
University of South Alabama University of South Alabama

JagWorks@USA JagWorks@USA

Theses and Dissertations Graduate School

5-2022

Adversarial Machine Learning for the Protection of Legitimate Adversarial Machine Learning for the Protection of Legitimate

Software Software

Colby Parker
University of South Alabama, cbp1222@jagmail.southalabama.edu

Follow this and additional works at: https://jagworks.southalabama.edu/theses_diss

 Part of the Information Security Commons, and the Theory and Algorithms Commons

Recommended Citation Recommended Citation
Parker, Colby, "Adversarial Machine Learning for the Protection of Legitimate Software" (2022). Theses
and Dissertations. 35.
https://jagworks.southalabama.edu/theses_diss/35

This Dissertation is brought to you for free and open access by the Graduate School at JagWorks@USA. It has
been accepted for inclusion in Theses and Dissertations by an authorized administrator of JagWorks@USA. For
more information, please contact jherrmann@southalabama.edu.

https://jagworks.southalabama.edu/
https://jagworks.southalabama.edu/theses_diss
https://jagworks.southalabama.edu/gradschool
https://jagworks.southalabama.edu/theses_diss?utm_source=jagworks.southalabama.edu%2Ftheses_diss%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=jagworks.southalabama.edu%2Ftheses_diss%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=jagworks.southalabama.edu%2Ftheses_diss%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
https://jagworks.southalabama.edu/theses_diss/35?utm_source=jagworks.southalabama.edu%2Ftheses_diss%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jherrmann@southalabama.edu

ADVERSARIAL MACHINE LEARNING FOR THE PROTECTION OF

LEGITIMATE SOFTWARE

A Dissertation

Submitted to the Graduate Faculty of the

University of South Alabama

in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in

Computing

by

Colby B. Parker

B. S., University of South Alabama, 2017

M.S., University of South Alabama, 2018

May 2022

 ii

ACKNOWLEDGMENTS

First, I thank my advisor Dr. J. Todd McDonald. Without him, none of this would

have been possible and I wouldn’t have been able to come this far in my academic career.

His support and teachings through the years helped to prepare me for this moment. He’s

always provided me with opportunities to grow and succeed and I truly appreciate him

for being with me these past six years.

I thank my committee members Dr. Ryan Benton, Dr. Aviv Segev, Dr. Armin

Straub, and Dr. Yuan Gu for their patience, their choice to be in my committee, and their

feedback on my research. In addition, I’d like to thank Dr. Dimitrios Damopolous for his

assistance and ideas.

I’m very thankful for my fiancé Asia Griffin for all of her support during this long

process. She did her absolute best to encourage me and get me back on my feet when I

was overwhelmed with it all. She made even the worst times so much better. I also thank

my friends Cody Johnston, Jamie Howell, and Josh Gray for celebrating my successes

and pushing me to be my best.

Lastly, I thank Dr. Todd Andel and Ms. Angela Clark for their management of the

SFS program at South Alabama. The opportunities and support from them, both inside

and out of the program, were above and beyond.

 iii

TABLE OF CONTENTS

Page

LIST OF TABLES ... viii

LIST OF FIGURES .. x

LIST OF ABBREVIATIONS ... xii

ABSTRACT ... xiii

CHAPTER I INTRODUCTION ... 1

1.1 Research Questions ... 6
1.2 Research Goals and Contributions .. 6
1.3 Document Outline ... 7

CHAPTER II BACKGROUND ... 8

2.1 Obfuscation ... 8

2.1.1 Obfuscation Transformations ... 11

2.1.1.1 Layout Transformations, ... 11

2.1.1.2 Data Transformations.. 12
2.1.1.3 Control Transformations ... 13

2.1.1.3.1 Virtualization ... 14

2.1.1.3.2 Just in Time Compilation ... 15

2.1.1.3.3 Control Flow Flattening ... 15

2.1.1.3.4 Opaque Predicates .. 16
2.1.1.3.5 Encoding Arithmetic. ... 17

2.1.2 Metrics for Obfuscation .. 17

2.2 Machine Learning ... 20

2.2.1 Categories ... 20

 iv

2.2.1.1 Supervised Learning ... 21

2.2.1.2 Unsupervised Learning, .. 21

2.2.1.3 Reinforcement Learning, .. 21

2.2.2 Phases.. 22

2.2.2.1 Data Collection ... 23
2.2.2.2 Training and Testing ... 23

2.3 Adversarial Machine Learning ... 24

2.3.1 Machine Learning Attack Surface .. 25
2.3.2 Techniques .. 27

2.3.2.1 Training ... 28

2.3.2.2 Inference ... 28

2.3.3 Adversary Knowledge .. 29
2.3.4 Evasion Attacks .. 31

2.3.4.1 Whitebox Evasion ... 33

2.3.4.2 Blackbox Evasion. .. 34

2.3.5 Crafting Adversarial Examples ... 35

2.3.5.1 Deep Neural Network. .. 35

2.3.5.2 Fast Gradient Sign Method. .. 37

2.3.5.3 Carlini and Wagner Method.. 38

CHAPTER III ... 39

RELATED WORK ... 39

3.1 Metadata Recovery from Obfuscated Programs Using Machine Learning 39
3.2 ByteWise: A case study in neural network obfuscation identification 42

