrove habitats mainly at high depth values (High-depth

users); 2) taxa using mangrove habitats mainly at intermediate depth values (Intermediate-

depth users); 3) taxa using mangrove habitats mainly at low depth (Low-depth users); 4) taxa

without any apparent preferences for depth (Generalist users). Patterns 3 and 4 mainly com-

prised taxa that frequently used mangrove habitats such as Fibramia lateralis, Lutjanus argenti-
maculatus, Siganus lineatus, Gerres oyena, or taxa belonging to the Gobiidae family [15], while

the other two profiles comprised mainly marine and reef-associated species. In essence, rather

than accessing mangrove habitats as soon as they become available, many species seem to use

mangrove habitats only for a restricted period of time. Other studies that looked at variations

in fish assemblages across the tidal cycle also reported species-specific responses to the depth

profile and highlighted that species using mangrove habitats extensively were accessing them

at a shallower depth than other less frequently observed species [26, 53–57]. Factors driving

these tidal migrations are not fully understood, and the fact that species do not enter mangrove

habitats as soon as they become available may suggest that these patterns could be the result of

behavioural adaptations to avoid adverse water conditions such as low dissolved oxygen that

can occur early or late in the tide [49, 50]. Species using extensively mangrove habitats could
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be adapted to tolerate lower depth and adverse dissolved oxygen conditions compare to species

that would occasionally use mangrove habitats when they are more suitable. More studies are

needed to link tidal fish migrations with dissolved oxygen conditions in mangrove habitats

because dissolved oxygen is likely to be a critical environmental factor determining the value

of these habitats.

Lunar phase was another influential factor responsible for temporal variations in mangrove

habitats utilisation by fish. More fish were detected during neap tide than spring tide, however,

taxonomic richness and fish assemblage composition were similar. These data oppose previous

studies that observed more fish at spring tide than neap tide [58–60]. These authors suggest

that spring tides result in more habitats available and for longer duration, attracting more fish.

We firstly thought this was an artefact of the methodology, with fish disappearing from the

field of view as water became too deep. However, we compared fish occurrence within the

same depth intervals between neap and spring tides, and fish presence was still substantially

lower during spring tides, which suggests that there may be another explanation. One explana-

tion could be that at spring tides fish can access more intertidal habitats, reducing the probabil-

ity of encounter with the UVCs. We also observed very strong currents in the channel and

along the mangrove edge during spring tides that could reduce the time fish can benefit from

using mangrove habitats as the energy needed to remain on the mangrove edge may be too

high.

Conclusion

The results here provide further support that within a mangrove forest, the inside and edge of

the forest are two distinct habitats characterised by different fish assemblages. The study man-

grove forest plays a role in maintaining a substantial number of fish species. However, the hab-

itats use was species-specific, suggesting that utilisation and value need to be considered

species-by-species if we want to fully understand the role mangrove systems play in maintain-

ing fish communities. The high spatial and temporal heterogeneity of fish assemblages compli-

cates the characterisation of mangrove forests value and utilisation, suggesting that results

from one location are unlikely to be applicable to other systems more broadly. This is an

important conclusion for managers when considering to adapt conservation strategies from

other locations, to local-specific habitat mosaics.
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