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ABSTRACT

Karimaghaei, Mina, Ph.D., University of South Alabama, May 2022. A Novel
Boundary Integral Formulation for Quantum Energy Eigenvalue Analysis and its
Application in a Model-Based Systems Engineering Framework for Quantum
Systems Development. Chair of Committee: Anh-Vu Phan, Ph.D.

In recent decades, the development and utilization of high-end technologies

have increased noticeably. This progress has become possible by finding a complete

understanding of physical rules in microscopic scales, such as quantum mechanics.

Quantum technologies can be applied to various fields, including optics,

superconduction, computing and simulation, precision measurement, and biomedical

imaging to enhance the performance of relevant devices and systems. However, the

complexity which emerges in the procedure of developing such devices can prevent

one from taking advantage of potential quantum technologies to effectively develop

these devices. In the current research, an attempt has been made to find a solution

for this problem.

Based on the various benefits of using systems engineering techniques in

managing the complexities of developing such systems, a model-based systems

engineering methodology has been employed towards the development of quantum

systems. In this research, quantum dot solar cells are chosen as a typical quantum

system, and four main stages of system analysis, design, manufacturing, and

verification, validation, and testing are considered and studied during the product

lifecycle. By integrating systems engineering tools with domain engineering tools, it

xi



is verified that the use of appropriate models can facilitate the overall procedure of

system development.

Moreover, by focusing on the system design and analysis phases, a novel

boundary integral formulation was developed in this research to accelerate the

procedure of system development. This approach decreases the computation burden

required to solve the governing equation of quantum devices and accomplishes the

design procedure more effectively and accurately. Various case studies have

demonstrated that the proposed technique can enhance both the accuracy and

computational-efficiency in the design of new quantum devices.
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CHAPTER I

INTRODUCTION, MOTIVATION, AND OBJECTIVES

1.1 Introduction

Living in a modern society is associated with efficiency and speed, two

features that are possible using high-end technologies. Progress in this area is only

possible through a complete understanding of microscopic systems and the relevant

physical rules for the behavior of light and matter, including quantum mechanics.

The application of quantum mechanics can be witnessed in various fields and

systems, including chemistry, optics, semiconductors, transistors and diodes,

medical imaging, quantum computing, etc. In this regard, Max Planck [1] and

Albert Einstein [2] had an important role in the emergence of this new field by

establishing the fundamental quantum theories, including an introduction to the

new concept of photons. It was stated that the energy of light consists of quantized

bundles, known as photons. This great discovery has enabled us to provide

descriptions for some important phenomena which were difficult to understand, like

the emission of radiation from an object in thermal equilibrium within the atomic

domain [3]. Later in 1924, based on Einstein’s theory regarding the quanta of light,

Louis de Broglie stated that all particles are quanta and show wave-particle duality

[4]. According to the fact that particles have wave-like behavior, a wave function

can be defined for them using the linear partial differential equation introduced by

Schrödinger in 1926 [5]. Generally, the Schrödinger equation is a function of time
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and the particle position. This function illustrates the state of a quantum

mechanical system and includes its known information. In order to find system

states, the time-dependent Schrödinger equation must be solved. The first step in

this process is to derive the stationary states of the system and employ them to

calculate other system states [6]. These stationary states can be obtained by using

the simplified form of the Schrödinger equation in which the potential function is

independent of time (known as the time-independent Schrödinger equation). In this

regard, dynamic models including a moving particle in a region, which are known as

quantum billiards, are used to study the behavior of such systems. The main reason

for considering these billiards as models for the simulation of quantum systems is

that the motion of electrons and also the relevant energy conservation in such

systems is similar to that of the particles in quantum billiards.

One of the main characteristics of the quantum systems that can be

identified using the previously mentioned system states is the system energy. This

can be achieved by solving the energy eigenvalue problem of the time-independent

Schrödinger equation. It is crucial to solve the eigenvalue problem of the

Schrödinger equation precisely, because this solution provides the required

information regarding quantum systems. There are several approaches towards

solving this equation, such as analytical and numerical methods. The analytical

techniques can only help to solve a small number of simple quantum systems,

mostly single-electron ones [7]. It is also worthwhile to note that analytical methods

become inefficient when the geometry or the boundary conditions considered for the

system are complicated [3]. This is the main reason why numerical solutions are

implemented to solve the aforementioned equation. The boundary element method

(BEM) is one of the numerical procedures which is successfully utilized to solve a

wide range of engineering and science problems governed by the time-independent

2



Schrödinger equation [8]. Technically, boundary element analysis (BEA) is used to

reduce the partial differential equation associated with a given problem to a

boundary integral equation by employing Green’s theorem and the relevant

fundamental solution [9]. The most significant advantage of this technique over

other similar approaches, like the finite element method (FEM), is that only the

system boundary has to be discretized instead of the whole physical domain. So, it

is possible to handle domains with more complicated geometries using this

methodology. Although using the BEM to solve the eigenvalue problem of the

time-independent Schrödinger equation has several advantages compared to other

similar techniques, there are some challenges and concerns that should be considered

in order to achieve appropriate results. The issues that may occur in this regard are

briefly discussed in Section 1.2, while more information will be presented in Chapter

II. In summary, it is very important to calculate the energy eigenvalues of the

time-independent Schrödinger equation accurately and effectively, especially for

quantum systems. These eigenvalues can be employed in the design and analysis of

various physical systems. Therefore, using a more precise methodology to obtain the

mentioned eigenvalues leads to the successful design and analysis of such systems.

Nowadays, systems engineering can be applied to develop the majority of

physical systems that are seen around the world. It is an approach that takes many

factors into account, from a high-level understanding of user’s requirements to the

detailed design of individual components as parts of a system. One of the main

purposes in systems engineering is to study complex systems in a more convenient

way. A complex system can be defined as a system such that its behavior and

characteristics are difficult to be anticipated [10]. Therefore, by considering this

definition, quantum systems can be identified as complex systems and systems

engineering can be implemented to handle the complexity of these systems. In this

3



regard, model-based systems engineering (MBSE) is an emerging approach that can

be used to integrate systems using models based on systems engineering concepts in

order to develop systems more conveniently [11]. The following definition is

provided by the International Council on Systems Engineering (INCOSE) for

MBSE: “The formalized application of modeling to support system requirements,

design, analysis, verification and validation activities beginning in the conceptual

design phase and continuing throughout development and later life cycle phases”

[12]. That is to say, in order to develop complex, interdisciplinary systems meeting

user requirements, an organized, convergent, iterative, and repeatable methodology

can be obtained by using MBSE [13]. Technically, MBSE can play an important

role in describing complex systems, their relevant lifecycle, and integration when

combined with SysML or any other modeling languages. MBSE can facilitate the

communication procedure by connecting all of the information produced during the

system development [14]. In addition to the INCOSE definition, MBSE can also

contribute to quality improvement, productivity increases, risk reduction, and

better communication [15]. So, analysis and design of complex systems like

quantum systems can be improved noticeably using MBSE.

1.2 Problem Statement

The significant role of quantum mechanics in modern technology was

discussed in the previous section. Although quantum systems form a considerable

portion of the recently-developed physical systems, and it is clear that these systems

are categorized as complex systems, to the best of the author’s knowledge, there has

not been any research carried out in order to analyze, design, and develop quantum

systems using MBSE. In other words, MBSE has not been employed to cope with

the complexity of quantum systems. Therefore, it is vital to understand and
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demonstrate the benefits of MBSE in analysis, design, manufacturing, integration,

and verification, validation, and testing (VV&T) quantum systems in general. So,

by representing the overall concept of MBSE in developing quantum systems, any

complex quantum system can be handled using this tool more conveniently.

Various researches have been conducted in order to apply MBSE to the

different stages of each product lifecycle from requirements analysis to system

retirement. However, this technique has not yet been implemented to quantum

systems. So, it is crucial to perform a similar process for the quantum systems to

use MBSE in the analysis, design, manufacturing, and testing stages during system

development. The main focus of this research is on the analysis and design areas of

the MBSE for quantum systems. In particular, using appropriate models in this

procedure can help to obtain a better understanding of these complex systems, and

perform the system design and evaluation more accurately. Consequently, this

research can help to develop high-level tools for the design of physical systems using

the potential quantum technologies. The design of a quantum system is associated

with several important steps. One of these main steps is to identify the governing

equation of the quantum system. Since the time-independent Schrödinger equation,

that was introduced in the previous chapter, is the governing equation of most

quantum systems, the key element in the analysis and design of these systems is to

compute the energy eigenvalues of this equation. It is worthwhile to mention that

by solving this eigenvalue problem, the important features of the quantum system

like its energy levels can be obtained which are required for the design stage. As

mentioned in the previous section, the BEM methodology can be employed to solve

the eigenvalue problem of the above-mentioned equation.

Principally, by implementing the boundary integral equations (BIE), a

system of equations like Ax = b will be obtained, where A is the matrix of

5



coefficients, x is the vector of unknown parameters, and b is the vector of known

parameters based on the assumed boundary conditions. In case of the energy

eigenvalue problem, the above system of equations becomes Ax = 0. This equation

has a trivial solution (x = 0), but its non-trivial solution can be obtained by solving

det(A) = 0. In this equation, A is a function of wave number value, k. One of the

main methods implemented by most researchers to solve this equation is scanning

the wave number amounts to find the local minima of the coefficients’ matrix

determinant in the BEM system of equations. These local minima represent the

eigenvalues of the time-independent Schrödinger equation. However, the major

drawback of this methodology is that the implemented standard searching technique

is extremely time-consuming because of its iterative nature. Therefore, a

non-iterative technique should be developed to alleviate this problem, and improve

the efficiency of the procedure.

Recently, researchers have tried to provide fast algorithms to make use of the

BEM method in solving partial differential equations more efficiently. Series

expansion methods are the main methodologies which can accelerate the process of

finding the eigenvalues of the time-independent Schrödinger equation. In spite of

more efficiency with these methods, the results may not have an acceptable

accuracy compared to analytical solutions. It is essential to develop an improved

technique which has an appropriate speed compared to iterative techniques and a

desirable accuracy in comparison with the current series expansion methods.

1.3 Research Objectives and Hypothesis

The main purpose of the current research is to develop an MBSE

methodology which can be used to support the analysis, design, manufacture, and

verification and validation of quantum systems. Then this technique will be applied

6



Figure 1. Systems engineering Vee for quantum systems development.

to the new generation of quantum dot solar cells as an example of quantum systems.

This research is performed with the original idea of finding a complete

understanding of the quantum systems performance by providing a working

simulation model. This goal will be achieved through using MBSE in every stage of

the quantum systems development from requirements definition to systems

integration, verification, validation and testing, as depicted in Fig. 1. The results

obtained in this research will help other researchers to gain a broader overview and

a better understanding of the relationship between the performance and the design

of complex systems like quantum ones.

The other purpose of this research is to propose a more effective method to

calculate the energy eigenvalues required for the analysis and design of most

quantum systems governed by the time-independent Schrödinger equation. As

described in the previous section, most current approaches used to solve the energy
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eigenvalue problem of the time-independent Schrödinger equation are based on

iterative methods, and are very time-consuming. So, it is required to provide a more

efficient technique in this regard. This is the main reason researchers are trying to

propose acceleration methodologies to deal with the drawbacks of previous

approaches. One of the proposed methods in this regard is utilizing the series

expansion method. According to Section 1.2, the energy eigenvalues of the

time-independent Schrödinger equation can be obtained by finding the roots of

det(A) = 0. These roots demonstrate the so-called energy eigenvalues of the

time-independent Schrödinger equation. Since A is a function of wave number, k,

and the conventional iterative methods require scanning k, numerous recalculations

of det(A) are required in order to find the local minima of this determinant.

However, in series expansion methods, the attempt is to make the BEM integrand

independent of k and save computational costs by avoiding iterative calculations.

Although the series expansion methods have increased the efficiency of solving these

problems noticeably, there are some concerns regarding the accuracy of the results.

For instance, fictitious eigenvalues can be produced because of using the real-valued

fundamental solution of the Laplace equation instead of the complex-valued

fundamental solution of the time-independent Schrödinger or Helmholtz equation1.

More details regarding the researches performed in this field will be discussed in the

next chapter.

1.4 Contributions

This research will contribute to the investigation of quantum systems as

follows:

1In the absence of further potentials in the dynamical systems like quantum billiards, the relevant
time-independent Schrödinger equation is related to the acoustical problems that only involve the
Helmholtz equation. The difference between the fundamental solution of the Helmholtz and the
time-independent Schrödinger equation is in a coefficient.
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� Dealing with the complexity of quantum systems more conveniently and

effectively: Quantum systems can be categorized as complex systems, because

it is not convenient to model such systems and anticipate their behavior.

However, in this research it is proposed to develop a general approach to cope

with the complexity of these systems. By implementing the suggested

methodology, researchers in this area can develop complex quantum systems

more easily.

� Proposing a complete MBSE approach for quantum dot solar cells: Solar

power plays a very important role in the field of sustainability, especially in

developing countries. Solar energy is more reliable, useful, cost-effective, and

healthier for both humans and the environment [16]. Nevertheless, one of the

disadvantages of the solar cells is their low efficiency. However, this parameter

can be increased by considering quantum dots in the design of these devices

(Fig. A.14). Quantum dot solar cells are environmentally-friendly and have

acceptable performance [17]. Since quantum dot solar cells can be considered

as complex quantum systems, and it is difficult to design, develop, and

evaluate these complex systems, model-based systems engineering can be

employed as a strong tool for this purpose. In this regard, an MBSE

methodology is described in Chapter III to show the contribution of this

research to study the quantum dot solar cells as an example of a complex

quantum system.

� Proposing an accurate and efficient numerical technique to find the energy

eigenvalues of quantum systems: The iterative procedures that are employed

to calculate the energy eigenvalues of various quantum systems are very

time-consuming and inefficient. The numerical technique proposed in this

research can help in finding these parameters, and can be used for the design

9



Figure 2. The structure of a typical quantum dot solar cell [18].

of most quantum systems. It is also worthwhile to mention that the accuracy

of this process is higher in comparison to similar methods suggested in the

literature.
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[17] A. Aouami, L. Pérez, K. Feddi, M. El-Yadri, F. Dujardin, M. Suazo, D. Laroze,
M. Courel, and E. Feddi, “Influence of geometrical shape on the characteristics
of the multiple InN/InxGa1-xN quantum dot solar cells,” Nanomaterials,
vol. 11, no. 5, p. 1317, 2021.

[18] M. Jacoby, “A powerful dot of solar energy,”
https://cen.acs.org/articles/91/i38/Powerful-Dot-Solar-Energy.html [Accessed
01 January 2022].

12



CHAPTER II

LITERATURE REVIEW

In this chapter, the previously performed researches in three main fields are

discussed. In the first section, the important role of model-based systems

engineering is shown in various engineering fields, particularly in the investigation of

complex physical systems. It is observed that there is a special need for such a

beneficial approach in the development of quantum systems. Despite the fact that

MBSE has not been exploited to study quantum systems, the significant impact of

using models on the investigation of these complex systems is clear. Consequently,

quantum billiards are employed as dynamic models to facilitate the study of

quantum systems that are discussed in the second section. The third section

considers the necessity for obtaining energy eigenvalues for the design of most

quantum systems, and summarizes a noticeable number of researches that are

devoted to implementing numerical methods like the BEM for solving the energy

eigenvalue problem of the Helmholtz and time-independent Schrödinger equations.