3.3 Fine-Grained Static Detection of Obfuscation Transforms Using Ensemble-

Learning and Semantic Reasoning .. 45

CHAPTER IV METHODOLOGY ... 47

4.1 Dataset creation ... 48

4.1.1 Dataset source ... 48

4.1.2 Obfuscations ... 49

4.2 Detection Suite .. 51

 v

4.2.1 Gadget Based Detection.. 52

4.2.2 Image Based Detection ... 53

4.3 Evasion of Detectors ... 54

4.3.1 Adversarial Obfuscation ... 54
4.3.2 Obfuscation Expansion ... 55
4.3.3 Impact on Obfuscation .. 57

4.4 Automation and Comparison .. 57

CHAPTER V OBFUSCATION CLASSIFICATION .. 59

5.1 Introduction ... 59
5.2 Background ... 61

5.2.1 Convolutional Neural Networks ... 61

5.3 Methodology ... 62

5.3.1 Dataset creation... 62

5.3.1.1 Image Creation. ... 63

5.3.1.2 Disassembly. ... 63
5.3.1.3 Gadget Extraction. .. 64

5.3.2 Classifiers.. 65

5.3.2.1 CNN. ... 65

5.3.2.2 FCNN. ... 65
5.3.2.3 Opcode. ... 68

5.3.2.4 Gadgets. .. 69

5.4 Results ... 69

5.4.1 CNN .. 70
5.4.2 FCNN .. 70
5.4.3 Opcode .. 70
5.4.4 Gadgets ... 73

5.4 Discussion ... 74
5.5 Future Work .. 75

5.6 Conclusion .. 76

CHAPTER VI EVADING OBFUSCATION CLASSIFICATION 78

6.1 Adversarial Machine Learning ... 78

 vi

6.1.1 Introduction ... 78

6.1.2 Executable Adversarial Examples .. 79

6.1.3 Methodology ... 81

6.1.3.1 Distance Comparisons. ... 82
6.1.3.2 Adversarial Obfuscation. .. 83

6.1.3.2.1 Generating adversarial examples 83
6.1.3.2.2 Semantic nops .. 85

6.1.3.3 Using on Each Classifier. .. 85

6.1.4 Results ... 87

6.1.5 Discussion ... 87

6.1.6 Future Work .. 89
6.1.7 Conclusion .. 89

6.2 Opcode Expansion .. 90

6.2.1 Introduction ... 90

6.2.2 Methodology ... 91

6.2.3.1 Code Segments.. 92

6.2.3.2 Uniform Expansion. .. 93
6.2.3.3 Profile Expansion. ... 94
6.2.3.4 Guided Expansion. .. 95

6.2.3 Results ... 96

6.2.3.1 Opcode Profiles. .. 96
6.2.3.2 Uniform. .. 96
6.2.3.3. Profile. .. 98

6.2.3.4 Guided. .. 99

6.2.4 Discussion ... 100
6.2.5 Future Work .. 101

6.2.6 Conclusion .. 102

CHAPTER VII IMPLEMENTATION AND EVALUATION 103

7.1 Introduction ... 103
7.2 LOKI Obfuscator Framework ... 104

7.2.1 Capabilities ... 105

7.2.1.1 Guided Obfuscation. ... 105
7.2.1.2 Adversarial. ... 105

 vii

7.2.1.3 Obfuscation Analysis. ... 106

7.3 Methodology ... 106

7.3.1 Adversarial Expansion .. 106
7.3.2 Metrics .. 108

7.3.2.1 Stealth. .. 108
7.3.2.2 Potency. ... 108
7.3.2.3 Resilience. ... 108

7.3.2.4 Cost. .. 109

7.4 Results ... 109

7.4.1 Impact on Stealth .. 109

7.4.2 Impact on Potency .. 109

7.4.3 Impact on Resilience ... 111
7.4.4 Impact on Cost .. 112

7.5 Discussion ... 112

7.6 Future Work & Conclusion ... 112

REFERENCES ... 114

BIOGRAPHICAL SKETCH .. 131

 viii

LIST OF TABLES

Table Page

1. Description of Classifiers. .. 51

2. F1-scores of CNN model at differing layers. ... 70

3. Classification f1-scores for fully convolutional model. . .. 71

4. Naive Bayes single layer results. ... 71

5. Naive Bayes multi-layer results. .. 71

6. Decision Tree single layer results. ... 72

7. Decision Tree multi-layer results. .. 72

8. SVM single layer results. ... 72

9. SVM multi-layer results. .. 72

10. Naive Bayes single layer results. ... 73

11. Naive Bayes multi-layer results. .. 73

12. Decision Tree single layer results. ... 73

13. Decision Tree multi-layer results. .. 74

14. SVM single layer results. ... 74

15. SVM multi-layer results. .. 74

16. Semantic NOPs. ... 85

17. Classification results for Adversarial Obfuscation. .. 88

 ix

18. Results for Targeted attacks. .. 88

19. Feature amount and top 50 features. ... 97

20. Average instruction group counts and percentage increase. 98

21. Classification results for uniform expansion. ... 98

22. Classification results for profile expansion... 99

23. Classification results for guided expansion. ... 99

24. Guided expansion classification results. ... 100

25. Classification scores for our generated samples. .. 110

26. Cyclomatic complexity measures for transformation combinations. 110

27. Sample Size Comparison. ... 111

 x

LIST OF FIGURES

Figure Page

 1. An adversarial image using noise to fool detection. ... 5

 2. Inlining and Outlining of transformations [6]. .. 13

 3. Splitting one function into two [5]. .. 13

 4. Control Flow Flattening [5]. ... 15

 5. Opaque predicate used to introduce bogus control flow [17]. 16

 6. Diagram of a generic ML system... 22

 7. ML pipeline with labels attack surfaces... 26

 8. Known attacks and attack surfaces on ML systems [49]. ... 26

 9. This figure shows the components of an ML system. ... 31

 10. Four examples of adversarial inputs. .. 32

 11. Example of a DNN... 36

 12. Flowchart showing side effects in code. .. 40

 13. ML pipeline for [14]. .. 41

 14. Classification accuracies for experiments 1 and 2 (in red). 42

 15. Classification accuracies for experiments 1 and 2 (red). ... 42

 16. Structure of the RNN model used for the paper [17]. ... 43

 17. Results of BCF detection [17].. 44

file:///C:/Users/colby/Desktop/Folders/Dissertation/Final/Colby%20Parker%20-%20Dissertation.docx%23_Toc99102462
file:///C:/Users/colby/Desktop/Folders/Dissertation/Final/Colby%20Parker%20-%20Dissertation.docx%23_Toc99102470
file:///C:/Users/colby/Desktop/Folders/Dissertation/Final/Colby%20Parker%20-%20Dissertation.docx%23_Toc99102478

 xi

 18. Design steps for detection system [18]. ... 46

 19. Sample program generated by Tigress. ... 49

 20. Partial view of the script use to produce obfuscated variants. 50

 21. Example of Gadget list from a binary. .. 52

 22. Two examples of a binary converted to a Grayscale image. 53

 23. Adversarial Obfuscation Process. .. 55

 24. Overview of Code Expansion Process. ... 56

 25. Outline of Methodology. ... 62

 26.Sample assembly output. .. 64

 27. Figure showing CNN architecture. .. 66

 28.Fully Convolutional Neural Network Architecture. ... 67

 29. Basic nop insertion. ... 80

 30. Adversarial Obfuscation overview. ... 81

 31. Waterfall version of Adversarial Obfuscation. .. 84

 32. Architecture of CNN used to generate AEs. ... 86

 33. Outline of expansion process. ... 93

 34. Adversarial Expansion Process. .. 107

file:///C:/Users/colby/Desktop/Folders/Dissertation/Final/Colby%20Parker%20-%20Dissertation.docx%23_Toc99102482
file:///C:/Users/colby/Desktop/Folders/Dissertation/Final/Colby%20Parker%20-%20Dissertation.docx%23_Toc99102483

 xii

LIST OF ABBREVIATIONS

MATE Man-at-the-End

ML Machine Learning

AML Adversarial Machine Learning

AE Adversarial Example

DNN Deep Neural Network

FGSM Fast Gradient Sign Method

CW Carlini-Wagner

TF-IDF Term Frequency Inverse Document Frequency

CNN Convolutional Neural Network

FCNN Fully Convolutional Neural Network

SVM Support Vector Machine

AO Adversarial Obfuscation

 xiii

ABSTRACT

Parker, Colby B., Ph.D, University of South Alabama, May 2022. Adversarial Machine

Learning for the Protection of Legitimate Software. Chair of Committee: Jeffrey Todd

McDonald, Ph.D.

Obfuscation is the transforming a given program into one that is syntactically

different but semantically equivalent. This new obfuscated program now has its code

and/or data changed so that they are hidden and difficult for attackers to understand.

Obfuscation is an important security tool and used to defend against reverse engineering.

When applied to a program, different transformations can be observed to exhibit

differing degrees of complexity and changes to the program. Recent work has shown, by

studying these side effects, one can associate patterns with different transformations. By

taking this into account and attempting to profile these unique side effects, it is possible

to create a classifier using machine learning which can analyze transformed software and

identifies what transformation was used to put it in its current state. This has the effect of

weakening the security of obfuscating transformations used to protect legitimate

software.

In this research, we explore options to increase the robustness of obfuscation

against attackers who utilize machine learning, particular those who use it to identify the

type of obfuscation being employed. To accomplish this, we segment our research into

three stages. For the first stage, we implement a suite of classifiers that are used to

 xiv

identify the obfuscation used in samples. These establish a baseline for determining the

effectiveness of our proposed defenses and make use of three varied feature sets.

For the second stage, we explore methods to evade detection by the classifiers. To

accomplish this, attacks setup using the principles of adversarial machine learning are

carried out as evasion attacks. These attacks take an obfuscated program and make subtle

changes to various aspects that will cause it to be mislabeled by the classifiers. The

changes made to the programs affect features looked at by our classifiers, focusing

mainly on the number and distribution of opcodes within the program. A constraint of

these changes is that the program remains semantically unchanged. In addition, we

explore a means of algorithmic dead code insertion in to achieve comparable results

against a broader range of classifiers.

In the third stage, we combine our attack strategies and evaluate the effect of our

changes on the strength of obfuscating transformations. We also propose a framework to

implement and automate these and other measures. We the following contributions:

1. An evaluation of the effectiveness of supervised learning models at

labeling obfuscated transformations. We create these models using three

unique feature sets: Code Images, Opcode N-grams, and Gadgets.

2. Demonstration of two approaches to algorithmic dummy code insertion

designed to improve the stealth of obfuscating transformations against

machine learning: Adversarial Obfuscation and Opcode Expansion

3. A unified version of our two defenses capable of achieving effectiveness

against a broad range of classifiers, while also demonstrating its impact on

obfuscation metrics.