As mentioned in the previous chapter, these equations play an important role in

quantum mechanics since they are the governing equations of a wide range of

quantum systems.

2.1 Model-Based Systems Engineering

Model-based systems engineering serves to highlight the role of modeling in

various activities in the system lifecycle, from the conceptual design stage to the
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product end life, including development of system requirements, analysis, design,

and verification and validation [1]. When using document-based methodologies,

some inconsistency may appear in the documentation. This inconsistency can be

alleviated by employing MBSE and relevant models for the systems [2]. Another

advantage of MBSE is to improve communications between the participants who

contribute to the system development, such as stakeholders and engineers.

Moreover, better system quality and productivity in addition to lower risks and

expenses are other merits of using this method for industrial purposes [3].

According to the INCOSE systems engineering handbook, the MBSE methodology

is associated with several other advantages. For one, all the information obtained

will be gathered in a standardized format, so obtaining access and reusing the

knowledge achieved during systems development will be improved. For another, a

representative model of a system will be prepared which can be used in the next

stages in the system lifecycle, like maintenance, retirement, and legacy system

development [4]. In this regard, the authors in [5] took advantage of an MBSE

technique for addressing all the required system information in order to optimize

the cost, schedule, and overall performance of the system. According to these

mentioned points, it is noticeably advantageous for designers and manufacturers to

apply MBSE for developing complex systems because the complexities in the system

architecture can be communicated more effectively by using models [3]. Various

researches show the applicability of the MBSE in the investigation on complex

systems. For instance, Masior et al. studied the development of MBSE techniques

and technologies in the context of complexity and relevant methodologies including

virtual models and informational and process consistency [6]. These authors also

proposed an MBSE method which provides a basis for consistent and integrated

system models to deal with complex systems of small or large companies. In
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another research, Inkermann et al. introduced a concept to find the requirements for

developing automotive systems using MBSE [7]. For this purpose, five partial

models including use-cases, functions, function realization, system structure, and

product structure were used. Then a case study on an electrical vehicle was

performed to verify the capability of the proposed method in the development of

such products. Akhundi and Lopez represented the current need for an MBSE

technique to address complexities in the manufacturing phase of the system design

process [3]. Scherer et al. also tried to reduce system complexity by proposing a

modular-structured approach in the MBSE area [8]. Wang emphasized the

importance of using models in the whole product lifecycle in order to develop

complex systems more economically and efficiently [9]. In addition, a noticeable

number of complex systems that are going to be developed may be exposed to cyber

attacks in the future. MBSE can be implemented to alleviate the probable risks

existing in this regard. In fact, MBSE is superior to other approaches, since it can

reduce security risks of the system at the initial steps of its development procedure.

Consequently, cyber-security risks will be addressed during the system design stage

[10]. Altogether, according to the researches performed in this area, the favorable

impact of the MBSE method in the development of complex systems is clear.

However, there is no research which uses MBSE approach to cope with complex

quantum systems in general. So, it is crucial to propose an appropriate

methodology for quantum systems development via MBSE.

2.2 Quantum Billiards

As mentioned before, the importance of implementing models for the

investigation of complex systems is clear. This is the main reason why dynamic

models known as quantum billiards are introduced to study quantum systems.
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Billiards are models considered for a wide range of physical systems, including

moving particles in a vessel which hit the walls or collide with each other. Due to

various wall shapes of these containers, the billiards will demonstrate different

dynamic properties. They can become entirely regular and integrable or fully

chaotic [11, 12]. The chaotic behavior of billiards was studied by Sinai for the first

time in 1970 [11]. This behavior of particles are similar to that of the electrons in

quantum devices. As a result, quantum billiards have often been employed to model

particles moving inside nanodevices, such as quantum dots and pn-junctions. In

several researches carried out using quantum billiards, analytical approaches are

employed in order to calculate the relevant eigenvalues and eigenfunctions. For

example, Heller used an analytical approach to obtain the bound-state

eigenfunctions of chaotic systems [13]. The main disadvantage of these methods is

that it is difficult, or sometimes impossible, to apply them to complex problems

including complicated geometries or boundary conditions. Thus, the necessity of

using numerical methods for solving these problems is undeniable. One of the

popular numerical techniques is iterative boundary element methods (BEM),

although it is a time-consuming approach. For instance, Ree and Reichl studied the

quantum dynamics of circular billiards with a straight cut using an iterative BEM

[14]. Similarly, this technique was implemented by Kosztin and Schulten to compute

the stationary states of quantum billiards [15]. In this regard, the relevant energy

eigenvalues were found by calculating the roots of the Fredholm determinants.

Furthermore, in this investigation, the chaotic features of the circular and stadium

billiards were studied, but in order to study chaos, the authors had to consider more

than a thousand eigenvalues to construct the histogram of energy level distribution,

which was a computationally-inefficient procedure. The inefficiency of the iterative

BEM approach is discussed with more details in the next section. Another aspect of
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solving the eigenvalue problem of quantum billiards is the boundary geometry.

Several researchers studied only regions with smooth boundaries [13, 16], like

circular billiards, while sharp corners in the billiards may lead to singularity and

ineffectiveness of the approach. Thus, it is required to establish a more efficient

BEM technique and also take advantage of dynamic billiards as models to solve the

energy eigenvalue problems, and then use these eigenvalues to design and develop

quantum systems with arbitrary geometries.

2.3 Energy Eigenvalues of the Time-Independent Schrödinger Equation

As mentioned in Chapter I, the Schrödinger equation is a partial differential

equation which governs the behavior of a quantum mechanical system. Most

investigations on quantum systems try to obtain the energy eigenvalues of this

equation using iterative procedures. These techniques scan the wave number to find

the local minima of the determinant obtained from boundary integral equations, as

discussed in the previous chapter. However, these methods are time-consuming and

inefficient. Therefore, considerable effort has been made to accelerate the process of

solving the eigenvalue problem of the time-independent Schrödinger equation. The

main approach in this regard is to make the BEM integrand independent of the

wave number in order to avoid a huge amount of recalculations required for the

iterative methodologies. In addition, there are several other fast techniques

proposed in the literature, such as the fast multipole method, the adaptive cross

approximation technique, etc. The advantages and also the limitations of these

approaches are discussed in this section.
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2.3.1 Wave Number Scanning Method

One of the conventional methods to find the energy eigenvalues of the

Helmholtz equation is the iterative method. This approach scans the wave number

range in order to find the relevant eigenvalues, and is well-studied by several

scholars. For instance, Tai and Shaw employed this technique to achieve the

eigenvalues and eigenmodes of the homogeneous Helmholtz equation for closed

regions in two and three dimensions [17]. In this effort, the problem was solved

under the first order homogeneous boundary conditions for domains with arbitrary

geometries. It is shown that the results obtained in the case of an isosceles right

triangle are in agreement with analytical results. In another study, De Mey used the

same procedure to determine the eigenvalues of the two-dimensional Helmholtz

equation for circular and rectangular domains [18]. Although the results obtained

are accurate compared to analytical solutions, the author admitted that the main

disadvantage of this method is its iterative nature, as a conclusive point. In another

investigation carried out by this author, a real particular solution of the Helmholtz

function was used instead of the conventional Green’s function to find the first

eigenvalue of a circular region, taking the drawback mentioned into account [19].

Adeyeye et al. employed three numerical collocation treatments to calculate the

eigenvalues of the Helmholtz equation under Dirichlet boundary conditions [20].

The problem was successfully solved for various geometries, including circular,

elliptic, and square domains. Nevertheless, despite the ability of the scanning

approach to find the energy eigenvalues of the Helmholtz equation, its major

demerit is computational ineffectiveness. The next two sections discuss procedures

to cope with this issue.
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2.3.2 Series Expansion Method

As mentioned in previous sections, several researches were performed in order

to make the BEM integrand independent of the wave number by employing static

fundamental solutions. In this regard, the multiple reciprocity method (MRM) was

proposed by Nowak and Brebbia [21] to convert the domain integrals to boundary

integrals. After that, Kamiya and Andoh found a more effective approach to find

the eigenvalues of the Helmholtz equation by using the MRM method, considering

the real-valued fundamental solution of the Laplace equation [22]. The problem was

solved for two-dimensional regions under various homogenous boundary conditions,

and the performance of this method was compared with techniques mentioned in

Section 2.3.1. A similar approach was employed by Kamiya et al. to find the

eigenvalues of the 2-D Helmholtz equation for three-dimensional regions [23]. In this

research, a Newton iteration method was developed using the lower-upper (LU)

decomposition process, instead of applying the standard-type eigenvalue problem

[24]. The results show that the overall computational cost decreased compared to

the wave number scanning methods, as expected. Later, Sladek et al. represented

the applicability of the MRM method in finding the eigenvalues of the 3-D

Helmholtz equation [25]. These authors verified the higher efficiency of this

procedure when seeking a large number of eigenvalues in the boundary value

problems.

The series expansion method was employed by Kamiya et al. to find the

eigenvalues of the scalar-valued Helmholtz equation using the complex-valued

fundamental solution [26]. The authors derived a polynomial in terms of k2 for just

the real part of the coefficient matrix. Since they were not able to make the whole

integrand independent of the wave number, they had to apply an iterative

procedure, like Newton iteration method, to calculate the relevant eigenvalues.
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Therefore, despite using the series expansion procedure, an iterative method was

implemented to find the eigenvalues. In another investigation, a new MRM

approach, which was equivalent to using the complex-valued fundamental solution,

was developed by Yeih et al. for one-, two-, and three-dimensional forms of the

Helmholtz equation [27]. It was also explained how to deal with the spurious

eigenvalues obtained by this process. Later, Kirkup and Amini proposed a

polynomial approximation for the BEM coefficient integrand with respect to the

wave number in order to convert the non-linear eigenvalue problem into a standard

one [28]. This method was applied to a two-dimensional square and a

three-dimensional sphere under axisymmetric boundary conditions. The series

expansion method was also implemented by Wang et al. to solve the

multi-frequency acoustical problems governed by the Helmholtz equation [29]. The

authors formed BEM matrices independent of k, which led to an overdetermined

system of equations, and numerical examples showed the effectiveness of this

approach. It was also stated that this method is appropriate for small and medium

numbers of the wave numbers because of higher data storage space required for

larger systems. In a more recent study, Xie and Liu developed a model order

reduction method on the basis of an offline-online structure [30]. In the offline

phase, the boundary integral kernels were made independent of the wave number by

applying Taylor’s theorem. Then by summing up the offline reduced matrices in the

online phase, a reduced-order model can be produced for the three-dimensional

fundamental solution in order to solve the multi-frequency acoustic wave problems.

Altogether, researches in this category can be summarized into two groups. The

first group uses the real-valued Laplace fundamental solution instead of the

complex-valued Helmholtz fundamental solution, which leads to obtaining fictitious

eigenvalues and reduces the accuracy of the results. The second group uses the
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Figure 3. A comparison among the effectiveness of the three acceleration methods
[32].

complex-valued fundamental solution, but because they were not able to make the

BEM integrand independent of the wave number, they had to use the inefficient

iterative method to achieve the eigenvalues.

2.3.3 Other BEM Acceleration Methods

In the past three decades, significant effort has been devoted to find a fast

method for solving the BEM problems, especially in the field of acoustics [31].

These acceleration techniques include the fast multipole method (FMM) [32],

adaptive cross approximation (ACA) [33], and fast direct solvers [34]. The FMM

method tries to accelerate the matrix-vector calculation required for the BEM

system of equations in iterative methods. This approach was implemented to solve

the Helmholtz equation in different researches [35, 36, 37]. Besides that, Bebendorf

et al. suggested using ACA method to solve the BEM problems with respect to

matrix algebra. It is a kernel-independent method and is more convenient to be

implemented in comparison with the FMM approach [38]. The main idea regarding
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the algorithms associated with the fast direct solvers is to consider a low-rank

approximation for specific submatrices of the main BEM coefficient matrix. A

comparison among the precision and effectiveness of these three methods is

illustrated in Fig. 3.

Recently, a new technique called contour integral method (CIM) is developed

to solve the nonlinear eigenvalue problems of the Helmholtz equation via BEM [39].

This process converts the nonlinear eigenvalue problems into ordinary ones. In order

to accelerate the solution procedure, Zheng et al. implemented a combination of the

CIM and FFM methods to reduce the overall solution cost of the boundary element

system of equations. However, it is worthwhile to note that using this combination

is more complicated in comparison with the series expansion methodology.
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CHAPTER III

ARTICLE 1 – A MODEL-BASED SYSTEMS ENGINEERING

FRAMEWORK FOR QUANTUM DOT SOLAR CELLS

DEVELOPMENT

3.1 Supplementary material

This paper1 introduces a model-based systems engineering (MBSE)

framework for dealing with the complexity of developing quantum systems. More

details relevant to the material described in this article are provided in Appendix A.

3.2 Abstract

Nowadays, a wide range of newly designed devices are based on high-end

quantum technologies. To successfully design a quantum system, it is necessary to

appropriately address the increasing complexity which exists in the development

procedure of the system. A suitable approach to deal with this problem is to employ

systems engineering models and integrate them with domain engineering tools. The

model-based systems engineering (MBSE) methodology is commonly used to

analyze, design, manufacture, and test various complex systems. In this paper, the

MBSE approach is chosen towards the development of quantum dot solar cells as a

typical quantum system and to deal with the complexity existing in this procedure.

1M. Karimaghaei, R. Cloutier, A. Khan, J. D. Richardson, and A.-V. Phan, “A Model-Based
Systems Engineering Framework for Quantum Dot Solar Cells Development”, to be submitted.
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The analysis, manufacturing, and verification, validation, and testing (VV&T) for

this system are described using SysML in Cameo Systems Modeler software to

represent the role of models in this regard. Then a detailed design is performed in

MATLAB and integrated with SysML to identify how changing various parameters

during the system development process affects the overall system performance. This

technique facilitates the communication between different engineering teams and

helps to manage the complexity in the entire system lifecycle.

3.3 Introduction

Living in a modern society is associated with using complex technologies,

based on the procedure of developing complicated systems as well as integrating

these systems together, which makes this area even more complex. A similar trend

can be seen in development of quantum technologies and the relevant devices.

Discovering the concept of photons and the wave-particle duality behavior was the

first revolution in the field of quantum mechanics, which led to finding the relevant

underlying technologies. On the other hand, the second quantum revolution is

happening in the 21st century, the result of which will be the development of a wide

range of devices based on quantum technologies [1]. It is worthwhile to mention

that the main purpose in the development of quantum technologies is not merely

providing new products. Quantum technologies have the potential to play the most

important role in establishing new physics-based tools that can be used in design,

engineering, and even architecture [2]. Most people think of the quantum computing

field as the main application of quantum technologies; however, there are a vast

number of other applications, including semiconductors, optics, navigation,

cryptography, precise timing, gravity sensors, and imaging systems or similar

devices for biomedical purposes. Many other applications that can be mentioned for
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quantum technologies indicate the basis for a technological revolution [3]. In spite of

noticeable advantages considered for quantum technologies, the complexity existing

in using the potential quantum technologies to develop novel systems and devices is

a major problem that may prevent developing such systems as efficiently as

expected. One way to cope with this problem is to use systems engineering tools.

Nowadays, systems engineering can be applied to develop the majority of

physical systems seen in the world. It is an approach that takes many factors into

account, from a high-level understanding of user’s requirements to the detailed

design of individual components as parts of a system. One of the main purposes in

systems engineering is to study complex systems in a more convenient way. A

complex system can be defined as a system such that its behavior and

characteristics are difficult to be anticipated [4]. Therefore, by considering this

definition, quantum systems are identified as complex systems and systems

engineering tools should be implemented to handle the complexity of these systems.