 1

CHAPTER I

INTRODUCTION

A crucial component in the world economy that has grown immensely since the

turn of the millennia is the software development industry. A broad global market and

communications have been developed by dramatic improvements in technological

functionality, internet and computer hardware efficiency, resulting in the convergence of

computers and software in every area of human life: entertainment, education, military

usage, medicine, transport [1]. This improvement and rapid expansion has had a large

economic impact as well, with the software industry contributing more than $1 trillion to

the United States economy and adding millions of jobs across a wide range of industries

and at multiple skill levels [2]. This rapid growth and success have made the software

industry a tempting target for crime and theft. In 2018, it was reported that cybercrime

had taken potentially $109 billion from the U.S. economy in 2016 [3].

It should be no surprise that piracy is an issue the industry takes extremely

seriously as intellectual property forms the backbone of its success. Laws in the United

States define and protect intellectual property using suite of different classifications, all

of which can be applied to different aspects of the software produced and sold by the

industry [4]. Novel concepts, ideas, and features implemented in new software can be

patented, allowing the developers holding the patent to obtain a competitive advantage

 2

[4]. Companies worried about software being released that is eerily like theirs or that is

their product repackaged can seek a copyright, which protects the way they have

implemented their ideas [4]. While patents and copyrights can be infringed, trade secrets

can be stolen if the company does not do their due diligence in keeping the secret safe

[4]. Obtaining these classifications for their software allow players in the industry legal

recourse in case someone tries to steal their ideas from them, and people and companies

do try [4].

To preemptively defend their software from attack, developers and companies

turn to software protection [5, 6, 7]. Protections in software take the form of

modifications made to the original program that make it more resilient to attacks made by

malicious actors [5]. A prominent form of software protection employed by developers at

all levels is software obfuscation. Obfuscation is the process of taking a program and

applying a transformative function in order to produce a new program that, while

functionally equivalent to the original, now has code and/or data that is more concealed

and is harder to understand for both people and automated systems. Obfuscation is a vital

tool to security and is used heavily by companies and other entities to defend against

reverse engineering of their created software.

The importance of obfuscation can be seen by examining a man-at-the-end

(MATE) attack scenario. In this attack, the malicious actor has full access to the software

and the machine running the software, with the developer of the software having no input

as the actor is a legitimate user [8]. This is the scenario companies face when combating

software piracy and tampering. An unprotected piece of software in this scenario could be

easily reverse engineered, analyzed, and then be at the mercy of the bad actor. This

 3

highlights the importance of obfuscation. Since obfuscation is placed into the code at

development, it would be present in the MATE scenario and give the program some

defense against malicious user [5-7].

In 2018, unlicensed, or pirated, software accounted for 37% of all software

installed globally [9]. The money lost from this can have a strong impact on the global

economy by hurting the software industry’s ability to foster and promote job growth

while also pushing innovation [10]. In a worst-case scenario, compromised intellectual

property can affect not just the economy but extend its harm to national security. Since

this is a threat faced by all companies great and small, some of which could not handle to

financial impact of piracy, many companies seek to prevent it in the first place [11]. This

leads more and more companies to make use of software protections such as obfuscation.

While obfuscating software may prevent an inexperienced adversary from gaining

access to the software, it is not a silver bullet for protecting all software. With enough

time and resources at their disposal, a sufficiently capable actor can eventually work

through the transformations that have been applied to a piece of software and return it to

something close enough to original form [7]. Due to the nature of MATE attacks, the

attacker would always win in the end if nothing was done. Developers counteract this by

using obfuscation not as an ironclad defense but as a way to buy time [6]. The goal

becomes to make it so by the time the software has been reverse engineered it is no

longer a victory for the attacker, either by making it so the software is obsolete or no

longer functioning due to other factors [12].

Deobfuscation is the process of reverse engineering a piece of obfuscated

software and retrieving or recreating the original program code. Although manual

 4

deobfuscation is exceptionally reliable, it is a time-consuming process. Automatic

deobfuscation tools are meant to speed up the process by automatically extracting some

information or undoing an obfuscated transformation entirely [13, 14, 15]. These tools

enable reverse engineers to scale their efforts with an increasingly large number of

programs. There is a downside, as different obfuscating transformations often require

specific techniques to undo and using these techniques on incorrect transformations

would only make the process worse [13, 16]. Therefore, reverse engineers must first

determine the type(s) of obfuscation(s) that were used on a given program to use any

automated tools that they may possess. Identifying used obfuscations is often itself a

manual task and therefore only increases the time needed to deobfuscate a program.

 Obfuscations can be identified based on the unique changes different

transformations will perform on the program as well as the impacts on the program’s

complexity [6, 14]. Recent work has shown, that by studying these side effects, one can

associate patterns with different transformations via machine learning [14, 17, 18].

Searching for and extracting those patterns within the obfuscated a program’s code or

behavior enables machine learning classifiers to be trained to successfully identify the

types of transformations used on obfuscated pieces of software. While this benefits the

work of malware analysis, this also weakens the effectiveness of obfuscation used for

protecting legitimate software. It may be possible as well to modify or remove the

features created by obfuscation transformations, thus defeating the machine learning

based identifiers.

The altering of features to evade machine learning models is part of the field of

adversarial machine learning [19]. Attacking a machine learning model involves

 5

analyzing the way the model makes decisions and using what is learned to slowly modify

a sample in subtle ways to craft an adversarial sample [19]. These samples will be viewed

by the model not as what they are but as what the attacker wants them to be. Figure 1

provides a visual example of an adversarial image crafted to be mislabeled by an image

recognition model. Adversarial ML has been applied to a wide variety of field beyond

just images, such as audio, health data, spam email, and even malware [19].

In this research, we examine if Adversarial ML can be leveraged for defense

instead of attack. Models made to detect obfuscation rely on features left in the code by

the transformation to make accurate decisions. Principles used in Adversarial ML attacks

will allow us to identify the features being used to make decisions without having to

analyze the models themselves. This information can then be used make changes to

obfuscated programs to produce Adversarially Obfuscated samples that are more robust

against detection. We also examine the concept of code expansion as separate defense

Figure 1. An adversarial image using noise to fool detection.

 6

against detection. Code expansion would rely on adversarial ML to identify relevant

features but would then add additional features to the sample to make features less unique

without modifying the obfuscated code.

1.1 Research Questions

Recent research exploring the concept of using machine learning to assist in

bypassing the protection of malware and other similar software has inadvertently created

a potential security risk for legitimate software. This has prompted the hypothesis to

explore if tactics used to undermine the effectiveness of machine learning may be used to

enhance legitimate software security. This research seeks to answer the following

research questions:

1. How reliably can obfuscation be detected using machine learning?

2. How easily can we evade ML detection using adversarial ML?

3. What are the constraints and possibilities for incorporating adversarial ML into an

existing obfuscator?

4. Can code expansion achieve similar or comparable protection to adversarial ML?

1.2 Research Goals and Contributions

This research aims to provide effective methods to improve the stealth of

obfuscation against adversaries employing machine learning to identify protections in

place within software. The goal is to employ adversarial machine learning tactics

alongside our own code expansion approach to arrive at satisfactory evasion rates.

We build upon previous work that has shown the potential for machine learning to

 7

be used to accurate identify the type of obfuscating transformation applied to a piece of

software without need for source code [14, 17, 18]. The methods we are implementing

seek to enable the protections of legitimate software to not be weakened be adversaries

who would benefit from this prior research.

At completion of this research, we hope to produce a prototype of our own

obfuscator that can automate the processes we develop by incorporating them at the time

of obfuscation. This tool will be made available to other researchers to serve as a basis

for new research that tests it in order to enhance it in meaningful ways.

1.3 Document Outline

The remainder of this prospectus is outlined as follows: Chapter II discusses

background concepts relevant to the work being done such as obfuscation, machine

learning, and adversarial machine learning. Chapter III is an examination of the related

work that is adjacent and foundational to our research. Chapter IV presents a timeline and

the activities involved in the dissertation research.

 8

CHAPTER II

BACKGROUND

This chapter will discuss several concepts in depth that are needed to understand

the goals of this research. The section will begin by discussing the software protection

approach known as obfuscation with a focus on the different types and the metrics used

to evaluate them. Then, an overview of the basics of machine learning and several

different types of models will be provided. Finally, the section will conclude with an

overview of adversarial machine learning.

2.1 Obfuscation

The process of transforming the source code of software to make to it incredibly

difficult for attackers to successfully analyze the code is known as obfuscation [5, 6, 7]. It

is not wholly uncommon for obfuscation to be mistaken for “security by obscurity” in

some areas [5]. Obfuscation is a part of a category of techniques that are to defend

software against analysis and reverse engineering, particularly in Man at the End

(MATE) attack scenarios [5]. In these attacks the malicious user has complete access to

the software and control of the execution environment [6, 7]. As previously noted, these

techniques are not complete protection, but instead focus on making it extremely difficult

for the malicious user to successfully perform their attacks successfully [20]. Obfuscation

 9

is accomplished through various transformations applied to the source code. This section

will provide background on the concept of obfuscation as well as descriptions for the

transformations used in this research. The metrics used to evaluate transformations will

also be discussed as well as a look at the landscape of obfuscation focused research.

Obfuscation is accomplished by using a transformation, T, on a program in some

representation (binary, intermediate, high level, etc.). T then produces a new program,

P’, which is semantically equivalent to the original program, meaning that for a

transformation to be valid T(P) = P’. P’ is most often outputted in the same form as the

original program. In order to achieve a satisfactory level of protection, multiple different

kinds of transformations, even multiple iterations of the same transformation, will usually

be applied to the original program. These transformations will be both layered on top of

each other and applied to different parts of the program. Obfuscation is rarely performed

by hand on large sources and is instead accomplished using programs known as

obfuscators, which apply transformations based on the algorithms designed into them [1].

From this, we can define obfuscators, O, as programs that apply transformations,

T, from a selected set, t, to a source program, P. For example, given t = {T1, T2, T3, T4,

T5}, an obfuscator O acts as a transformer (where O(P) = P’) through application of some

number and order of transformations. Multiple variants of a program can be generated

from the same set of transformations be reordering the sequence that the transformations

are in applied in. For example, O(P) = T3(T1(T4(T5(P)))) = P’ would produce a program

that is syntactically different from O(P) = T1(T5(T4(T3(P)))) = P’. Adding to this the fact

that every transformation can be modified using various inputs and settings before they

 10

are applied, an obfuscator can ensure that is variant generated is unique enough from

each other [21].

Researchers created a formal definition of an obfuscator in order to determine if a

program could be obfuscated to create a program that gave no information about itself

other than the input/output relation, a virtual-black box [22]. The work determined that

this was an impossibility for general programs and suggested instead that computational

indistinguishability should be the goal for obfuscation instead. This would mean that if

given two programs that are different but functionally equivalent, their obfuscated

variants should be indistinguishable from one another [22].

The goal of obfuscation is to alter a source program in a way that creates a new

program that is functionally identical to the original but is now more difficult to

understand. The semantic equivalence between the original and the variant can be stated

as: x: P(x) = P’(x). This all done to defeat man-at-the-end attacks performed by

malicious end users who have unrestricted access to deployed code. Several commercial

and open-source obfuscators are available and are in active use by software companies

and researchers across the board [23, 24, 25].

An important component of obfuscation that must be remembered is that, while

the obfuscating transformations themselves are not a secret, when where and how they

are applied in the program are kept hidden. This further increases the effort and

computing resources required since the adversary must first find the transformation and

the determine which one it is.

 11

2.1.1 Obfuscation Transformations

Obfuscation transformations are traditionally divided into three categories based

on the workings of the transformations [1]. The categories are layout transformations,

which focus on making source-code unreadable; data transformations, which focus on

replacing data structures; and control transformations, which manipulate control

structures. It is possible for transformations to be classified as dynamic transformations,

which means that the transformation will be applied to the program at runtime [1].

Outside of this property, dynamic transformations can be placed into one of three

preceding categories.

The following sections will give overviews of the transformation categories, as

well as the transformations within those categories that are relevant to this research.

Those transformations are Virtualization, Just-in-time Compilation (Jitting), Opaque

Predicates, Control-flow Flattening, Encoding Literals and Encoding Arithmetic. As our

work is not concerned with layout or dynamic transformations, these sections will be

brief and are here for completeness’ sake.

2.1.1.1 Layout Transformations, also called lexical transformations, differ from the two

remaining categories by being concerned only with the readability and layout of source

code [6]. In other words, they only alter the appearance of programs they are used on

without any impact on semantics. The nature of these mean that they are one-way

transformations. Once applied, the original form cannot be recovered. Examples of these

transformations include removing comments, the reformatting of source code, and the

changing of variable names.

 12

Since the semantics of the program has not been altered, layout transformations

have almost no cost impact and the general unintelligibility of transformed code means

that the potency of these transformations is high as well; however, resilience and stealth

are poor with many of the transformations [14]. The major drawback of these types

however is that the transformations effect only source code and are erased with

compilation. Nevertheless, layout transformations remain popular with JavaScript and

other noncompiled languages.

2.1.1.2 Data Transformations are concerned with altering the data structures within a

program to hide both what they are used for and their operations [26]. Collberg et al

further subdivided these transformations by describing them as performing storage,

encoding, aggregation, or data ordering [6]. A transformation as described as storage if it

alters the container that holds the data in question. On the other hand, encoding

transformations operate by changing what the data appears as, often by changing data

types or creating functions specifically to store and return the data [14]. A transformation

is an aggregation if it combines variables or structures into larger or more complex forms,

thereby preventing an adversary from being able to immediately discern their usage [14].

Lastly, ordering means that a transformation alters the order of parameters or functions

inside of classes and variables within method headers.

The only data transformation of interest to us within this research is of the

encoding type. Specifically, we are interested in the encoding of string and integer

literals. For strings, encoding is often accomplished by getting the value via function

instead of storing it while integers use opaque expressions for encoding [27].

 13

2.1.1.3 Control Transformations are the final category. As stated previously, this

category contains transformations that alter the control structure of programs [6]. Like the

data group, this category can be subdivided into three groups based on the effect had on

the code. A transformation in this group with the effect of aggregation would either break

down control structures, computation, or methods into multiple smaller units, or it could

have the opposite effect and combine unrelated pieces of code into one [6].

Transformations of this type can also replace method calls with the full body of the

method or vice-versa [7]. Figures 2 and 3 show examples of aggregating

transformations.

Figure 2. Inlining and Outlining of transformations [6].

Figure 3. Splitting one function into two [5].

 14

An ordering transformation would alter, potentially randomly, the order in which

parts of the code are executed [6]. For example, statements could execute earlier or later

than intended, or entire loops may be completely reordered. Since transformations of this

type can heavily impact the semantics of a program, they must be heavily checked and

validated to ensure the program still functions as intended [28]. To mitigate this risk,

transformations of this type are usually performed on independent blocks of code [14].

The final type in this category is computational transformations, which operate by

inserting useless code into the program [6]. Changes introduced by these transformations

obscure the proper control flow as the inserted code will appear as possible alternate

paths when, they have no purpose. This can be used to make the possible paths through

the program seemingly grow at an extremely high rate [6]. The bulk of transformations

we are concerned with in this research comes from the control category. These

transformations are Virtualization, Just-in-time Compilation (Jitting), Opaque Predicates,

Control-flow Flattening, and Encoding Arithmetic.

2.1.1.3.1 Virtualization is a type of ordering transformation that operates by

creating a unique virtual environment within the transformed software [29]. This is

accomplished by constructing an interpreter, usually in the form of a large switch

statement, that is complete with its own unique instruction set. After the interpreter is

created and placed within the software, target parts of the binary will then be transformed

from their original source into commands from the interpreters newly generated

instruction set [5].

Virtualization has shown to be quite effective against reverse engineering attacks

making it a popular option for software protection [30-33].