Model-based systems engineering (MBSE) is an emerging approach in systems

engineering that can be used to integrate systems using models based on systems

engineering concepts in order to develop systems more conveniently [5]. In other

words, to develop complex and interdisciplinary systems meeting user requirements,

an organized, convergent, iterative, and repeatable methodology can be obtained by

using MBSE [6]. Technically, MBSE can play an important role in describing

complex systems and their relevant lifecycle and integration when combined with

Systems Modeling Language (SysML which is a systems engineering adaptation of

unified modeling language originated by software development [6]) or any other

modeling language. MBSE can facilitate communication by connecting all the

information produced during the system development [7]. In addition, a noticeable

number of complex systems that are going to be developed may be exposed to
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cyber-attacks in the future. MBSE can be implemented to alleviate the probable

risks existing in this regard. In fact, MBSE has a superiority over other approaches,

since it can reduce security risks of the system at the initial steps of its development

procedure. Consequently, cyber-security risks will be addressed during the system

design stage [8]. According to the mentioned points, it is noticeably advantageous

for designers and manufacturers to apply MBSE for developing complex systems

because the complexities in the system architecture can be communicated more

effectively by using models [9].

Model-based systems engineering serves to highlight the role of modeling in

various activities in the system lifecycle, from the conceptual design stage to the

product end life, including development of system requirements, analysis, design,

and verification and validation [10]. For instance, Wang emphasized the importance

of using models in the whole product lifecycle in order to develop complex systems

more economically and efficiently [11]. Scherer et al. also tried to reduce the system

complexity by proposing a modular-structured approach in the MBSE area [12].

When it is required to develop a new system, various engineering teams should work

together using different tools to accomplish this goal successfully. As mentioned

before, the use of models can facilitate the communication between these teams, so

MBSE can be applied to develop complex systems more effectively. MBSE can also

help the engineers in these teams to understand better the relationship between the

various subsystems of a complex system, and figure out how changing the design of

one part affects the entire system. As a result of this stage, the optimized design for

a system can be achieved (Fig. 4). Managing and sharing the resulting data more

conveniently and ensuring the requirement traceability are other goals that can be

achieved by using MBSE. Altogether, according to the researches performed in this

area, the favorable impact of the MBSE method in the development of complex
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systems is clear. To the best of authors’ knowledge, there is no research which uses

MBSE approach to cope with complex quantum systems. So, it is crucial to propose

an appropriate methodology for quantum systems development via MBSE. The

main purpose of this paper is to cover this gap.

In this research, an MBSE approach is suggested to develop quantum systems

more effectively. As previously mentioned, MBSE can be applied to the whole

product lifecycle, but the focus in this paper is on the simulation stage. By doing so,

the requirements verification for each design can be performed before prototyping

and investing too much time and money on designs that may not meet the

requirements. For this purpose, quantum dot solar cells are chosen in this research

as a typical quantum system to study the MBSE approach and its application in

quantum systems development. In the remainder of this paper, the system analysis,

design, manufacturing, and verification, validation and testing (VV&T) procedures

for the development of quantum dot solar cells using MBSE are described.

3.4 Quantum dot solar cells

Today, energy concerns are a significant challenge in the development of

modern civilizations. Although fossil fuels have not yet been exhausted, their

negative environmental effects are undeniable. The pollution and the greenhouse

gases arise from burning these fuels for harnessing their inner energy threaten

human society [13]. Therefore, replacing fossil fuels by alternative energy sources to

protect the planet, supply growing energy demands, and enhance the standard of

living is crucial [14]. In this approach, solar power is a renewable energy resource

which is easily available in almost all parts of the world. If all the solar energy

reaching the atmosphere could be absorbed, it would be more than enough to

satisfy the energy demands of the whole world for an entire year [15]. So,
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Figure 4. Model-based systems engineering.

researchers in the last few decades have focused on finding the most efficient and

cost-effective methods to make use of solar energy as much as possible. Solar power

plays an important role in the field of sustainability, especially in developing

countries. Solar energy is more reliable, useful, cost-effective, and healthier for both

humans and the environment [16]. By capturing the solar irradiation and converting

it into a useful form of energy, such as electricity, a sustainable and clean energy

system can be achieved. This energy conversion can be performed using so-called

solar cells. Technically, a solar cell is a semiconductor device that directly converts

solar energy into electricity via a physical and chemical phenomenon, called the

photovoltaic effect [17]. When photons hit a solar cell, electrons of the cell are

separated from their atoms. If each side of the cell is connected to an electrical load
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by electrical conductors, the released electrons can freely flow through this closed

circuit, and thus an electrical current is generated, and the electrical load is

successfully supplied. Multiple solar cells are integrated into a group to create a

solar panel which can be used in residential, commercial, or industrial buildings [18].

Nevertheless, one of the disadvantages of solar cells is their low efficiency. However,

their efficiency can be improved by using quantum technologies.

Potentially, each type of material can absorb a different range of solar

irradiation, and the rest of the solar energy cannot be converted to electricity. One

way to cope with this problem is to use multi-junction solar cells, where different

materials are put together layer-by-layer to successfully harvest multiple portions of

the solar spectrum. To achieve this goal, a variety of materials is required, such that

each one has the ability to absorb a specific portion of the solar spectrum. With the

recent development of quantum mechanics, the property of a material can be

modified by using quantum dots. Principally, quantum dot are particles of a

semiconducting material with tiny diameters in the range of 2 to 10 nanometers

(about 10 to 50 atoms). They have unique electronic properties which can be tuned

during manufacturing by simply changing the dot shape and size [19]. A quantum

dot solar cell is obtained by incorporating quantum dots into the absorbing

photovoltaic material [20]. Using a well-tuned solar cell, it is possible to absorb a

wide range of the solar spectrum which is typically difficult to achieve by

conventional solar cells, and thus the efficiency of the solar cell is eventually

enhanced [21]. Since quantum dot solar cells are considered as a complex quantum

system, and it is difficult to design, develop, and evaluate these complex systems,

MBSE can be employed as a strong tool for this purpose. In this regard, an MBSE

methodology is described in the next sections to show the contribution of this
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research to study the quantum dot solar cells as an example of a complex quantum

system.

3.5 System analysis

Nowadays, one of the aims in quantum mechanics is to accelerate the

application of potential quantum technologies into physical devices, because of the

importance of these apparatus in modern technology. Hence, it is essential to find

the needs in this field, and also figure out the disadvantages and limitations of the

current systems in order to be improved. As discussed in Section 3.4, quantum dot

solar cells are an application of quantum technologies in the field of renewable

energy. However, one of the main challenges regarding the use of renewable energy

sources is to convince people to use these new energies instead of conventional

sources [22]. In fact, one of the problems that may have influence on making this

decision is the point that the required time for return of investment for using solar

cells is much higher than expected if their efficiency is not high enough. On the

other hand, making consumers aware of the generated amount of electrical power

from their installed solar cell systems continually can motivate them to become

renewable energy users. Therefore, as one of the initial steps in the system analysis,

the stakeholder requirements can be derived using the above-mentioned desirements

as follows:

� The user shall be able to monitor the generated electricity remotely.

� The time of return of investment shall be decreased to less than half.

It should be noted that conventional solar cells were made of crystalline silicon, and

were able to attain an efficiency of up to 26%, which led to long time of return of

investment. However, by using quantum dot solar cells with an optimized design, it
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is possible to achieve much higher efficiencies, which makes it possible to

successfully satisfy the stakeholder requirements.

The next step in the system analysis is to capture the interactions between

the system of interest (quantum dot solar cell) and the active and passive

stakeholders by preparing a domain diagram. Namely, a domain diagram can be

considered as a SysML version of a context diagram. This diagram is noticeably

useful for the analysis of complex quantum systems because it provides a common

understanding of the modeling scope. Additionally, it helps to define system

interfaces and boundaries, which is a difficult procedure for most quantum systems.

Figure 5 illustrates the interactions between a solar cell system and its stakeholders

and environment.

In the next step, the uses and functions of the quantum system and also the

actors or other systems with which the system of interest (quantum dot solar cell)

interacts are captured. These uses are depicted in Fig. 6 using SysML in the form

of a use case diagram. According to this diagram, electrical power generation is

identified as the basic functionality of the quantum dot solar cell based on the

defined system purpose or usage. Furthermore, a system monitoring feature is

added as per the user requirements. Finally, the functions of other stakeholders, like

the solar cell owner and maintainer, are also indicated. It is worthwhile to mention

that this diagram only shows the top-level functionalities of the system.

One of the main phases in a system development is to derive the system

requirements based on the stakeholder requirements. Basically, each stakeholder

requirement will be converted into several system requirements. In Fig. 7, the

system requirements of quantum dot solar cells are demonstrated using SysML. As

is shown, the system requirements are categorized into five main groups. The most

important one is the system requirement that will lead to increasing the solar
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Figure 5. The domain diagram of a quantum dot solar cell.

system efficiency. As previously mentioned, the efficiency of a quantum dot solar

cell depends on its material and its geometrical parameters. Thus, as shown in Fig.

9, by optimizing the material (i.e. the substrate material and the quantum dot

material of the solar cell) and the geometrical characteristics (i.e. the shape, the

size, and the inter-dot spacing between quantum dots), the efficiency of the

quantum dot solar cell can be enhanced. The other points to improve the efficiency

are to distribute the quantum dots uniformly in the solar cell structure, to consider

a design for the quantum dot solar cell that increases its photon absorption rate.

Note that the other requirements are defined to provide the monitoring and
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Figure 6. The use case diagram of a quantum dot solar cell.

maintenance outputs of the solar cell system. Now that the system requirements are

obtained, the system design can be performed in order to meet these requirements.

3.6 System design

One of the main objectives which should be considered in the design and

development of any system, especially quantum systems, is to design a system that

operates with a desired accuracy and a low chance of failure. Namely, the reliability

aspect is crucial in this regard [3]. In order to design a quantum system to meet the

reliability requirement, a complete understanding of the system as well as its

operation and also the relevant system failure possibilities should be determined.

The MBSE methodology paves the way to find such an understanding. For instance,

some quantum features, like entanglement, may cause unexpected system failure
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Figure 7. System requirement diagram of the quantum dot solar cell.

38



modes. Quantum entanglement is a feature representing the underlying relationship

between the subsystems of an entire quantum system, which cannot be defined in

terms of classical mechanics [23]. In other words, although quantum systems are

more likely to fail because of their entangled nature, by taking advantage of systems

engineering techniques like MBSE, it is possible to design systems to avoid failure.

3.6.1 System design using engineering tools

It is considerably difficult to construct a precise model for quantum systems.

Thus, an approximate model can be developed based on the statistical data

obtained from experimental tests and relevant quantum theories. Quantum systems

design can also be performed based on this model. By employing computer-aided

engineering, the design of systems based on advanced technologies, such as quantum

technologies, can be accelerated. However, implementation of the newly developed

physical rules in the systems development and the employment of a combination of

quantum technologies and the relevant classical feedback are still big challenges.

Therefore, new computational methods should be developed to provide design tools

for quantum systems [3]. For instance, in order to accelerate the application of

potential quantum technologies into physical devices, the novel boundary integral

techniques [24, 25] for computing the quantum energy eigenvalues can be employed

in the proposed MBSE framework to effectively and accurately evaluate the

efficiency of quantum dot solar cells. In other words, these numerical methodologies

can be employed to solve the governing equation for the mentioned solar cells more

efficiently. According to these points, a design model is proposed in this research

with the aid of MBSE and the aforementioned boundary integral techniques, which

is depicted in Fig. 8. The design process for quantum dot solar cells can be

described as follows:
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� The governing equation of the system should be identified first, which is the

time-independent Schrödinger equation.

� A model should be prepared based on the selected governing equation and the

experimental results.

� The energy eigenvalue problem of the time-independent Schrödinger equation

is solved using the boundary integral techniques mentioned above (the results

of this stage can be evaluated by comparing them with analytical results).

� The derived energy eigenvalues can be used to develop a quantum dot solar

cell in order to meet the requirements.

In order to use the boundary integral techniques to accelerate the design

procedure of quantum dot solar cells, a MATLAB script is prepared based on a

model developed by Aouami et al. [20]. The simplified 2-D model for the solar cells

with spherical and cubic quantum dots is shown in Fig. 9. As mentioned previously,

one of the system requirements is to increase the photon absorption rate of the solar

cell. Technically, there is a group of solar cells that can generate two or three energy

carriers, known as excitons, by receiving a single photon from solar irradiation. In

this study, it is assumed that the quantum dot solar cell belongs to this group and is

categorized as a multi-exciton solar cell. The solar cell substrate material is GaN,

and the quantum dots are from InxGa(1-x)N, where x shows the Indium content.

The size, shape, and interdot spacing of these quantum dots, and also their

material, are the main parameters that affect the solar cell efficiency. The MATLAB

script receives these input variables, and computes the solar cell efficiency using

boundary integral techniques. Thus, the calculated efficiency based on the

geometrical and material inputs will be the output of this stage.
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Figure 8. The system design model for a quantum dot solar cell.
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Figure 9. The simplified model of a typical quantum dot solar cell.

3.6.2 Integrating SysML with MATLAB

During quantum systems development, various teams work together. The

most important point in this regard is to integrate the activities performed by

domain engineering teams with the tasks prepared in the systems engineering tools.

So, every person who is involved in the analysis, design, and VV&T procedure can

understand how making a change in each parameter will influence the other parts

and the final system performance. In this study, the system models created using

SysML in Cameo System Modeler software [26] are integrated with the MATLAB

script described in the previous section. A parametric diagram is developed to link

the geometrical and material properties of the quantum dot solar cell to its

efficiency, as depicted in Fig. 10. Therefore, the impact of changing each parameter

on the efficiency can be easily identified, and it is possible to check whether the

newly considered values for the system design will meet the system requirements or

not. Furthermore, the parametric diagram of the design process can be connected to

test parameters to check whether the design output is in conformity with the test

results. It shows the accuracy of the assumptions considered during the design

phase. The procedure of manufacturing the designed quantum dot solar cell and

measuring its efficiency via a test process are described in the next section.
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Figure 10. The parametric diagram of a quantum dot solar cell.
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3.7 System manufacturing and testing

Recently, a transition from document-based approaches to the model-based

ones is crucial in order to successfully address complexities in the manufacturing

industry. The main reason is inconsistencies occurring during the design

information exchange process [9]. When it comes to the development of quantum

systems, the complexity level is further increased. Therefore, using MBSE to cope

with such complexities becomes inevitable. In this section, it is described how

SysML can be applied to provide a manufacturing model for quantum dot solar

cells. The process of manufacturing quantum dot solar cells under this study is

described in [27]. According to this procedure, in the first step, a layer of Sapphire

is prepared as a template for the solar cell. Then a layer of GaN is grown on this

template, which acts as the substrate of the solar cell. Next, a layer of InxGa(1-x)N

is grown on the GaN substrate by using metalorganic vapor phase epitaxy

(MOVPE) technique. The sample is capped with a layer of GaN, and then it is

coated with a layer of aluminum. In the next step, a mask pattern of quantum dots

is fabricated on the sample surface using the electron-beam lithography method

based on geometrical parameters. By employing the SiCl4 reactive ion etching

technique, the pattern is transferred to create quantum dots. Now, the ohmic

contacts are deposited on the solar cell surface, after which the sample is annealed

with NH3 and N2 to improve its surface morphology. Finally, an anti-reflection

coating layer is added to the solar cell to enhance the absorption of solar irradiation.