 15

2.1.1.3.2 Just in Time Compilation, called Jitting for short, is another

transformation of interest to us in the control category. As the name implies, this

transformation effectively adds dynamic compilation to the transformed program. When

the transformation is applied, target statements will be replaced by method calls unique to

that statement [7]. Unlike similar aggregate transformations, these functions do not

simply contain the original code, but instead contain code that will compile and load into

memory the original statement at runtime [34].

Figure 4. Control Flow Flattening [5].

2.1.1.3.3 Control Flow Flattening is a transformation that alters the flow of the

program by combining areas of code containing branch statements into one large

seemingly infinite loop [7]. This loop will be controlled by one segment of code, the

dispatcher, that will determine the next code block to be executed. This allows the

program to still be executed in the proper order despite the now flattened control flow.

Once the code has been executed properly, the dispatcher will terminate the loop on the

 16

next cycle, allowing the control flow to continue as normal [6]. Figure 4 shows an

example of source code before and after it has been flattened.

2.1.1.3.4 Opaque Predicates is a transformation that can be classified within the

control group as computational. When applied to code, multiple new branches will be

introduced at points, giving the appearance that the code now has multiple execution

paths in addition to the original [7]. The code comprising these branches is dummy code

that performs no action relevant to the program and will never be executed. The new

branch statements introduced for the paths will contain opaque predicates, predicates that

will always evaluate to the same value, which are crafted by the obfuscator to appear as

though they could be true or false [6, 35]. These dead branches can then not be

immediately ignored by reverse engineering tools and make processes such as

disassembly more difficult [6]. Figure 5 is an example.

Figure 5. Opaque predicate used to introduce bogus control flow [17].

 17

2.1.1.3.5 Encoding Arithmetic is a transformation which replaces mathematical

expression found in the source with longer, more complex calculations [6]. This a type of

aggregate transformation within this category.

2.1.2 Metrics for Obfuscation

In addition to semantic equivalence, a transformed program P’ must be satisfactory in

four other areas to be considered fully obfuscated [1]:

• Analysis and modification of P’ should require more time than the original

• Construction of automated tool to analyze P’ should be more difficult than the

original

• Increases to time and overhead should be minimal

• P’ should have the same statistical properties as the original [36].

These requirements are the basis for the metrics that are used to measure and compare

obfuscating transformations: potency; resilience; cost; and stealth [5, 6, 7]. The

requirements can be reworded and expanded to serve as informal definitions for the

metrics. Going further, three of the above metrics can be given formal definitions.

The first metric, potency, measures how difficult a transformation makes it to

understand obfuscated code as compared to the original. Put another way, potency is a

transformations impact on the complexity of the source code [5, 6, 7]. Complexity in this

scenario can be a measure of some aspect of the code or the performance of an analysis

done against the code. As this means complexity can be measured in multiple ways, it

becomes important to view the potency of a transformation with respect to the

effectiveness of a transformation [36]. We can describe effectiveness by modifying the

description of potency so that the effectiveness of a transformation is a measure of its

 18

impact on a given complexity metric. Potency can then be defined using effectiveness

such that the potency of a transformation is a measure of its effectiveness across a set of

complexity metrics.

To formally define effectiveness, let T be a transformation, P be a source

program, P’ be an obfuscated variant of P such that T(P)=P`, and C be a given

complexity metric for a program. The effectiveness of T, Teff, can be obtained by taking

the difference between C(P`), the complexity metric of P’, and C(P), the complexity

metric of P. Viewing this as a formula, Teff = C(P`) - C(P). Using this formula a

transformation can be labeled: effective if Teff >0, meaning it increased complexity;

ineffective if Teff =0, meaning there was no meaningful change; and defective if Teff <0,

meaning it decreased complexity [5, 6, 7].

Based on the definition on the formal definition for effectiveness, a

transformation T can be considered potent against a set of complexity metrics C if for an

obfuscated program P’=T(P), there is one or more Ci  C such that T is effective with

respect to P’ and the measurement of Ci, while for all other Cj  C (not equal to Ci), T is

not defective with respect to P’ and measurement using Cj. The potency of T, Tpotency, can

be viewed as the collective increase across all metrics in C [5, 6, 7]. In other words, a

transformation is potent if, with regards to complexity, it increases one or more metrics

while not decreasing any other metric, and a transformations potency can be measured as

the increase in all complexity metrics.

The second metric, resilience, can be informally defined as the strength of a

transformation against deobfuscation, via the use of an automated deobfuscator [5]. In

other words, it is a measure of how time and resource intensive it would be for an

 19

automated tool to deobfuscate a transformed program, undoing the transformation and

producing something equivalent to the original program. In addition, resilience also

considers the time and resources needed for an actor to create the tool. These two values

are called deobfuscator effort and programmer effort respectively, with effort being a

combination of time and resources [5].

With this description in mind, for a given transformation T and a program P, the

resilience of T when applied to P is found by the formula:

Tres(P) = Resilience (TDeobfuscator_Effort, TProgrammer_Effort)

 Resilience is a qualitative measure that uses a scale of trivial, weak, strong, full,

and one-way [5]. It should be remembered that all obfuscating transformations can be

undone with enough effort, meaning that even one-way transformations simply require an

extremely high amount of effort [20].

The third metric is cost, and it can be viewed as the simplest to understand and

define. Cost is defined as the overhead introduced by the transformation after it is applied

to the program [5]. It is a measurement of the added time needed to execute the program

and the space needed for the program. Transformation cost (Tcost) w.r.t program P was

formally defined as follows [36]:

dear if time/resources takes to execute P’ is exponential

costly if time/resources taken to execute P’ is O(np)

cheap if time/resources taken to execute P’ is O(n)

Free if time/resources taken to execute P’ is O(1)

Tcost(P) =

 20

The final metric is stealth. Stealth is defined as how well the transformed parts of

the code are concealed in the original code. In other words, how closely do the

obfuscations resemble the non-transformed areas of code [5]. Stealth is the only metric

without a true formal definition. This is due to the nature of stealth being hard to measure

and largely context sensitive.

2.2 Machine Learning

Machine Learning (ML) is an area of computer science that focuses primarily on

the automation of analysis for data sets of varying sizes [37]. Through this analysis,

models can be produced that reflect various relationships found in the data and can be

used to make decisions for new data [37]. This section is not intended to serve as a

complete overview of machine learning, but rather to provide a basic background and

reference. Terms explained in this section will be used throughout the remainder of this

dissertation. The following subsections will introduce the categories of machine learning,

the basics of data collection, and provide overview for the training and testing process.

2.2.1 Categories

ML can be divided into 3 broad and distinct learning categories: supervised,

unsupervised, and reinforcement. The main differentiation between the three categories

are the types of data that is needed/being used for analysis and the expected output [38].

Beyond that each category also has techniques and algorithms unique to that class and

well as different types of models produced at the end; though it is possible for models

produced by the different categories to be used for similar applications. We will briefly

 21

describe each of the categories, though for this research we are only concerned with

supervised learning.

2.2.1.1 Supervised Learning is used for the analysis of labeled datasets. Samples in

these datasets all have labels attached to them which represent the output that should be

obtained as a result of analyzing that sample [39]. The goal of supervised learning then is

to analyze the given samples of each label then learn how the features of those samples

resulted in them being given that label. The result of this is a model that can take in

samples and then properly label them, even if the samples were not part of the original

dataset. This process can be given one of two names depending on the nature of the label.

If the label places the sample into a category, group, or class it’s called classification.

Examples of classification are malware detection, translation, and spam filtering [40, 41,

42]. If the label represents a continuous numerical value, then it’s called regression.

Examples of regression include predicting an employee’s potential salary and predicting

the expected value of house [43, 44].

2.2.1.2 Unsupervised Learning, contrasting the previous category, is used for the

analysis of datasets comprised of samples with no labels. The common goal of this kind

of learning is to use a chosen similarity metric to find the distance between samples in the

set and then use this distance to create groups that can then be labeled [45]. This kind of

task is known as clustering. It is possible to use unsupervised learning to assist in the

training of other models [46].

2.2.1.3 Reinforcement Learning, is used to produce an agent that can act autonomously

within a given environment or to serve as a policy for creating planning and control

schemes [47]. To that end, datasets for this task take the form of “runs” through a

 22

simulation of the environment in question. Each sample in the set will take the form of

the sequence of actions taken in the run and the rewards that were received. Unlike the

previous methods, this kind of dataset does not need to exist prior to learning beginning.

The agent can be placed into the simulated environment and learn from scratch as it tries

new actions [48].

2.2.2 Phases

Machine Learning of any category can be broken down into three phases. These

are data collection, training, and testing. The following subsections will walk through

these phases and give a basic overview of each. As mentioned earlier, our research is

Figure 6. Diagram of a generic ML system. Arrows represent information flow [49].

 23

focused only on supervised learning so these sections will focus examples primarily on

that category. Figure 6 shows a general view of a ML system.

2.2.2.1 Data Collection primarily consists of gathering a large number of samples that

will be analyzed to form a dataset. The type and nature of this data will be dependent on

the problem that is being solved and the learning style being used [38]. For an application

of supervised learning, such as spam filtering, the dataset would consist of emails that

would be labeled as either “spam” or “not spam” [42]. A dataset for unsupervised

learning, such as one being used for anomaly detection, would consist of samples that

described events with no label attached to them [50]. The goal here would be to use ML

to find the events in the set that are outliers or anomalous. Finally, a dataset for

reinforcement learning that would be used to train an agent to play a video would be

playthroughs of the game made up the possible states of the game, what actions were

taken in those states, and the result of those action [47].

2.2.2.2 Training and Testing are the next two phases. The training phase is where the

data is analyzed to learn the model [51]. Generally, a ML model can be described as a

parametrized function that takes in a sample as input. The sample can be given to the

model in its original form, or it can represent as a set of features that describe the original

data. The output of this function is then the predicted answer for whatever question is

being asked or the value for a property of interest. The goal of the training phase is for

the learning algorithm that was chosen to find the correct parameters for the function

[51]. The parameters are determined based on the category of learning being used. For

supervised learning the parameters are modified so that the predictions of the model

 24

match the labels from the dataset. This is accomplished through a loss function which

gives a value for how dissimilar the models prediction is from the correct label [51].

After training is complete, the next step is testing. In supervised learning, this is

done by using the created model to predict labels from a test dataset and scoring its

performance. This test dataset is comprised of samples that were not included in the

training data. This is done to validate that the model can perform sufficiently on data that

was previously unseen.

2.3 Adversarial Machine Learning

As ML became more and more prevalent, it became clear that the reliance on

large amounts data at the training phases and the uncertain nature of new data at the

testing/inference phases presented unique security challenges [52]. Chief among these

was the potential for an adversary to manipulate the data to achieve a variety of ends such

as impacting performance, or the stealing of sensitive data previously seen by the model.

The study of theses security issues gave rise to the field of Adversarial Machine Learning

(AML). AML research focuses on the attacks used on ML systems and the capabilities

required for them; improving the design of and adding defenses in order the mitigate

those attacks; and the overall consequences of a successful attack [19, 52, 53]. AML is

not concerned with the study of flaws and biases that may impact a system as they are not

intentional attacks [49, 19].

 In this section we will first focus on describing the taxonomy of an AML attack

by examining the ML attack surface, the techniques available in AML, and the different

knowledge levels an attacker can have of a system. We will then provide more detail on

 25

Evasion Attacks, the type of attacks used in our work, as well as detail on the crafting of

adversarial examples. As defense is not relevant to our work, we will not be discussing

the various defenses used in AML.

2.3.1 Machine Learning Attack Surface

An attack surface is the different locations in a system that can be targeted by an

attacker. One goal of security is to try and keep the number of targets in systems attack

surface as low as possible as these targets can allow an attacker to manipulate input,

impact system functionality, or steal data [49]. While the attack surface of a specific ML

system will vary slightly based on the type of learning being used, purpose, and

implementation of the system, it is possible to model an attack surface for AML based on

the general design of an ML system and the ML pipeline [39, 19]. The NIST taxonomy

for AML attacks defines the attack surface (called ‘target’ in the taxonomy) using the ML

pipeline and identifies three target areas: physical domain, digital representation, and the

ML model [19]. Figure 7 shows the ML pipeline with these targets labeled.

The first attack target is the input portion of the physical domain. This would be

the inputs collected from sensors, users, or a data system. Following this, the next target

area is the digital representation. This is the portion of the pipeline where inputs that have

been collected are converted into the proper data form and then preprocessed before

being given to the ML model. The next target is the ML model in use and encompasses

the model being given the features taken from the input and producing an output. The end

of the pipeline is part of the physical domain attack surface just like the beginning but

deals with the handling of output by the system instead of inputs [19]. There is one more

 26

attack target not shown in the pipeline model and that is the data collection process as

well as the training stage of the model [19, 54].

Figure 7. ML pipeline with labels attack surfaces. The first row is generic while the 2nd

and 3rd rows are for specific systems [39].

Figure 8. Known attacks and attack surfaces on ML systems [49].

 27

A different description of the ML attack surface is given in [49] based on a more

detailed but still generic overview of an ML system can be seen in Figure 8.

Manipulation attacks are pictured in red at the site of attack: (1) data manipulation. (2)

input manipulation. (3) model manipulation. Extraction attacks are pictured in blue,

showing the flow of information: (4) data extraction. (5) input extraction. (6) model

extraction. Attack surfaces roughly correspond to gray plates: deployment, engineering,

and data sources [49]. While this model only has three target areas and was not created

specifically for AML, it does not contradict the NIST taxonomy and can be seen as

complimentary.

2.3.2 Techniques

After identifying the target area of the ML system, the next component of an

AML attack is the technique being used for the attack. The technique used in an attack

will be chosen based on multiple factors, namely the chosen target and goals of the

attacker. Techniques are generally classified first into two groups based on the target and

then into smaller groups based on the goal of the attack [49, 19]. The following

subsections will describe these two broad categories as well as the subcategories within

each. For this dissertation we will use the six categories from [49] and as shown on

Figure 8. Again, while not intended for AML, the subcategories generally used and as

shown on the NIST taxonomy fit well into these categories. We will briefly describe

categories and techniques but will not go into detail. Readers wishing to know more

about specific techniques are encouraged to view the NIST AML taxonomy [19] which

contains references for all recognized techniques.

 28

2.3.2.1 Training category techniques are used for attacks that target the data collection or

training phases of an ML system. All techniques in this category fall into the first

category of Figure 8. Also called “causative” and “poisoning” techniques, the goal of

attacks using these techniques is to corrupt or influence the model so that once trained it

behaves differently than what would be expected [55 ,56]. To accomplish this, techniques

operate on either the training data being used or tamper with the settings used for the

models training. The latter techniques are called Logic Corruptions and can modify the

ML algorithm in order to alter the entire learning process [57, 58].

 Attacking the training data is accomplished through either Data Injection or Data

Manipulation [19]. Injection techniques insert new data into the training set that has been

modified in some way so that it will cause the model to learn incorrect input output

mapping [59]. Manipulation techniques modify data that is already present in the training

set with the same end goals. The data introduced or modified as part of these two

techniques can accomplish the goals of the attack even if the data is simply noisy and not

malicious [60]. Models that continue to train after deployment, known as online models,

can be targeted by these techniques at initial training or after deployment [19, 54]. The

unique training nature of reinforcement learning has been shown to be vulnerable to these

types of attacks as well [61].

2.3.2.2 Inference techniques are all other techniques that target the model after it is

completed and deployed and are labeled inference techniques. Attacks using these

techniques are known as Exploratory Attacks, and do not tamper with or change the

target model and focus only on getting a chosen output or learning about inputs or

 29

training data [55]. Attacks using these techniques are the most often researched aspect of

AML [49, 19].

 The goal of changing a model’s output is accomplished via Evasion. Techniques

used for this purpose craft what is known as “adversarial samples” by modifying existing

samples using calculated noise in order to shift that sample across a model’s decision

boundary [62, 63]. Figure 8’s input manipulation category is the equivalent to evasion

techniques. Techniques used for Model Inversion, use the given output responses of a

model to learn information. This can be unseen inputs, data from the training set, or if a

given sample was part of training set [64, 65]. These techniques are part of groups 4 and

5 on Figure 8 depending on the type of information being gained.