By using model-based techniques, every detail considered in this regard will be

followed carefully, and the probability of system failure due to complexity will

decrease significantly. An activity diagram representing the manufacturing process

is shown in Fig. 11. Similar SysML diagrams can also be employed for modeling the

product and also the required manufacturing facilities.
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Figure 11. The manufacturing process model for a quantum dot solar cell.

Because of the delicacy existing in the measurement of quantum systems and

other similar issues, it is difficult to develop a method to test such systems. Some

researches have been conducted to help perform the testing and certification of

quantum systems based on quantum statistics [28, 29]. In these methods, the

quantum system is assumed to be a black box, and the main focus is the inputs and

outputs of the experiments. The methods suggested in these investigations can be

applied to both theoretical and numerical models [3]. The testing process that can

help to validate and verify the design for the quantum dot solar cells is discussed in

several articles [30, 31]. In these articles, the efficiency testing process is described

as is shown in Fig. 13. The first step in this process is to prepare the electrical

circuit for testing the solar cell (Fig. 12). The initial value of the variable resistor is
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Figure 12. The testing circuit for a quantum dot solar cell.

set to zero. By exposing the quantum dot solar cell to solar irradiation, the voltage

and current of the circuit are measured using the voltmeter and ammeter,

respectively. Then the variable resistor is increased gradually and the voltage and

current measurements are recorded until the amount of current shown by the

ammeter is zero. Next, the obtained voltage and current values are plotted in an

I-V plain. Finally, by using the area of the largest rectangle that can be fitted inside

the I-V curve, the efficiency of the quantum dot solar cell can be calculated by

η = (VmIm)/Pin, where VmIm is the area of the aforementioned rectangle and Pin is

the input solar power. The VV&T procedure for the model developed for the

quantum dot solar cells can be performed to confirm whether the theoretical

efficiency sought for the solar cell system is in conformance with the expected value

of this parameter or not. As described in Section 3.6.2, a parametric diagram can

also be prepared for the testing phase, which makes it possible to check the

conformity between the efficiency resulting from the design process and the

measured amount achieved from the efficiency testing process (Fig. 10). For this

purpose, simulators for the atomistic structure of the chosen materials and the

manufacturing process (i.e. MAPS, SILVACO TCAD, etc.) can be used for the

verification and validation of the designed quantum dot solar cells. Furthermore, a

prototype of the quantum dot solar cell can also be manufactured if the relevant
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Figure 13. The testing process model for a quantum dot solar cell.

expenses are reasonable. Hence, by performing simulations and experimental tests,

as per the diagram shown in Fig. 13, it can be verified that the system requirements

and specifications are met using this model for the design process. In addition, it

can be validated that the solar cell will operate under the assumed conditions to

generate electrical power with the efficiency specified as the system requirement.

The importance of the proposed framework can be witnessed through the

traceability enhancement. In other words, by developing an MBSE approach for

integration purpose in the system design and testing stages, all system requirements

can be traced and verified whether they have been met through the procedure of

system development or not. This capability is essential when a complex quantum

system with a high number of system requirements is going to be developed. By
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using the current method, every system requirement can be traced from the

beginning point of the system analysis and design to the testing stage. In addition

to the benefits that this approach brings for systems engineers to trace the technical

requirements, it also helps domain engineers to take advantage of systems

engineering.

3.8 Conclusion

In this paper, one of the main challenges in quantum systems development,

which is dealing with the existing complexity in this process, was studied. MBSE

plays an important role in investigating and creating complex systems. Here, an

MBSE methodology is employed in the analysis, design, manufacturing, and VV&T

of a typical quantum system, namely a quantum dot solar cell system. Although

quantum technologies can be applied to various fields, the role of these novel

technologies in the energy area is inevitable. Therefore, because of the importance

of the energy field in today’s world, quantum dot solar cells which are the new

generation of solar cells are chosen for this purpose. All the models for these stages

were prepared using SysML in Cameo Systems Modeler integrated with MATLAB

scripts prepared for the detailed design procedure. The integration process for all

these steps were carried out using a parametric diagram to show the impact of each

parameter on the overall system performance. The technique described shows the

importance of using models in quantum systems development and paves the way for

future investigations on quantum systems using MBSE in order to manage the

complexity of these systems.
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CHAPTER IV

ARTICLE 2 – A STANDARD ENERGY EIGENVALUE PROBLEM

FOR DIRECTLY SOLVING THE STATIONARY STATES OF

QUANTUM BILLIARDS VIA BOUNDARY INTEGRAL ANALYSIS

4.1 Supplementary material

This paper1 and the related paper in Chapter V presented novel numerical

techniques for effectively and accurately solving the energy eigenvalue problem of

the time-independent Schrödinger equation (or Helmholtz equation) which are the

governing equations for a wide range of quantum systems under various boundary

conditions. Further mathematical details required to gain a better understanding of

the calculations in these two papers are provided in Appendix B based on [1].

4.2 Abstract

By using the series expansions of the Bessel functions for the real and

imaginary parts of the free particle Green’s function for the two-dimensional

stationary states of quantum billiards, it can be shown that some components of the

Green’s function are redundant which can be eliminated to make the boundary

integral equation for the wave function of free particles inside quantum billiards

independent of the wave numbers. This development leads to a much faster search

1A.-V. Phan and M. Karimaghaei, “A standard energy eigenvalue problem for directly solving
the stationary states of quantum billiards via boundary integral analysis”, Forces in Mechanics, Vol.
4, p. 100027, 2021. https://doi.org/10.1016/j.finmec.2021.100027
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for the energy eigenvalues of quantum billiards by scanning their wave numbers or

the formulation of the standard eigenvalue problem which can directly be solved for

the energy eigenvalues. Some numerical examples were used to demonstrate that

the proposed technique is accurate, computationally effective and straightforward to

be applied in practice.

4.3 Introduction

The uniform motion of a particle in a domain, which has a piecewise smooth

boundary, creates a dynamical system known as a billiard [2]. One of the methods

to study quantum version of billiards is to replace the classical Hamiltonian

equation for billiards by the stationary-state Schrodinger equation for a particle

with zero potential. In this case, the wave function does not exist on the billiard

boundary [3]. Quantum billiards are an important topic of research as they can

serve as models of nanoelectronic devices, e.g., [4]. There is an interest in

understanding the chaotic behavior of a quantum billiard due to the irregularity of

its boundary. A research direction concerning this interest is the study of the

change of the energy levels of a quantum billiard, e.g., [5]. The energy spectrum of a

quantum billiard can be constructed from the energy eigenvalues obtained by

solving the aforementioned Schrodinger equation.

Energy eigenvalues for quantum billiards have been determined by repeatedly

searching for the local minima of a determinant derived from a boundary element

analysis (BEA), e.g., [1]. As this determinant is a function of the wave number k,

the entire BEA has to be repeated for every value of the wave number within the

range of search which is quite computationally expensive (conventional search

method) [1]. By using a sequence of higher-order fundamental solutions of the

Laplace equation within the multiple reciprocity method (MRM), the coefficient
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matrix of the boundary element system of equations can be expressed as a

polynomial matrix in terms of the wave number [6, 7, 8, 9], thus Newton iteration

and LU decomposition can be utilized [6, 7] or a standard eigenvalue problem can

be formulated [8] for finding the eigenvalues in a more computationally effective

manner. However, this MRM technique also produces fictitious eigenvalues [8] as it

employs the higher-order real-valued fundamental solutions of the Laplace equation

instead of the higher-order complex-valued fundamental solutions of the Helmholtz

equation. In addition, the technique using Newton iteration and LU decomposition

is an iterative process and requires a good initial guess for quick convergence toward

the eigenvalues. In the group using the boundary element method with the

complex-valued fundamental solution of the Helmholtz equation, Kamiya et al. [10]

made use of series expansions for the fundamental solutions of the Helmholtz

equation for obtaining a polynomial matrix in k2 and applied Newton iteration to

compute the eigenvalues, Itagaki and Brebbia [11] utilized an iterative method to

find the maximum eigenvalue, while Kirkup and Amini [12] used a polynomial

approximation with respect to the wave number k for the BEA system of equations

to formulate the standard eigenvalue problem. The latter required the user to

choose a degree for the polynomial approximation and intervals of ks containing the

eigenvalues to be sought before these eigenvalues were found from solving the

standard eigenvalue problem for each of the aforementioned intervals.

In the current work, the series expansions of the Bessel functions are applied

to the real and imaginary parts of the complex-valued free-particle Green’s function.

As a result, the boundary integral equation (BIE) for the time-independent wave

function of free particles inside quantum billiards becomes independent of the wave

number. Following a numerical implementation of this BIE using boundary

elements, the system of equations emerges as a polynomial matrix equation whose
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variable is the square of the wave number. There are two options to be implemented

with this polynomial matrix equation: (a) search for the local minima of the

determinant of the polynomial matrix for the eigenvalues; (b) formulation of the

standard eigenvalue problem to directly solve for the energy eigenvalues. These two

options should be much more computationally effective than the conventional search

method mentioned earlier as the entire BEA does not have to be repeated. In

addition, no fictitious eigenvalues should be expected to be produced by the

proposed technique.

4.4 Boundary integral formulation for energy eigenvalue problem

For particles moving freely inside a hard-wall quantum billiard, the wave

function ψ should vanish along its boundary Γ. The BIE for two-dimensional

quantum billiards with Dirichlet boundary conditions is written as

∫
Γ

G(P,Q)u(Q) dQ = 0. (IV.1)

where P and Q are source and field points, respectively, u(Q) =
∂ψ(Q)

∂n
, n = n(Q)

denotes the unit outward normal to the boundary Γ, dQ is an infinitesimal

boundary length, and the Green’s function G(P,Q) is given by

G(P,Q) = − m

πh̄2
Ko(−ikr). (IV.2)

In this equation, m and h̄ are the particle’s mass and reduced Planck’s

constant, respectively, Ko is the modified Bessel function of the second kind and

order zero, k =
√
2Em/h̄ is the wave number of the particle of energy E, i is the

imaginary unit, and r is the distance between P and Q.
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4.4.1 Searching for the energy eigenvalues by scanning k

The simplest technique for finding the energy eigenvalues is reviewed first. A

numerical implementation of Eq. (IV.1) with N boundary elements results in

N∑
i=1

Aij(k)uj = A(k)u = 0. (IV.3)

To obtain non-trivial solutions for u which is the vector of nodal
∂ψ

∂n
on Γ,

the following condition must be met:

det[A(k)] = 0. (IV.4)

and the energy eigenvalues in terms of k can be found as the real roots of this

equation.

In most practices, finding the roots of Eq. (IV.4) has been replaced by

finding the local minima of |det[A(k)]| by scanning k within intervals [kmin, kmax]

using a small step size ∆k. The two primary drawbacks of this technique are: (a) it

is quite computationally expensive, especially with very small ∆k, as it requires the

calculation of A for each value of k; (b) the iterative search could miss some

eigenvalues if ∆k is not small enough at certain location within the range of interest.

4.4.2 Formulation of the standard energy eigenvalue problem

The Green’s function in Eq. (V.3) can be rewritten in terms of the Bessel

function of the first kind and order zero Jo and the Bessel function of the second

kind and order zero Yo as

G(P,Q) =
m

2h̄2

(
Yo(kr)− iJo(kr)

)
. (IV.5)
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By using Eq. (V.5) in Eq. (IV.1), one gets

∫
Γ

(
Yo(kr)− iJo(kr)

)
u(Q) dQ = 0. (IV.6)

which implies that ∫
Γ

Yo(kr)u(Q) dQ = 0 (IV.7)

and ∫
Γ

Jo(kr)u(Q) dQ = 0 (IV.8)

The series expansions of Yo and Jo are known to be

Yo(kr) =
2

π

(
γ + ln

k

2

)
Jo(kr) +

2

π

∞∑
j=0

Fj(ln r − Sj)r
2j (IV.9)

and

Jo(kr) =
∞∑
j=0

Fjr
2j (IV.10)

where γ is the Euler-Mascheroni constant, and

Fj =
k2j

(−4)j(j!)2
; Sj =

j∑
ℓ=1

1

ℓ

Use of Eq. (V.10) in Eq. (IV.7) while taking Eq. (IV.8) into account results in

∫
Γ

Yo(kr)u(Q) dQ =
2

π

∞∑
j=0

Fj

∫
Γ

(ln r − Sj)r
2j u(Q) dQ = 0 (IV.11)

Substitution of Eq. (V.11) in Eq. (IV.8) yields

∫
Γ

Jo(kr)u(Q) dQ =
∞∑
j=0

Fj

∫
Γ

r2j u(Q) dQ = 0 (IV.12)
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By using Eqs. (IV.11) and (IV.12) in Eq. (IV.6), one gets

∞∑
j=0

λj
∫
Γ

Ḡj(P,Q)u(Q) dQ = 0 (IV.13)

where λ = k2 and

Ḡj(P,Q) =

(
2(Sj − ln r) + iπ

)
r2j

(−4)j(j!)2
(IV.14)

Ḡj is called the adjusted Green’s function which, unlike the Green’s function

G, is independent of k. Ḡj is logarithmic singular when r = 0 and j = 0. However,

within numerical implementation, the related singular integrals can be

straightforwardly evaluated by using the following conversion:

∫ 1

0

f(ξ) ln ξ dξ = −
∫ 1

0

∫ 1

0

f(ξη) dξ dη (IV.15)

where f is a nonsingular function.

It is sufficient to use a finite number of terms in the series in Eq. (V.4) to

achieve convergence. Using the first (m+ 1) terms and discretizing Eq. (V.4) with

boundary elements results in
m∑
j=0

λj Bju0 = 0 (IV.16)

where u0 is the vector of nodal
∂ψ

∂n
along Γ.

The energy eigenvalues k can also be found as the local minima of

|det[
∑m

j=0 λ
j Bj]|. To search for the energy eigenvalues within the interval

[kmin, kmax] using a step size of ∆k, the number of required iterations is

Nk = (kmax − kmin)/∆k. For the conventional search method presented in Section

2.1, as matrix A(k) in Eq. (IV.4) is dependent of k, one would need to recalculate

A(k) at each iteration for a total of Nk times. In order to avoid missing any
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potential energy eigenvalues, ∆k must be small enough which makes Nk very large,

especially for wide intervals [kmin, kmax]. However, as Bj in Eq. (IV.16) is

independent of k, the search for the eigenvalues using this equation only requires

matrix Bj to be computed (m+ 1) times and typically, m ≤ 50 is sufficient for

obtaining highly accurate eigenvalues for many problems. For each value of k used

at each iteration, the polynomial matrix
∑m

j=0 λ
j Bj =

∑m
j=0 k

2j Bj can be

recalculated very quickly. Therefore, the use of the adjusted Green’s function (V.22)

would eliminate the first drawback of the conventional search technique outlined in

Section 2.1.

To formulate the standard energy eigenvalue problem, rewrite Eq. (IV.16) as,

m∑
j=0

λj Bju0 =
m∑
j=0

Bjuj = 0 (IV.17)

where ui = λui−1, thus uj = λju0.

Premultiplying Eq. (IV.17) by −B−1
m yields

−B−1
m

m−1∑
j=0

Bjuj = B−1
m Bmum = Ium = λum−1 (IV.18)

From ui = λui−1, one can write

Ium−1 + 0um−2+ · · ·+ 0u1 + 0u0 = λum−2

...
. . .