The remaining techniques in this category are used for Model Extraction and

belong to group 6 on Figure 8. These techniques query the system under attack in order to

reconstruct the ML model using the information gained from the input-output pairs [66,

67]. Any technique in the Inference category can also be described Oracle Technique if

the only interaction with the ML system is the querying of chosen inputs and then

analysis of the outputs [19, 68].

2.3.3 Adversary Knowledge

 The last component for defining an AML attack is the knowledge possessed of the

ML system by the adversary [49, 19]. In this instance, the adversary’s knowledge also

encompasses the level of access they have to the system in question [63]. Much like

attacks in other security or analysis areas, attacks in AML are placed on a scale where

one end is an adversary having complete knowledge of an ML system, Whitebox Attacks,

 30

and the other end is an adversary with only the bare minimum of knowledge, Blackbox

Attacks [69].

 If an attack falls into the Whitebox scenario, an adversary can be assumed to

know any relevant information about the system to perform the attack to its full effect

[49, 19]. This can include knowing the nature of the training data used, specifics of how

the model was trained, the parameters found and used for the model’s function, the nature

and features of input data as well as output data, etc [19, 63, 69]. When viewing

Whitebox attacks from an access perspective, the adversary is assumed to have access to

any relevant step of the ML system [57]. It is possible for an attacker to obtain Whitebox

access to a deployed model through a variety of means such as reverse engineering the

deployed system [70].

 Blackbox scenarios on the other hand, involve attackers whose knowledge of the

system includes only the information which can be obtained from using the ML system

[58]. More specifically, Blackbox attacks are assumed at most to only have knowledge of

the output for certain inputs; however, the attacker’s knowledge of the inputs and outputs

is often still limited to the raw data going into the system and the systems provided

output. They may still lack knowledge of any changes performed on the raw data, and the

knowledge of the output is not assumed to include the actual output of the model, just the

system [63, 57, 58].

 In practice attacks often fall into a middle ground called Graybox Attacks, in

which the attacker has some combination of knowledge relevant to the attack [19]. Figure

9 provides an example of the aspects the adversary may need knowledge of for training

and inference techniques.

 31

2.3.4 Evasion Attacks

For the work done in this dissertation, we are concerned with the category of

attacks with the goal of evading the model. These Evasion Attacks, as mentioned

previously, are performed by feeding selectively modified inputs known as Adversarial

Examples (AE) that will cause the output of the model to be different than it would have

been for the original input [62, 71]. The changes made to these samples are known as

adversarial perturbations and act as noise to confuse the ML model by altering the

features the model will process [63]. While evasion attacks can be performed against

unsupervised and reinforcement learning, the most often studied attacks are shown

against supervised learning models, particularly those performing classification [49, 19,

72]. As our work is only concerned with classification, this section will only discuss

evasion attacks of that nature as well.

Figure 10 gives a visual example of various AE created for evasion attacks for

different kinds of inputs. The noise added to samples is determined the input-output

relationship of the model being targeted [55]. Finding the noise needed to create an

Figure 9. This figure shows the components of an ML system. Parts that can be attacked

by the two categories as well as what knowledge is generally required [39].

 32

adversarial example has been formalized as the minimization problem:

arg min f(x + r) = l s.t. x* = x + r ∈ D

 r

where x, an input correctly classified by f, is modified with some perturbations r, to

produce an adversarial sample x* that is part of the same input domain D but will now

appear as a new label l [73]. The attacker can either choose l or let it be any label other

than the original, resulting in the attack being targeted or nontargeted respectfully [74].

The type of analysis that can be performed is dependent on whether the attacker has

Whitebox or Blackbox knowledge of the model [75].

Figure 10. Four examples of adversarial inputs.

 33

2.3.4.1 Whitebox Evasion consists of attackers performing evasion attacks with

Whitebox knowledge can analyze varying aspects of the function f that represents that

ML model as well the parameters θ for that function [69]. This knowledge allows

different methods to be used to solve the problem for creating an AE, with this being the

primary difference between Whitebox attacks. The first techniques shown made use of

optimizers already in use in machine learning as the approximation to solve the problem

[76, 71]. Szegedy et al. used the L-BFGS optimizer and were the first to find that ML

models, including deep neural networks, were misled by r values that were not easily

seen by human observers [77].

 The remaining techniques make various assumptions to craft samples more

efficiently. The first of these techniques was the Fast Gradient Sign Method [78]. This

technique makes an assumption about the linearization of the model resulting in the

equation for making an adversarial sample:

x*=x+ϵ⋅sign(▽xJ(θ,x,y))

where J is the cost function used for f [78]. This technique has proven to highly effective

at crafting samples in a variety of instances [19]. Many other techniques that make other

assumptions or constraints have been created as well [63, 57, 71]. For instance, if there is

a need to place limits on the changes introduced via r, there are techniques for varying

levels of constraint [74, 79, 80]. The bounds placed on the changes allowed for a sample

are often determined based on the domain [70].

 In this research, we intend to utilize the Fast Gradient Sign Method (FGSM) and

the Carlini & Wagner Method (C&W) to generate adversarial samples [81]. We will

describe both methods in a later section.

 34

2.3.4.2 Blackbox Evasion. Many challenges arise when evasion attacks are attempted in

a Blackbox setting. Without knowledge of internals such as the gradient for the target

model, the methods used for crafting AE cannot be used [71]. The only guaranteed

information in this attack scenario is the output responses given by the system, which

makes these attacks similar to reconnaissance attacks used to probe a system for info

[58]. With this in mind, AML borrows the concept of an oracle from cryptography and

uses this to describe the most common type of Blackbox attacks. The oracle in these

attacks is the target ML system. The attacker can query the oracle with any valid input

and receive the output from the oracle but nothing else [58]. Even with this limitation,

oracle attacks are still effective as a large amount of information can be gained from just

observing the output [68].

 Methods used to craft adversarial examples via an oracle, are compared by the

amount information that gain be observed with respect to the number of queries. One

such method uses the weighted difference between x to x* associate a cost function with

transforming x to x* [82]. The problem then becomes finding the number of queries that

results in the lowest cost for the modification. This was shown to work well for

continuous values, such as those found in regression, but less so for discrete values, such

as labels for classification [83]. If the output given by the system is the probability of a

sample being a certain class, the number of details that can be recovered make crafting

AE easier. With this kind of output the features of a given sample can be modified using

genetic algorithms, where the fitness of samples is determined by the probability given by

the oracle [84].

 35

It was observed that if an AE created for a model was given as input to a different

model performing a similar function, then that AE would often be misclassified by that

model as well. This is known as the concept of adversarial transferability and has been

observed even on models that were trained on different datasets [62]. This led to concept

of the substitution attack model. In this model the attacker performs a model extraction

attack by querying the oracle with chosen inputs to have the oracle provide the proper

labels so that the attacker can construct a surrogate data set. The attacker then trains their

own ML model on this data set in order to produce a model with a similar decision

boundary [85]. Due to adversarial transferability, the attacker can then perform a

Whitebox attack against this new model to create samples to be used against the

Blackbox model. This attack has been shown to work with models trained on datasets not

labeled by the oracle but that are similar in nature [86].

2.3.5 Crafting Adversarial Examples

 As mentioned previously, we will be making use of the FGSM and C&W to craft

adversarial samples for this research. In this section we will introduce both methods and

explain their components and functions. Before this we will describe the machine

learning algorithm known as a Deep Neural Network (DNN) as it will be the primary ML

algorithm used in this work and describing it here will aid in the description of the two

AE crafting methods.

2.3.5.1 Deep Neural Network. A DNN is a neural network that consists of an input

layer, two or more hidden layers, and an output layer [37]. These layers are comprised of

neurons which are connected to the neurons of the layer preceding and following, with

the input layer having no preceding connection and the output layer having no following

 36

connection [38, 51]. The connections between neurons have varying weights associated

with them and all neurons after the input layer contain a chosen activation function [51].