...

0um−1 + 0um−2+ · · ·+ Iu1 + 0u0 = λu0

(IV.19)
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Equations (IV.18) and (IV.19) form the following system:



−B−1
m Bm−1 −B−1

m Bm−2 · · · −B−1
m B1 −B−1

m B0

I 0 · · · 0 0

0 I · · · 0 0

...
. . .

...

0 0 · · · I 0





um−1

um−2

um−3

...

u0


= λ



um−1

um−2

um−3

...

u0


(IV.20)

which represents an eigenvalue problem of the standard form Du = λu. Numerical

techniques for large scale eigenvalue problems with sparse matrices can be employed

to directly find the energy eigenvalues in terms of λ = k2 for quantum systems.

4.5 Numerical examples

Two numerical examples, involving a circular billiard and a stadium billiard,

are shown in this work to demonstrate the accuracy and effectiveness of the

proposed technique. MATLAB scripts were developed to implement the boundary

integral and standard eigenvalue formulations of the new technique. The scripts

were run to compute the energy eigenvalues for the circular and stadium quantum

billiards. Equation (V.4) was numerically implemented using quadratic boundary

elements. The eigenvalues k obtained from solving Eq. (V.37) are complex numbers,

including multiple roots. As the energy eigenvalues are real numbers, only

numerical results for k with a small imaginary part relative to its real part (e.g.,

|imag(k)| < 10−3real(k)) are chosen as the results sought.

The MATLAB scripts used eig(D) which is based on the LAPACK [13]

routine ZGEEV for computing eigenvalues. If matrix Bm in Eq. (V.37) is close to

singular (ill-conditioned), the standard eigenvalue problem can be recasted in the
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form of the generalized eigenvalue problem Au = λBu and MATLAB function

eig(A,B,’qz’) based on the QZ algorithm can be used to find the eigenvalues.

4.5.1 Circular billiard

As the first example, consider a circular billiard of unit radius. The circular

boundary was discretized with 24 uniform quadratic elements. The analytical

solution for this problem is known to be the roots of the Bessel function of the first

kind and integer order.

To accurately obtain the first 20 distinct energy eigenvalues using the

proposed standard eigenvalue problem (SEVP) method represented by Eq. (V.37), a

selected value of m = 36 is sufficient. When rounding off to the nearest ten

thousandth, the SEVP numerical results and those obtained from searching for the

local minima of |det[
∑36

j=0 λ
j Bj]| are identical. The local minima within the

interval k = [2, 13.2] are shown in Fig. 14. Table 4 compares the numerical results

with their analytical counterparts. An excellent agreement can be observed where

the maximum error is 0.02%.

4.5.2 Bunimovich stadium billiard

The Bunimovich stadium billiard shown in Fig. 15 , where R = L = 1, was

chosen as the second example. Each of the semicircles and line segments are

discretized with five and three uniform quadratic elements, respectively. The

Bunimovich stadium billiard represents a chaotic quantum system, e.g., [14].

To demonstrate the effectiveness and accuracy of the proposed technique,

consider the use of the following three methods to find the first 10 energy

eigenvalues k: the search for the local minima of |det[A(k)]| (conventional search

method) and |det[
∑m

j=0 λ
j Bj]| (proposed search method where m = 40) described

in Sections 2.1 and 2.2, respectively, and the SEVP method. The searches were
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Figure 14. Plot of |det[
∑36

j=0 λ
j Bj]| for the circular billiard.
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Figure 15. Bunimovich stadium billiard.
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Table 1. The first 20 distinct eigenvalues k for the circular billiard.

SEVP or Analytical % error SEVP or Analytical % error

min(|det[
∑36

j=0 λ
j Bj]|) Solution min(|det[

∑36
j=0 λ

j Bj]|) Solution

2.4048 2.4048 0.000 9.7610 9.7610 0.000

3.8317 3.8317 0.000 9.9355 9.9346 0.006

5.1356 5.1356 0.000 10.1735 10.1735 0.000

5.5201 5.5201 0.000 11.0646 11.0647 0.001

6.3801 6.3802 0.002 11.0851 11.0864 0.012

7.0156 7.0156 0.000 11.6199 11.6198 0.001

7.5883 7.5883 0.000 11.7916 11.7915 0.001

8.4173 8.4172 0.001 12.2227 12.2251 0.020

8.6537 8.6537 0.000 12.3382 12.3386 0.003

8.7712 8.7715 0.003 13.0156 13.0152 0.003

conducted over the interval k = [1.5, 5.7] with step sizes ∆k = 10−3 and 10−4 being

employed for the conventional and proposed search methods, respectively. In the

order given, this selection of ∆k resulted in the numerical energy eigenvalues

accurate up to three and four decimal places as shown in Table 5. While the

number of search iterations for the conventional search method is 10 times less than

the proposed search method (Nk = 4, 200 vs 42,000), its CPU time measured on the

computer used to search for just the first 10 eigenvalues for this work was already

about 252 times larger. Note that, as the matrix of the standard eigenvalue problem

for this example is ill-conditioned, the form of the generalized eigenvalue problem

with m = 40 was used instead to find the first 10 energy eigenvalues. There is a very

good agreement between the numerical results obtained from these three methods as

it can be seen in Table 5. Actually, the eigenvalues obtained from both the search

methods are identical if ∆k = 10−4 is also chosen for the conventional search
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Table 2. The first 10 distinct energy eigenvalues k for the stadium billiard.

min(|det[A(k)]|) min(|det[
∑40

j=0 λ
j Bj]|) SEVP

1.954 1.9537 1.9537

2.778 2.7780 2.7780

3.404 3.4036 3.4036

3.721 3.7207 3.7208

4.056 4.0562 4.0564

4.678 4.6783 4.6792

4.880 4.8797 4.8666

4.922 4.9218 4.9227

5.493 5.4931 5.4870

5.635 5.6352 5.6522

method. For this case, the CPU time for the conventional search method is about

300 times larger than that for the SEVP method.

The ill-conditioned matrix in the standard eigenvalue problem of this

example prevents the solver to produce a large number of accurate eigenvalues. To

resolve this issue, quadruple precision from ADVANPIX multiprecision computing

toolbox [15] for MATLAB was employed. Table 6 depicts the first 40 distinct energy

eigenvalues k obtained from using quadruple precision for solving the standard

eigenvalue problem represented by Eq. (V.37) and from using the proposed search

method for locating the local minima of |det[
∑m

j=0 λ
j Bj]|. Here, a larger value of m

(m = 50) was needed for both methods in order to produce at least 40 accurate

energy eigenvalues. It was not necessary to use the conventional search method here

for the purpose of validation as it would produce the same numerical results while

requiring an extremely large amount of computing time.
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Figure 16. Plot of |det[
∑50

j=0 λ
j Bj]| for the Bunimovich stadium billiard.

The graphical result from this search within the interval k = [1.5, 11] is

depicted in Fig. 16. It can be seen that the numerical results using four decimal

places are practically identical which demonstrates the accuracy of the proposed

technique. Note in Ref. [1] that the iterative process for searching for the local

minima of |det[A(k)]| (conventional search method) was employed to find the

eigenvalues for this example. By comparing the results reported in [1] with those in

Table 6, it is observed that the first eigenvalue (k = 1.9537) was absent from their

results.

66



Table 3. The first 40 distinct energy eigenvalues k for the stadium billiard.

SEVP min(|det[
∑50

j=0 λ
j Bj]|) SEVP min(|det[

∑50
j=0 λ

j Bj]|)

1.9537 1.9537 7.9754 7.9754

2.7780 2.7780 8.0935 8.0935

3.4036 3.4036 8.3183 8.3183

3.7207 3.7207 8.3978 8.3978

4.0562 4.0562 8.4635 8.4635

4.6783 4.6783 8.5193 8.5193

4.8797 4.8797 9.0093 9.0093

4.9218 4.9218 9.0590 9.0590

5.4931 5.4931 9.2624 9.2624

5.6352 5.6352 9.2877 9.2877

5.7452 5.7452 9.3187 9.3187

6.2708 6.2708 9.5891 9.5891

6.4384 6.4384 9.8274 9.8274

6.5743 6.5743 9.9474 9.9474

6.6491 6.6491 9.9711 9.9711

6.9521 6.9521 10.1202 10.1202

7.1345 7.1345 10.1734 10.1734

7.4807 7.4807 10.2260 10.2260

7.5230 7.5230 10.5916 10.5916

7.6638 7.6638 10.6268 10.6268

4.6 Summary

A series of adjusted Green’s functions which are independent of the wave

number was derived in this work for formulating the standard eigenvalue problem

(SEVP method) for quantum billiards. In case a very large number of energy
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eigenvalues (typically in the order of thousands) is required to determine the

quantum energy spectrum, the adjusted Green’s functions can also be employed to

conduct a much faster search (compared to the conventional search method) for the

eigenvalues sought by scanning the wave numbers over a wide scan range to locate

the local minima of |det[
∑m

j=0 λ
j Bj]| (see Eq. (IV.16)). Via two numerical

examples, the proposed technique has shown to be accurate and computationally

effective in determining the energy eigenvalues for quantum billiards. The technique

is readily expanded to eigenvalue analysis of the Helmholtz equation in general and

standard eigenvalue problems for three-dimensional quantum billiards in particular.

The large scale standard eigenvalue problem given by Eq. (V.37) should stimulate

interest in developing effective algorithms for accurately finding a large number of

eigenvalues for this type of sparse matrix.
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CHAPTER V

ARTICLE 3 – BOUNDARY INTEGRAL FORMULATION OF THE

STANDARD EIGENVALUE PROBLEM FOR THE 2-D HELMHOLTZ

EQUATION

5.1 Abstract

In this paper1, a boundary integral formulation is presented for obtaining the

standard eigenvalue problem for the two-dimensional (2-D) Helmholtz equation.

The formulation is derived by using the series expansions of zero-order Bessel

functions for the fundamental solution to the Helmholtz equation. The proposed

approach leads to a series of new fundamental functions which are independent of

the wave number k of the Helmholtz equation. The coefficient matrix of the

resulting homogeneous system of boundary element equations is of the form of a

polynomial matrix in k which allows a much faster search for the eigenvalues by

scanning k over an interval of interest or the standard eigenvalue problem to be

formulated for directly solving for the eigenvalues without resort to iterative

methods. The proposed technique was used to solve some known problems with

available analytical solutions: 2-D domains with circular and rectangular geometries

1M. Karimaghaei and A.-V. Phan, “Boundary integral formulation of the standard eigenvalue
problem for the 2-D Helmholtz equation ”, Engineering Analysis with Boundary Elements, Vol. 132,
p. 281–288, 2021. https://doi.org/10.1016/j.enganabound.2021.07.013
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under Dirichlet and/or Neumann boundary conditions. The outcomes demonstrate

that the proposed approach is computationally efficient and highly accurate2.

5.2 Introduction

The method of scanning the wave number k to locate the local minima of the

eigenvalue determinant obtained via boundary element analysis (BEA) has been

utilized to find the eigenvalues of the Helmholtz equation. For example, Tai and

Shaw [1] employed this technique to obtain eigenvalues and eigenmodes of the

homogeneous Helmholtz equation for closed 2-D and 3-D domains of arbitrary

shape. De Mey [2] also used this method for circular and rectangular geometries. In

a following work carried out by De Mey [3], only a real particular solution of the

Helmholtz equation was employed to find the lowest eigenvalue for a circular

domain. Adeyeye et al. [4] presented three numerical treatments for the BEA of the

Helmholtz equation under Dirichlet boundary conditions to compute the first

(lowest) eigenvalue for some circular, elliptic and square domains. In general, the

technique of scanning k is straightforward. However, it suffers a major drawback: as

the determinant is a function of k, it requires the entire BEA to be repeated for

every value of k which is quite computationally ineffective.

Subsequent efforts in Helmholtz eigenvalue analysis were devoted to using

static fundamental solutions which are independent of k. Through the use of the

multiple reciprocity method (MRM) with a sequence of higher-order fundamental

solutions of the real-valued Laplace operator, the coefficient matrix of the BEA

system of equations can be expressed as a polynomial function in terms of k which

allows the eigenvalues of the Helmholtz equation to be found more effectively than

from the techniques mentioned above, e.g., [5, 6, 7, 8] for two dimensions, and [9] for

2This paper is dedicated to the memory of Professor Frank Rizzo whose pioneering contributions
to boundary integal method have an enormous impact on the growth of the subject area
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three dimensions. Among these works, the standard eigenvalue problem was

formulated [6] or Newton iteration and LU decomposition was employed [7, 8] to

solve for the Helmholtz eigenvalues. Nevertheless, the use of higher-order

fundamental solutions of the Laplace equation is known for producing fictitious

eigenvalues [6] as the fundamental solutions of the Laplace equation lack the

imaginary part of the complex-valued fundamental solutions of the Helmholtz

equation.

For research groups using BEA based upon the complex-valued fundamental

solution of the Helmholtz equation, Kamiya et al. [10] used series expansions for the

2-D fundamental solution of the Helmholtz operator to derive a polynomial in terms

of k2 for the real part of the coefficient matrix of the BEA system of equation and

applied Newton iteration for calculating the eigenvalues, Itagaki and Brebbia [11]

employed an iterative power method to obtain the maximum eigenvalue (2-D), Yeih

et al. [12] developed a new MRM formulation which is fully equivalent to the use of

the complex-valued fundamental solution (1-, 2- and 3-D), Kirkup and Amini [13]

made use of a polynomial approximation with respect to k for the BEA coefficient

matrix to formulate a standard eigenvalue problem (2- and 3-D), Wang et al. [14]

employed series expansion for the 3-D fundamental solution to derive boundary

element matrices independent of the wave number which leads to an overdetermined

system of equations for the multi-frequency calculation of acoustical pressures. Xie

and Liu [15] applied model order reduction methods to frequency-decoupled system

matrices resulted from applying Taylor’s theorem to the 3-D fundamental solution

to solve multi-frequency acoustic wave problems.

Recently, the contour integral method (CIM) has been employed to solve

nonlinear eigenvalue problems governed by the Helmholtz equation and formulated

via the method of fundamental solutions [16], the plane wave method [16], and the
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boundary element method [17]. CIM was also used with the boundary element

formulation of the Helmholtz equation to compute the sensitivities of

eigenfrequencies for both interior and exterior acoustic systems [18].

In this work, the boundary integral equation of the Helmholtz equation is

expressed in the form of a limit as a source point exterior to the domain under

consideration as it approaches the boundary. The use of the series expansions for

the fundamental solution to the Helmholtz equation under this limit form yields a

new equation composed of a series of boundary integrals which are independent of

the wave number k. A discretization with boundary elements and homogeneous

boundary conditions results in a BEA system of equations whose coefficient matrix

is of the form of a polynomial function in terms of k. Thus, the search for the

eigenvalues by scanning k using this technique is much less time-consuming than by

using the method mentioned in the first paragraph of this section where the

boundary integrals have to be re-evaluated for each value of k within the range of

search. Also, the resulting BEA system of equations can be recast to formulate the

standard or generalized eigenvalue problems for solving the eigenvalues without

resort to iterative methods. This work is an extension of a previous work on the 2-D

Helmholtz equation under Dirichlet conditions along the domain boundary [19].

Several numerical examples were presented to demonstrate the effectiveness and

accuracy of the proposed technique.

For exterior (e.g., [20]) and multiply connected domains (e.g., [21]), it has

been shown that BEA of the Helmholtz equation yields fictitious/spurious

eigenvalues, even if the complex-valued fundamental solution is employed. Fictitious

eigenvalues for multiply connected domains were found to depend upon not only the

inner boundary [21] but also the outer boundary [22] and, like in case of exterior

domains, they can be eliminated by using the Burton-Miller method. As pointed
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out in [23], the Burton-Miller formulation does not actually eliminate the fictitious

eigenvalues but rather shifts them from the real axis to a region in the complex

plane so these eigenfrequencies do not cause any problems for acoustic wave analysis.

Recent work based upon the CIM and BEA formulation of the Helmholtz

equation [22] showed that fictitious eigenfrequencies also appear in the numerical

results for interior acoustic problems. However, as expected, no fictitious eigenvalues

exist in the numerical results for the interior domains considered in the four

examples studied in this work.

5.3 Boundary element formulation for the standard eigenvalue problem

Consider the Helmholtz equation in a two-dimensional (2-D) domain having

boundary Γ,

∇2ψ + k2ψ = 0 (V.1)

where ∇2, ψ and k are the Laplacian, a scalar function and the wavenumber,

respectively.

By using its fundamental solution, Eq. (V.1) can be solved via the following

boundary integral equation (BIE):

c(P )ψ(P ) =

∫
Γ

[
G(P,Q)ψ,n(Q)−G,n(P,Q)ψ(Q)

]
dQ (V.2)

where P and Q are source and field points, respectively, c(P ) is the solid angle

coefficient, the subscript (),n denotes the derivative with respect to the unit outward

normal n = n(Q) to Γ, i.e., ψ,n =
∂ψ

∂n
, dQ is an infinitesimal boundary length, and

the fundamental solution G(P,Q) is given by

G(P,Q) =
i

4
H

(1)
0 (kr) = −1

4

(
Y0(kr)− iJ0(kr)

)
(V.3)
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In this equation, H
(1)
0 is the zero-order Hankel function of the first kind, J0

and Y0 are the zero-order Bessel functions of the first and second kinds, respectively,

i is the imaginary unit, and r is the distance between P and Q.

An equivalent version of Eq. (V.2) is written for a source point Pe exterior to

the domain and approaching the boundary,

lim
Pe→P

∫
Γ

[
G(Pe, Q)ψ,n(Q)−G,n(Pe, Q)ψ(Q)

]
dQ = 0 (V.4)

Note that as Pe crosses the boundary Γ, there is a jump in the Cauchy

Principal Value integral which accounts for the free term c(P )ψ(P ). Thus, Eqs.

(V.2) and (V.4) are exactly the same.

In Eq. (V.4),

G(Pe, Q) = −1

4

(
Y0(kr)− iJ0(kr)

)
(V.5)

where r is the distance between Pe and Q, i.e., r = ∥Q− (P + εn(P ))∥.

Use of Eq. (V.5) in Eq. (V.4) results in

−1

4
lim
ε→0

∫
Γ

[
(Y0 − iJ0)ψ,n(Q)− (Y0,n − iJ0,n)ψ(Q)

]
dQ = 0 (V.6)

or,

−1

4
lim
ε→0

∫
Γ

{
Y0 ψ,n(Q)− Y0,n ψ(Q)− i

[
J0 ψ,n(Q)− J0,n ψ(Q)

]}
dQ = 0 (V.7)

This equation implies that

−1

4
lim
ε→0

∫
Γ

[
Y0(kr)ψ,n(Q)− Y0,n(kr)ψ(Q)

]
dQ = 0 (V.8)
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and

−1

4
lim
ε→0

∫
Γ

[
J0(kr)ψ,n(Q)− J0,n(kr)ψ(Q)

]
dQ = 0 (V.9)

At this point, consider the series expansions of Y0 and J0 given by

Y0(kr) =
2

π

[
M(k) J0(kr) +

∞∑
j=0

Fj(k) Λj(r)

]
(V.10)

and

J0(kr) =
∞∑
j=0

Fj(k) Ωj(r) (V.11)

where

M(k) = γ + ln
k

2
(V.12)

Fj(k) =
k2j

(−4)j(j!)2
(V.13)

Λj(r) = (ln r − Sj)r
2j (V.14)

Sj =

j∑
ℓ=1

1

ℓ
(V.15)

Ωj(r) = r2j (V.16)

where γ is the Euler-Mascheroni constant.

By using the series expansion (V.10) in Eq. (V.8), one obtains

− 1

2π
lim
ε→0

∫
Γ

[(
M J0+

∞∑
j=0

Fj Λj

)
ψ,n(Q)−

(
M J0,n+

∞∑
j=0

Fj Λj,n

)
ψ(Q)

]
dQ = 0 (V.17)

which, by taking Eq. (V.9) into account, becomes

− 1

2π

∞∑
j=0

Fj(k) lim
ε→0

∫
Γ

[
Λj(r)ψ,n(Q)− Λj,n(r)ψ(Q)

]
dQ = 0 (V.18)
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Substitution of the series expansion (V.11) into Eq. (V.9) results in

−1

4

∞∑
j=0

Fj(k) lim
ε→0

∫
Γ

[
Ωj(r)ψ,n(Q)− Ωj,n(r)ψ(Q)

]
dQ = 0 (V.19)

Now, by placing the series-expansion format of Eqs. (V.8) and (V.9), i.e.

Eqs. (V.18) and (V.19), respectively, back into Eq. (V.7), we have

∞∑
j=0

Fj(k) lim
ε→0

∫
Γ

{[−Λj(r)

2π
+ i

Ωj(r)

4

]
ψ,n(Q)−

[−Λj,n(r)

2π
+ i

Ωj,n(r)

4

]
ψ(Q)

}
dQ = 0

(V.20)

or
∞∑
j=0

λj lim
Pe→P

∫
Γ

[
Ḡj(Pe, Q)ψ,n(Q)− Ḡj,n(Pe, Q)ψ(Q)

]
dQ = 0 (V.21)

where λ = k2 and

Ḡj(P,Q) =
1

(−4)j(j!)2

[
−Λj(r)

2π
+ i

Ωj(r)

4

]
=
r2j
[
2(Sj − ln r) + iπ

]
4π(−4)j(j!)2

(V.22)

Ḡj,n(P,Q) =
r2j−1

[
2j(Sj − ln r)− 1 + ijπ

]
2π(−4)j(j!)2

∂r

∂n
(V.23)

Unlike the original fundamental solution G(P,Q), Ḡj(P,Q) in Eq. (V.22) is

independent of the wave number k.

By taking the limit as Pe → P , Eq. (V.21) becomes

c(P )ψ(P ) =
∞∑
j=0

λj
∫
Γ

[
Ḡj(P,Q)ψ,n(Q)− Ḡj,n(P,Q)ψ(Q)

]
dQ (V.24)

where the free term c(P )ψ(P ) appears in case j = 0 due to the 1/r singularity of

Ḡ0,n in Eq. (V.23).
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In Eq. (V.22), as r is finite and lim
j→∞

Ḡj(P,Q) = 0, Ḡj represents a convergent

alternating series. Thus, it is sufficient to use the first (m+ 1) terms in the series for

numerical analysis if the truncation error is small enough for the eigenvalues to be

obtained with a desired accuracy.

By discretizing Eq. (V.24) with N boundary elements and using the first

(m+ 1) terms of the series expansion on the right hand side of this equation, the

following system of equation is obtained:

m∑
j=0

λj
N∑
i=1

Gjiℓψ,nℓ =
m∑
j=0

λj
N∑
i=1

Hjiℓψℓ (V.25)

By applying the homogeneous boundary conditions, one gets

m∑
j=0

λj Aju0 = 0 (V.26)

where u0 is the vector of unknown nodal degrees of freedom ψ and ψ,n on the

boundary Γ.

By rewriting Eq. (V.26) as

Ā(k)u0 = 0 (V.27)

where

Ā(k) =
m∑
j=0

λj Aj =
m∑
j=0

k2j Aj (V.28)

it can be seen that the contribution of the remaining terms (j > m) in the

polynomial to Ā(k) is negligible if

k2(m+1)
max · ||Am+1|| < ε̄ (V.29)
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where kmax is the largest eigenvalue sought, ||Am+1|| denotes the 2-norm (maximum

singular value) of matrix Am+1 and ε̄ is a small number. The condition in Eq.

(V.29) can be used as a guide for selecting a suitable value for m.

5.3.1 Search for the eigenvalues by scanning k (Conventional method vs

proposed method I)

By numerically implementing Eq. (V.4) with boundary elements, one gets

the following system of equations:

B(k)u0 = 0 (V.30)

Non-trivial solutions for u0 in Eq. (V.30) may be determined from the

following condition:

det[B(k)] = 0 (V.31)

It should be noted that, while the roots of Eq. (V.31) can be a complex

number due to the use of numerical analysis, the eigenvalues in terms of k are only

the real roots of this equation.

The simplest technique (conventional method) for finding the real roots of

Eq. (V.31) is to locate the local minima of |det[B(k)]| by scanning k within

intervals kmin ≤ k ≤ kmax using a small step size ∆k. In this case, the number of

search iterations is Nk = (kmax − kmin)/∆k. As B(k) is dependent of k and as it is a

common practice to choose a very small value for ∆k, corresponding to very large

Nk, to avoid missing any eigenvalues during the scan, this conventional method is

known to be extremely expensive as it requires the re-evaluation of the boundary

integrals in Eq. (V.4) as well as the determinant in Eq. (V.31) at each iteration for

a total of Nk times.
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In case of the proposed technique outlined in Section 2, the condition for

having non-trivial solutions for u0 is (see Eq. (V.28))

det[Ā(k)] = 0 (V.32)

As indicated by Eq. (V.28), Ā is a polynomial whose coefficients Aj are

independent of k because the integrals in Eq. (V.24) are not functions of k. This

means that, for a given problem, these boundary integrals only need to be evaluated

(m+ 1) times to determine (m+ 1) coefficients A0,A1, . . . ,Am. Then, as a

polynomial (see Eq. (V.28)), Ā can be quickly calculated for every value of k within

the interval kmin ≤ k ≤ kmax, even with a very small value of ∆k. Since m is

typically much smaller than Nk, the proposed technique makes the search for the

local minima of |det[Ā(k)]| (called method I in this paper) much more

computationally effective than that for the local minima of |det[B(k)]|. A trade-off

here is that method I requires more computer memory to store (m+ 1) matrices Aj.

In case of very large scale analyses, a number of matrices Aj may need to be

temporarily stored and accessed from a hard drive. However, the resulting increase

in computing time should not be significant. The computational cost in this case is

still a small fraction of that from using the conventional method to solve these very

large scale problems.

5.3.2 Formulation of the standard and generalized eigenvalue problems

(Proposed method II)

Equation (V.26) can also be rewritten as

m∑
j=0

Ajuj = 0 (V.33)
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or
m−1∑
j=0

Ajuj = −Amum (V.34)

where uj = λuj−1, thus uj = λju0.

Premultiplying the left and right hand sides of Eq. (V.34) by −A−1
m results in

−A−1
m

m−1∑
j=0

Ajuj = A−1
m Amum = Ium = λum−1 (V.35)

where I is the identity matrix.

As ui = λui−1, one can write

Ium−1 + 0um−2+ · · ·+ 0u1 + 0u0 = λum−2

...
. . .

...

0um−1 + 0um−2+ · · ·+ Iu1 + 0u0 = λu0

(V.36)

Equations (V.35) and (V.36) form the following system:



−A−1
m Am−1 −A−1

m Am−2 · · · −A−1
m A1 −A−1

m A0

I 0 · · · 0 0

0 I · · · 0 0

...
. . .

...

0 0 · · · I 0





um−1

um−2

um−3

...

u0


= λ



um−1

um−2

um−3

...

u0


(V.37)

which represents an eigenvalue problem of the standard form Du = λu. Numerical

techniques for large scale eigenvalue problems with sparse matrices can be employed

to directly find the energy eigenvalues in terms of λ = k2.
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If matrix Am in Eq. (V.37) is ill-conditioned, the standard eigenvalue

problem (V.37) can be rewritten in the form of the generalized eigenvalue problem

V u = λWu (V.38)

where

V =



Am−1 Am−2 · · · A1 A0

I 0 · · · 0 0

0 I · · · 0 0

...
. . .

...

0 0 · · · I 0


(V.39)

and

W =



−Am 0 · · · 0

0 I · · · 0

...
. . .

...

0 0 · · · I


(V.40)

5.4 Numerical Examples

In this work, four various cases, including circular and rectangular domains

under Dirichlet and/or Neumann boundary conditions, were investigated to verify

the effectiveness and accuracy of the proposed methods I and II. The first 20

distinct eigenvalues were sought for each of the four examples considered herein. In

order to implement the BEA formulations for the evaluation of the eigenvalues of

the Helmholtz equation, MATLAB codes were developed. The MATLAB built-in

function eig based on the LAPACK routine ZGEEV [24] was utilized to compute the

eigenvalues from either the standard eigenvalue problem (Eq. (V.37)) or the

generalized eigenvalue problem (Eq. (V.38)). The domain boundary was discretized
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using quadratic elements. The condition in Eq. (V.29) where ε̄ = 1.5× 10−3 was

employed to select m for each of the four numerical examples considered in this

work.

While the eigenvalues of the Helmholtz equation are real numbers, the

resulting eigenvalues obtained from using method II contain imaginary parts due to

the use of numerical analysis. Therefore, only values with negligible imaginary parts

are selected as the eigenvalues sought. It should be noted that, if the boundary of

the domain is discretized into Nn nodes, then solving the eigenvalue problems of

Eqs. (V.37) or (V.38) would result in (Nn ·m) potential eigenvalues and the

majority of the resulting eigenvalues have large imaginary parts. For the proposed

technique, they should be eliminated and not be regarded as spurious eigenvalues.

Spurious eigenvalues are supposed to also have negligible imaginary parts but they

are simply not the true eigenvalues of the problem. In addition, the number of the

same eigenvalues found (with negligible imaginary parts) indicates the multiplicity

of those eigenvalues. If needed, the eigenvectors can be determined by using

MATLAB function eig or by solving for non-trivial solutions u to the equation

(D − λI)u = 0 (see Eq. (V.37)) after the eigenvalues k, thus λ, have been found.

5.4.1 Circular domain under Dirichlet boundary condition

Consider a circular domain of unit radius subjected to Dirichet boundary

conditions (ψ = 0 along its boundary). The analytical solution for the eigenvalues k

for this problem is the roots of equation Jν(k) = 0 where ν = 0, 1, 2, . . ..

Additionally, the circular boundary was discretized using 24 uniform quadratic

elements (Ne = 24).

To assess the accuracy of the proposed methods I and II, a wave number

increment ∆k = 10−4 was chosen for method I to search for the local minima of
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Table 4. The first 20 distinct eigenvalues k for the circular domain under Dirichlet
boundary conditions (m = 35, Ne = 24).

Analytical Method % Method % Analytical Method % Method %

Solution I error II error Solution I error II error

2.4048 2.4048 0.000 2.4048 0.000 9.7610 9.7610 0.000 9.7610 0.000

3.8317 3.8317 0.000 3.8317 0.000 9.9346 9.9355 0.006 9.9355 0.006

5.1356 5.1356 0.000 5.1356 0.000 10.1735 10.1735 0.000 10.1735 0.000

5.5201 5.5201 0.000 5.5201 0.000 11.0647 11.0646 0.001 11.0646 0.001

6.3802 6.3801 0.002 6.3801 0.002 11.0864 11.0851 0.012 11.0851 0.012

7.0156 7.0156 0.000 7.0156 0.000 11.6198 11.6199 0.001 11.6199 0.001

7.5883 7.5883 0.000 7.5883 0.000 11.7915 11.7916 0.001 11.7916 0.001

8.4172 8.4173 0.001 8.4173 0.001 12.2251 12.2227 0.020 12.2227 0.020

8.6537 8.6537 0.000 8.6537 0.000 12.3386 12.3382 0.003 12.3382 0.003

8.7715 8.7712 0.003 8.7712 0.003 13.0152 13.0115 0.028 13.0115 0.028

|det[Ā(k)]| in the interval 2 ≤ k ≤ 13.2 which contains the first 20 distinct

eigenvalues. This ∆k allows the numerical results obtained from method I to be

accurate up to four decimal places and it was also employed for the remaining

examples considered in this work. By using Eq. (V.29) where kmax = 13.2, the value

m = 35 was suggested to be selected. The resulting minima are depicted in Fig. 17.

The distinct eigenvalues obtained from both methods are compared in Table 4. As

is shown, there is a perfect agreement between two groups of numerical results with

a maximum percentage error less than 0.03 %. The CPU time used by MATLAB to

run method I on the computer employed for this work was 453.71 seconds (for

112,000 iterations) while that used to run method II was 59.07 seconds.

5.4.2 Circular domain under Neumann boundary conditions

The circular domain of unit radius is again considered, but the domain is

now subjected to Neumann boundary conditions (ψ,n = 0 along its boundary). The
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Figure 17. Plot of |det[Ā(k)]| for the circular domain under Dirichlet boundary
condition.

exact solution for the eigenvalues k of this problem is the roots of equation

∂Jν(k)

∂k
= 0 where ν = 0, 1, 2, . . .. For the BEA, the same discretization (Ne = 24)

and choice of m (m = 35) as in the previous example were used to find the

eigenvalues in the interval 0 ≤ k ≤ 11.5 which encompasses the first 20 distinct

eigenvalues for this problem. It should be noted that the suggested value for m is 34

according to the condition in Eq. (V.29) where kmax = 11.5.

Figure 18 depicts the local minima of |det[Ā(k)]| in the aforementioned

interval. All the first 20 eigenvalues obtained from methods I and II are represented

in Table 5. Again, the numerical results from the two proposed methods are

identical when those obtained from method II are rounded to the nearest ten
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Figure 18. Plot of |det[Ā(k)]| for the circular domain under Neumann boundary
condition.

thousandth. The percentage errors are less than 0.13% which show an excellent

agreement with the analytical results. The CPU times for methods I and II were

458.24 seconds (115,000 iterations) and 56.13 seconds, respectively.

5.4.3 Rectangular domain under Neumann boundary conditions

In this example, a rectangular domain under Neumann boundary conditions

was studied. The domain is defined by 0 ≤ x ≤ a, 0 ≤ y ≤ b where a = 1 and

b = 0.8. The analytical solution for the eigenvalues for this problem is given by [25],

k = π

√√√√(p
a

)2

+

(
q

b

)2

(V.41)
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Table 5. The first 20 distinct eigenvalues k for the circular domain under Neumann
boundary conditions (m = 35, Ne = 24).

Analytical Method % Method % Analytical Method % Method %

Solution I error II error Solution I error II error

1.8412 1.8412 0.000 1.8412 0.000 8.0152 8.0154 0.002 8.0154 0.002

3.0542 3.0543 0.003 3.0543 0.003 8.5363 8.5364 0.001 8.5364 0.001

3.8317 3.8318 0.003 3.8318 0.003 8.5778 8.5826 0.056 8.5828 0.058

4.2012 4.2014 0.005 4.2014 0.005 9.2824 9.2828 0.004 9.2828 0.004

5.3176 5.3182 0.011 5.3181 0.009 9.6474 9.6558 0.087 9.6558 0.087

5.3314 5.3315 0.002 5.3315 0.002 9.9695 9.9696 0.001 9.9696 0.001

6.4156 6.4170 0.022 6.4170 0.022 10.1735 10.1735 0.000 10.1735 0.000

6.7061 6.7062 0.001 6.7062 0.001 10.5199 10.5207 0.008 10.5207 0.008

7.0156 7.0156 0.000 7.0156 0.000 10.7114 10.7245 0.122 10.7249 0.126

7.5013 7.5040 0.036 7.5040 0.036 11.3459 11.3461 0.002 11.3461 0.002

where p, q = 0, 1, 2, . . . are the zero points for the eigenmodes in the longitudinal

and transverse directions, respectively.

Each side of the rectangular domain was discretized with 6 quadratic

elements of equal lengths (Nx = Ny = 6). To find the first 20 distinct eigenvalues for

this problem which are in the interval 0 ≤ k ≤ 15.8, a value of m = 28 was

suggested by Eq. (V.29) where kmax = 15.8. However, a further analysis indicated

that a choice of m = 25 is sufficient. The result from the search for the local minima

of |det[Ā(k)]| obtained from method I is depicted in Fig. 19. The numerical results

obtained from methods I and II are shown in Table 6 together with the analytical

solution. Method I produces a maximum relative error of 0.08% while that number

for method II is 0.04%. The CPU times needed by methods I and II were 453.78

seconds (for 158,000 iterations) and 35.97 seconds, respectively.
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Figure 19. Plot of |det[Ā(k)]| for the rectangular domain under Neumann boundary
condition.

5.4.4 Rectangular domain under both Dirichlet and Neumann boundary

conditions

The last example involves a rectangular domain under mixed boundary

conditions. The domain is defined by 0 ≤ x ≤ a, 0 ≤ y ≤ b where a = 0.9 and

b = 0.4. The side x = 0 is under Dirichlet boundary conditions while the other sides

are under Neumann boundary conditions. For this problem, the analytical solution

for the eigenvalues can be obtained from [25] as,

k = π

√√√√(p− 0.5

a

)2

+

(
q

b

)2

(V.42)
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Table 6. The first 20 distinct eigenvalues k for the rectangular domain under Neumann
boundary conditions (m = 25, Nx = Ny = 6).

p,q Anal. Method % Method % p,q Anal. Method % Method %

Sol. I error II error Sol. I error II error

0,0 0.0000 0.0000 – 0.0055 – 3,1 10.2102 10.2128 0.026 10.2132 0.029

1,0 3.1416 3.1416 0.000 3.1416 0.000 0,3 11.7810 11.7822 0.010 11.7819 0.008

0,1 3.9270 3.9270 0.000 3.9270 0.000 1,3 12.1927 12.1948 0.018 12.1976 0.040

1,1 5.0290 5.0291 0.002 5.0291 0.002 3,2 12.2683 12.2710 0.022 12.2693 0.008

2,0 6.2832 6.2836 0.007 6.2836 0.007 4,0 12.5664 12.5702 0.031 12.5687 0.018

2,1 7.4094 7.4100 0.008 7.4101 0.009 4,1 13.1657 13.1729 0.055 13.1694 0.028

0,2 7.8540 7.8543 0.004 7.8543 0.004 2,3 13.3518 13.3541 0.018 13.3544 0.020

1,2 8.4590 8.4595 0.006 8.4596 0.007 4,2 14.8189 14.8241 0.035 14.8235 0.031

3,0 9.4248 9.4263 0.016 9.4263 0.016 3,3 15.0870 15.0864 0.004 15.0903 0.022

2,2 10.0580 10.0589 0.009 10.0584 0.004 0,4 15.7080 15.6956 0.079 15.7075 0.003

Five quadratic elements were employed to discretize each side of the

rectangular domain (Nx = Ny = 5). The interval of interest for the wave number is

0 ≤ k ≤ 24.5 as it holds the first 20 distinct eigenvalues for this problem. According

to Eq. (V.29), a minimum value of 33 should be chosen for m. However, matrix Am

in the standard eigenvalue problem of Eq. (V.37) becomes ill-conditioned in double

precision if m ≥ 20. Hence, the generalized eigenvalue problem of Eq. (V.38) with

m = 35 was used for method II instead. However, while method I was able to

accurately produce the first 20 distinct eigenvalues within the interval 0 ≤ k ≤ 24.5

(see Fig. 20 and Table 7), solving the generalized eigenvalue problem resulted in

only the first 13 distinct eigenvalues with acceptable accuracy. To overcome this

issue, a characteristic length Lc = 0.07 was employed to make the normalized size of

the domain (ā = a/Lc, b̄ = b/Lc) large. In this case, per Eq. (V.1), the

dimensionless wavenumber k̄ is related to k by k̄ = Lck. The method using

normalized coordinates for solving the generalized eigenvalue problem of Eq. (V.38)
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is called method II(a) in this section. Twenty accurate eigenvalues produced by

method II(a) can be found in Table 7 as they are compared to the analytical

solution. The maximum percentage error for method II(a) is 0.54%.

To be able to solve the standard eigenvalue problem for this example, higher

precision than the built-in double precision in MATLAB needs to be used to make

the matrix in Eq. (V.37) well-conditioned. To demonstrate this, a precision using 34

decimal digits was also employed to find the first 20 distinct eigenvalues for this

example. This number of digits is in accordance with IEEE 174-2008 standard for

the quadruple precision and supported by the ADVANPIX multiprecision toolbox

for MATLAB [26]. The method using quadruple precision for solving the standard

eigenvalue problem of Eq. (V.37) is called method II(b) in this section.

As illustrated in Table 7, excellent agreement between the numerical results

obtained from methods I and II(b) can be observed even though the results from

method I were produced using double precision. The maximum percentage errors

for methods I and II(b) were 0.53% and 0.44%, respectively.

In terms of computational effectiveness, the CPU times required for methods

I and II(a) were 717.82 seconds (for 245,000 iterations) and 84.21 seconds,

respectively. The computational cost of method II(b) was much higher due to the

use of quadruple precision. As the accuracies of the resulting eigenvalues produced

by all three methods I, II(a) and II(b) are comparable (see Table 7), it is suggested

to use methods I or II(a) if the matrix of the standard eigenvalue problem in Eq.

(V.37) is ill-conditioned.

5.5 Conclusion

By employing the series expansions of zero-order Bessel functions for the

fundamental solution to the 2-D Helmholtz equation, a series of new fundamental
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Figure 20. Plot of |det[Ā(k)]| for the rectangular domain under mixed boundary
conditions.

solutions independent of the wave number k was derived. As a result, the coefficient

matrix of the Helmholtz BEA homogeneous system of equations can be represented

as a polynomial in wavenumber k. This development resulted in (a) a much faster

search for the Helmholtz eigenvalues by scanning k over an interval of interest to

find the local minima of the determinant of the aforementioned coefficient matrix,

and (b) a formulation of the standard or generalized eigenvalue problems which can

be used to directly solve for the eigenvalues without resort to any iterative method.

By using the complex-valued fundamental solution of the Helmholtz operator, the

proposed technique avoids producing any fictitious eigenvalues for simply connected

domains [21] (Figs. 17, 18, 19 and 20 show no fictitious eigenvalues within the
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Table 7. The first 20 distinct eigenvalues k for the rectangular domain under mixed
boundary conditions (m = 35, Nx = Ny = 5).

p,q Analytical Method % Method % Method %

Solution I error II(a) error II(b) error

0,0 or 1,0 1.7453 1.7445 0.046 1.7429 0.138 1.7445 0.046

2,0 5.2360 5.2349 0.021 5.2329 0.059 5.2349 0.021

0,1 or 1,1 8.0456 8.0451 0.006 8.0443 0.016 8.0451 0.006

3,0 8.7266 8.7277 0.013 8.7229 0.042 8.7277 0.013

2,1 9.4393 9.4356 0.039 9.4343 0.053 9.4356 0.039

3,1 11.7405 11.7359 0.039 11.7300 0.089 11.7359 0.039

4,0 12.2173 12.2236 0.052 12.2171 0.002 12.2236 0.052

4,1 14.5240 14.5263 0.016 14.5129 0.076 14.5263 0.016

5,0 15.7080 15.7230 0.096 15.7157 0.049 15.7227 0.094

0,2 or 1,2 15.8046 15.8049 0.002 15.8043 0.002 15.8049 0.002

2,2 16.5576 16.5552 0.015 16.5543 0.020 16.5552 0.015

5,1 17.5620 17.5854 0.133 17.5586 0.019 17.5853 0.133

3,2 17.9693 17.9653 0.022 17.9600 0.052 17.9653 0.022

6,0 19.1986 19.2487 0.261 19.2186 0.104 19.2488 0.262

4,2 19.8998 19.9037 0.020 19.8886 0.056 19.9038 0.020

6,1 20.7430 20.8349 0.443 20.7571 0.068 20.8348 0.443

5,2 22.2144 22.2262 0.053 22.2129 0.007 22.2255 0.050

7,0 22.6893 22.7468 0.253 22.7314 0.186 22.7468 0.253

0,3 or 1,3 23.6265 23.6283 0.008 23.6286 0.009 23.6283 0.008

7,1 24.0102 24.1362 0.525 24.1386 0.535 24.0861 0.316

interval of k under consideration). For exterior and multiply connected domains, the

Burton-Miller method can be employed in conjunction with the proposed technique

to eliminate the fictitious eigenvalues. By considering various geometries under
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different boundary conditions, the proposed technique shows that it can accurately

and effectively produce a large number of the lowest eigenvalues. A hybrid

(numerical and analytical) evaluation of the weakly singular boundary integrals in

Eq. (V.24) and a more effective algorithm for finding the eigenvalues for the sparse

matrix in Eq. (V.37) would result in a larger number of accurate eigenvalues that

can be produced by the proposed method II. Finally, the proposed technique is

readily extended to three dimensions and this investigation is currently being

pursued by the authors.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

In this dissertation, a model-based systems engineering methodology has

been developed in order to cope with the complexities of quantum systems. This

approach is applied to the four main phases of system analysis, system design,

system manufacturing, and system verification, validation and testing during the

system lifecycle. Quantum dot solar cells are selected as an exemplar quantum

system during this system development procedure. It is shown that using

appropriate models in the system development procedure can help to obtain a

better understanding of these complex systems, and perform the system design and

evaluation more accurately. All of the models used in the analysis stage are

prepared by employing SysML in Cameo Systems Modeler software package.

In particular, the main focus of current research is on the analysis and design

stages of the development of quantum dot solar cells. This system development

procedure is associated with several important steps. One of these main steps is to

identify the governing equation of the quantum system. Since the time-independent

Schrödinger equation is the governing equation of most quantum systems, the key

element in the analysis and design of these systems is to solve this governing

equation under various boundary conditions, such as Dirichlet and Neumann

boundary conditions, for finding energy eigenvalues of the quantum systems. It is

worthwhile to mention that by solving this eigenvalue problem, the important

features of the quantum system like its energy levels can be obtained which are
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required for the design stage. As the BEM has several key advantages in solving the

time-independent Schrödinger equation, novel boundary integral formulations were

presented in Chapters IV and V to effectively and accurately solve this equation

under various boundary conditions. Several examples representing quantum

billiards with different geometries were shown to demonstrate the accuracy and

effectiveness of the proposed technique. The reason for considering quantum

billiards is that the behavior of particles in the quantum billiards is similar to the

movement of electrons in the quantum systems. This process is feasible by making

the BEM integrand independent of the wave number.

After performing the system analysis stage using SysML and the system

design using MATLAB, these two parts were integrated in Cameo Systems Modeler.

The integration process for all these steps can be carried out using parametric

diagrams to show the impact of each system parameter on the overall system

performance. After providing models for system manufacturing and testing, it is

illustrated that the system integration can also be performed for verification,

validation, and testing process to confirm that the system design stage is

accomplished successfully.

Future works are recommended as follows:

� Develop a boundary integral formulation for directly solving the standard and

generalized eigenvalue problems for the 3-D time-independent Schrödinger

equation under both Dirichlet and Neumann boundary conditions.

� Extend the current framework to develop a complete MBSE framework for

quantum systems.

� Apply the proposed boundary integral formulation to optimize the technical

parameters of quantum dot solar cells including inter-dot spacing, quantum

dot shape, size, etc.
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� Apply the proposed numerical method to other problems governed by the

time-independent Schrödinger or Helmholtz equation, such as acoustics.
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Appendix A

Modeling Details Supplementing Article 1

In this part, the additional information that is required to accomplish the

development of quantum dot solar cells is provided. According to the system

lifecycle processes indicated in systems engineering Vee diagram1 (Fig. A.1), there

are several steps in each product development. These steps are categorized into four

main groups: systems analysis, system design, system manufacturing, and system

testing. Most of the information reported here is for the system analysis phase, and

the remaining parts are related to the system design and verification, validation,

and testing (VV&T).

A.1 Supplementary Information for System Analysis

Modeling quantum systems can be performed based on statistical data taken

from experiments. In other words, one should establish a model for quantum devices

Figure A.1. Systems engineering Vee diagram.

1https://connected-corridors.berkeley.edu/planning-system/planning-system-development-semp
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that is in agreement with experimental results as well as the quantum theories. This

model may not be in complete consistency with the actual physical system. In this

regard, the quantum system should be assumed as a black box, and then an

approximate model is created according to the experimental data based on quantum

mechanics. The first step in developing a quantum system using MBSE is the

system analysis. The main stages of the system analysis using MBSE are as below:

� Derive stakeholder requirements

� Prepare the concept of operation (ConOp), including the system context

� Define quantum system domain (domain diagram)

� Identify systems uses (Use Case diagram)

� Define system requirements

� Decompose uses to tasks

� Define system architecture

� Engineering analysis

The system modeling language (SysML) is employed here as an intuitive tool to

perform the previously-mentioned analysis. Despite the fact that this procedure

may not include every detail in the analysis of the quantum systems, it gives a

better understanding of quantum systems and the complexity in their architecture.

As mentioned before, quantum dot solar cells are the new generation of the solar

cells which represent an attempt to improve the performance of current solar cells

available in the market. The influence of multiple parameters on the behavior of

such systems has made it difficult to predict the behavior of these complex systems.

Therefore, the MBSE method is applied to these systems to model such quantum
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Figure A.2. Solar cells stakeholder diagram.

systems more easily. The stages of system context definition, system decomposition

to the relevant tasks, and design of system logical and physical architecture, which

have not been described in Article 1, are discussed here.

A.1.1 Stakeholders:

Quantum systems like any other system which is going to be developed, has

active stakeholders who will be the main system users, or the people who interact

with the system directly. There are also passive stakeholders that affect the system

indirectly. These stakeholders should be identified for each quantum system at the

initial steps of the product development, because it is crucial to identify their

desirements in an appropriate way. These stakeholders for the quantum dot solar

cells, as a representative quantum system, are depicted in Fig. A.2. The interaction

of these stakeholders with the solar cell system is demonstrated in the form of a

context diagram, as demonstrated by Fig. A.3.
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Figure A.3. The context diagram of the solar cell system.

A.1.2 System Decomposition

In this stage, the quantum system uses and functionalities are decomposed

into relevant tasks and activities. The activity diagram prepared for a quantum dot

solar cell as the selected system of interest is indicated in Fig. A.4. According to

this diagram, the solar cell should be exposed to solar irradiation to absorb solar

photons. Then if the photon energy is high enough, the electron will be excited and

move to the higher energy levels. This excited electron can relax and move to a

lower energy level, and release a photon. Consequently, the released photon can

create a new electron-hole pair. With this procedure, up to three excitons may be

created by each solar photon, which increase the system efficiency accordingly.
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Figure A.4. Activity diagram for the top level use case of the solar cell.
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A.1.3 System Architecture

In the next step, the quantum system logical architecture design is performed

based on the stakeholders and also the derived system requirements. The system

requirements to logical architecture allocation diagram is illustrated in Fig. A.5.

According to this diagram, logical subsystems are considered to enable electricity

generation with high efficiency, and also remote monitoring of the amount of the

generated electrical power. So, both main stakeholder requirements are met.

Moreover, a logical architecture diagram can be used to show the newly designed

architecture in a better way (Fig. A.6). To have a better understanding of this

concept, the external interfaces of the solar cell, including the inputs and outputs of

this system, can be indicated using ports in a block definition diagram (Fig. A.7).

Additionally, internal block diagrams (IBD) can be employed to represent each

logical subsystem with more details (Fig. A.8).

A physical architecture can also be considered for the new system according

to the designed logical architecture. The logical to physical allocation diagram

demonstrates all the required physical modules based on the defined logical aspects.

The allocation diagram showing the relevant allocations between the logical and

physical architectures is depicted in Fig. A.9. Six main modules are defined in the

physical architecture to meet all the requirements (Fig. A.10).

A.2 Supplementary Information for System Manufacturing

In order to employ model-based systems engineering to model the quantum

systems manufacturing procedure, three main models should be prepared:

� Product model

� Process model

� Resources/Facility models
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Figure A.5. Requirements to logical architecture allocations of the solar cell.
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Figure A.6. Logical architecture diagram of the solar cell.

Figure A.7. External interfaces of the solar cell.
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Figure A.8. Internal block diagram for the electricity generation.

The process model has been described completely in the first article. Here, the

product model is prepared for the quantum dot solar cells as a typical quantum

system selected in this research. Various systems and subsystems used in the

quantum dot solar cell systems are illustrated in Fig. A.11. In addition, Fig. A.12

represents a facility model prepared by National Institute of Standards and

Technology (NIST), which can be employed for the purpose of this research as well2.

A.3 Application of the Proposed Numerical Method in the Analysis, Design,

and VV&T of Quantum Dot Solar Cells

In this section, the application of the proposed technique in the analysis,

design, and VV&T of quantum dot solar cells as a typical quantum system is

represented. As previously mentioned, one of the most important aspects of the

process of analyzing and designing quantum systems and developing new devices is

to solve the energy eigenvalue problem of the Helmholtz or time-independent

2https://www.nist.gov/document/16dmbisevalueproposition2019aprv2-timothysprockpdf
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Figure A.9. Logical to physical architecture allocations.
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Figure A.10. Physical architecture diagram of the solar cell.

Figure A.11. Manufacturing product model.
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Figure A.12. Manufacturing facility model.

Schrödinger equation, which is the governing equation of such systems. This is one

of the main steps in quantum systems design, as is shown in the system design

model in Fig. 8. The remainder of this section describes how these systems can be

designed more effectively and also accurately using MBSE and a novel BEM

approach.

As mentioned previously, the performance of quantum dot solar cells and

their efficiency are in direct relationship with the layout of quantum dots in the

semiconductors, including their size, shape, and inter-dot spacing. In this regard,

obtaining the energy eigenvalues will help in the determination of the particles state

energy, and evaluating the efficiency of the quantum dot solar cells for each specific

geometry. Furthermore, as it is described in Article 1, it is important to

manufacture quantum dot solar cells uniformly. Therefore, a uniform arrangement
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of the quantum dots is crucial during system design stage. Several researches have

been performed recently to find an optimal quantum dot layout in this regard. As

one of the main goals of our research, the proposed technique can help researchers

to carry out the required computations more efficiently. Figure A.13 depicts the

models that can be employed for this study. The experimental results can be used

to find the appropriate boundary conditions while modeling and simulating such

systems. Therefore, having knowledge of both theoretical and experimental aspects

of the system will contribute to an appropriate design and accurate results.

The Helmholtz or time-independent Schrödinger equation for quantum dot

solar cells can be solved more conveniently using numerical methods like the BEM

instead of analytical approaches. As a matter of fact, the problem can be solved on

the boundary of the quantum dots as the domain boundary (instead of the entire

domain), while the substrate is assumed as the exterior part of the region. As

indicated in Fig. A.13, the Ben-Daniel-Duke boundary condition is an appropriate

selection for this case based on the experimental and operational conditions of these

devices. According to this boundary condition, the amount of the wave function on

the quantum dot boundary should be equal for both the interior and exterior

regions (the quantum dot is known as the interior, and the substrate is known as

the exterior):

[ΨQD(x)]x=±L
2
= [ΨSubstrate(x)]x=±L

2
(A.1)

Furthermore, the relationship between the derivative of the wave function for these

two regions is expressed as below for a rectangular quantum dot3:

1

m∗(InxGa(1−x)N)

[
dΨQD(x)

dx

]
x=±L

2

=
1

m∗(GaN)

[
dΨSubstrate(x)

dx

]
x=±L

2

(A.2)

3A. El Aouami, E. Feddi, A. Talbi, F. Dujardin, and C. A. Duque, “Electronic state and pho-
toionization cross section of a single dopant in GaN/InGaN core/shell quantum dot under magnetic
field and hydrostatic pressure,” Applied Physics A, vol. 124, no. 6, pp. 1–11, 2018.
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Figure A.13. Schematic diagram of the proposed model for the quantum dot solar
cells.

Figure A.14. BEM model for a typical square quantum dot.

where L is the quantum dot length, Ψ is the wave function, and m∗ is the particle

effective mass. It should be noted that Eq. A.2 can similarly be written for the

y-axis. By considering the boundary integral equation for each element on the

quantum dot boundary, the BEM system of equations will be achieved. For this

purpose, Fig. A.14 illustrates the two-dimensional BEM model for a typical square

quantum dot. The time-independent Schrödinger equation for this case can be

represented as,

HΨ(X, Y ) = EΨ(X, Y ) (A.3)
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where Ψ is the wave function, E is the particle energy level, and H is the

Hamiltonian of the system which is given as,

H = H(X) +H(Y ) (A.4)

where,

H(p) = − h̄2

2m
△p + Vp , p ∈ {X, Y } (A.5)

In this equation, V is the potential energy, h̄ is the reduced Planck’s constant, and

m is the particle mass. Equation A.3 is an implicit equation for E and Ψ, so this

differential equation can be replaced by the following implicit integral equation4,

ψ(r′) =
h̄2

2m

∮
Γ

[ψn(r)∂υG(r, r
′;En)−G(r, r′;En)∂υψn(r)] ds(r) (A.6)

where ∂υ ≡ υ(r) · ∇r in which υ denotes the exterior normal unit vector to the

boundary Γ. Moreover, ds is an infinitesimal length on the boundary, r and r′ are

functions of X and Y , and G can be defined as,

G(r, r′) = − m

πh̄2
K0 (−ik|r− r′|) (A.7)

where K0 is the second kind modified Bessel of order zero, i is the imaginary unit,

and k is the wave number of the particle. By solving Eq. A.6 for each element in

Fig. A.14, a system of equations like Bx = 0 can be derived in which B is the

matrix of coefficients and x is the vector of unknowns. If we consider the BEM

4I. Kosztin and K. Schulten, “Boundary integral method for stationary states of two-dimensional
quantum systems,” International Journal of Modern Physics C, vol. 8, no. 02, pp. 293–325, 1997.
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system of equations for zone (1) and (2) as follows,

[
A1 A2

]u(1)

q(1)

 = 0 , for zone (1) (A.8)

[
B1 B2

]u(2)

q(2)

 = 0 , for zone (2) (A.9)

where u(1) and q(1) are the unknown variables of zone (1), while u(2) and q(2) are

the unknown variables of zone (2), then matrix B can be derived by,

B =

A1 A2

B1 cB2

 (A.10)

where,

c =
m∗(quantum dot material)

m∗(substrate material)
(A.11)

The eigenvalues of Eq. A.10, which can be obtained by solving det(B) = 0, are

identical to the energy eigenvalues of the quantum dot solar cell governing equation.

The novel BEM procedure proposed in Articles 2 and 3 can be employed to solve

this energy eigenvalue problem more effectively.
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Appendix B

Mathematical Details Supplementing Articles 2 and 3

The energy eigenvalues of Helmholtz or time-independent Schrödinger

equation should be identified in order to study the behaviour of quantum billiards.

The time-independent Schrödinger equation can be expressed as follows:

Ĥψn(r) ≡
[
− h̄2

2m
∇2 + V (r)

]
ψn(r) = Enψn(r) (B.1)

where V is the potential, H is the Hamiltonian, and En and ψn are the energy

eigenvalue and its relevant eigenfunction, respectively. According to this equation,

the Hamiltonian for a quantum billiard including a particle with mass m moving in

a simply connected region D can be written as:

Ĥ = − h̄2

2m
∇2 + V (r) (B.2)

By using the Green’s function G(r, r′;E) for the differential operator E − Ĥ,

we have:

[
E − Ĥ(r)

]
G(r, r′;E) = δ(r− r′) (B.3)

where r and r′ are the source and field points in D, and δ(r− r′) is the 2-D

δ-function. By multiplying Eq. B.3 by ψn and Eq. B.2 by G(r, r′;E), the potential

term can be eliminated as below:

ψn(r)δ(r− r′) =
h̄2

2m

[
ψn(r)∇2G(r, r′;En)−G(r, r′;En)∇2ψn(r)

]
(B.4)
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In addition, for the differentiable functions, v and u, we have:

u∇2v = ∇(u∇v)−∇u∇v (B.5)

So, Eq. B.4 can be rewritten as:

ψn(r)δ(r− r′) =
h̄2

2m
∇ · [ψn(r)∇G(r, r′;En)−G(r, r′;En)∇ψn(r)] (B.6)

By applying the Green’s formula and integrating with respect to r over the

domain D, the above equation becomes:

ψn(r
′) =

h̄2

2m

∮
Γ

[ψn(r)G,ν(r, r
′;En)−G(r, r′;En)ψn,ν(r)] ds(r) (B.7)

In this equation, ds(r) is an infinitesimal length considered along boundary

Γ. For evaluation of the boundary integral formulation in the singular points, where

ε ≡ r− r′ −→ 0 based on Fig. B.1, the Green’s function can be given as:

G(r, r′;En) ∼ − m

πh̄2
ln(kε), ε→ 0 (B.8)

The Green’s function for a billiard with a particle moving freely inside it is

defined as:

G(r, r′;E) = − im

2h̄2
H

(1)
0 (k|r− r′|) (B.9)

where k =
√
2mE/h̄. So, it can be expressed by:
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Figure B.1. Geometry of the billiard boundary near the singularity point.

G,ν(r, r
′;En) = ν(r) ·∇r

[
− im

2h̄2
H

(1)
0 (k|r− r′|)

]
=
imk

2h̄2

[
ν(r) · r− r′

|r− r′|

]
H

(1)
1 (k|r− r′|)

(B.10)

Here, it has been considered that dH
(1)
0 (z)/dz = −H(1)

1 (z). According to Fig.

B.1, the following equation can be obtained:

lim
ε→0

h̄2

2m

∫
Cε

ψn(r)G,ν(r, r
′;En)ds(r) =

h̄2

2m
ψn(r

′) lim
ε→0

∫ θ(r′)

0

(
imk

2h̄2

)(
− 2i

πkε

)
εdφ

=
θ(r′)

2π
ψn(r

′) (B.11)

in which θ(r′) = π for a smooth boundary.
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