When a sample is given to a DNN the different features of that sample are each given to a

corresponding neuron in the input layer, then sent along that neuron connections to the

neuron in the next layer. Values will be modified with the weight of the connections

between the neurons and will be used as input in the new neuron’s activation function

[37, 38, 51]. The value of that will then be sent to the next layer until the final values are

given from the output layer. Figure 11 shows an example of a DNN.

Figure 11. Example of a DNN. Output being the probability of the input being in one of

N classes [87].

 As a DNN is trained the weights of the connections are adjusted to accomplish the

model’s learning. For classification, the weights are adjusted by on a loss function that

compares the expected output to the given output and then adjusts the weights through

 37

backpropagation or another means. For classification task, the output layer will consist of

an equal number of neurons to the possible classes. Output is given in the form a

probability, with each neuron showing the probability that the input is of that neuron’s

respective output. This is sometimes called confidence.

 To align with the view of an ML used previously, we can view a DNN as a

composition of parameterized functions equal to the number of layers. The weights of a

layer’s connections form the parameters θ for that layer’s function. This allows us to

view our DNNs function as:

f(x) = fn (θ n, fn1 (θ n1, ... f2 (θ 2, f1 (θ 1, x))))

This large number of parameters and the common failure of neural networks to properly

generalize learning results in DNNs being vulnerable to most of the methods used to craft

AE [62, 78, 74].

2.3.5.2 Fast Gradient Sign Method. The FSGM is a method used to solve the

optimization problem of crafting AE using approximation [78]. FGSM creates AE using

the following function:

x*=x+ϵ⋅sign(▽xJ(θ, x,y))

where ▽xJ is the gradient of the loss function of a target model f, θ is the vector of all

parameters from f, and y is the correct label of input x. The sign of the gradient is then

taken and will return +1 if an increase in a feature will increase loss (the model’s error) or

-1 if a decrease in a feature will increase loss. This is then multiplied by the input

variation ϵ. This value controls the intensity of changes: higher values result in more

drastic changes to the sample while lower values are more subtle changes.

 38

2.3.5.3 Carlini and Wagner Method. The Carlini & Wagner Method is a way to

generate targeted AE that optimizes for misclassification while at the same time

minimizing the distance between the original sample and the generated AE [81]. This is

accomplished by limiting the scope of possible changes to the sample using a chosen

distance measure. The base formula for the is:

 min D(x, x*) s.t. C(x + δ) = t, x + δ ∈ X

where D is the chosen distance function, δ represents the noise added to the sample, C is

the objective function of a classifier, and t is the target class. The last part is a constraint

stating that the created AE cannot be changed so much that it is no longer a viable sample

from the set X.

 The formula is then expanded and modified in order make the optimization easier

and to solve issues related to the use of gradient analysis and the constraints of the

formula. This results in three distinct attack methods using either the L0, L2, or L∞

distance measures. For this work we choose to use the L2 distance. When using this

distance, the formula for finding δ is:

δ = 1/2 (tanh(w) + 1) – x

where tanh() is the hyperbolic tangent function and w is a variable that is optimized by:

min ||1/2 (tanh(w) + 1) – x||2 + c · f(1/2(tanh(w) + 1)

where c is a chosen constant greater than zero and f is the function:

f(x*) = max(max{Z(x*)i : i≠t} − Z(x*)t, −κ)

where κ is a chose value representing confidence and Z() is the models raw, unnormalized

class probability predictions for a given sample [81].

 39

CHAPTER III

RELATED WORK

Our research is based on foundational work done by several other researchers that

showcased using machine learning to identify obfuscating transformations applied to

programs. These papers described below.

3.1 Metadata Recovery from Obfuscated Programs Using Machine Learning

Salem and Banescu proposed and showcased the concept that a ML model could

be trained to perform metadata recovery on an obfuscated program [14]. Metadata

recovery is a process performed, generally manually, by reverse engineers that involves

analyzing an obfuscated program to identify the transformation used for obfuscation.

Salem and Banescu proposed that since transformations leave uniquely identifiable side

effects in programs, it would be possible to use ML to detect these changes [14]. Figure

12 is taken from the paper and gives an example of this idea. To the best of our

knowledge this was the first paper to showcase this idea.

To test their proposal, the authors used 2 datasets of C programs in a series of

classification experiments [14]. The first was a set a of 40 programs that consisted of

various implementations of mathematical functions, array operations, and other

operations that made use of a wide range of functions in the C language [88]. The second

 40

and larger dataset was a set of 1920 C programs generated using Tigress obfuscator [24].

The programs all shared a similar template but differed in the operations performed

within the program. Both data sets were then obfuscated using Tigress to produce

obfuscated variants. The second dataset was obfuscated using the default options for 5

transformations (1920*5=9605), while the second used a variety of options for the 5,

resulting in 39 variants of each program with some having to be discarded due to errors

(39*5-90=1470) [14]. All programs were then compiled using GCC to strip the symbols

table and relocation information and then again using GCC with default settings. This

results in two variants of each dataset for four datasets total.

Figure 12. Flowchart showing side effects in code. These can be used to determine the

transformation [14].

The features chosen for classification are the Term Frequency-Inverse Document

Frequency (TF-IDF) of the opcodes within the programs. The authors extract opcode

 41

both statically and dynamically giving each program two different feature sets. Two

different ML algorithms were used to create models from the data: Naïve Bayes and

Decision Trees [14]. The authors vary the hyperparameters for each, resulting in a total of

four different models (two Naïve Bayes and 2 Decision Trees) for each feature set [14].

Figure 13 from the paper outlines this process.

Figure 13. ML pipeline for [14].

Two experiments were performed in the paper. The first had the classifiers trained

using 10-fold cross validation, while the second experiment used training and test sets

with any variant of a program appearing only in one set [14]. This was performed with 10

different set variations with the accuracy being averaged. The results of these

experiments for both datasets can be seen in Figures 14 and 15. Overall, the experiments

showed that detection of obfuscation was feasible, provided that a program similar to the

one being analyzed had been part of the training set.

Another contribution of this paper was the Oedipus framework. Written in

Python, it is collection of scripts that makes use of various python packages and other

software that can be used to recreate the experiments performed in the paper [14].

 42

Figure 14. Classification accuracies for experiments 1 and 2 (in red). Using 40 self-

gathered C programs [14].

Figure 15. Classification accuracies for experiments 1 and 2 (red). Using 1920 random

programs [14].

3.2 ByteWise: A case study in neural network obfuscation identification

 Jones et al. proposed and showcased that a neural network could identify and

label the bogus control flow (BCF) of a program introduced as part of an Opaque

Predicate [17]. Based on the idea that transformations only insert or delete code, they

state that if a pattern exists across all of the inserted code in a program, then the inserted

code can be identified at the byte level. This differs from the previous paper which

focused on binary level analysis. The method and concept were based upon work done

using neural networks to identify the boundaries of functions in a compiled program [17,

89].

 To perform their approach, the authors create a variant of Obfuscator-LLVM

(OLLVM) which they refer to as an annotating obfuscator. The purpose of this obfuscator

 43

is to place unique markers within the basic blocks introduced as part of a bogus control

flow to make identifying the blocks easier [17]. The annotated binaries are only used for

the purpose of creating a labeled dataset. Every annotated binary has an accompanying

unannotated binary that is identical.

The authors use programs written in C that were obtained from GitHub as the

basis of their three datasets [17]. The three data sets are: Mono, containing 7 binaries

obfuscated with a BCF; Duo, containing 14 binaries with 7 having a BCF and 7 not

obfuscated; and Multi, containing 72 binaries with 7 having no obfuscation and the

remaining having some combo of BCF, Instruction Substitution, and Control-Flow

Flattening. For all three datasets the annotated versions are used to label the basic blocks

of the unannotated versions as bogus or not. Once a binary has had all its basic blocks

checked, a feature set is constructed with the values of the bytes from the basic blocks

labeled either bogus or not. Each of the datasets has one large feature set instead of each

sample having its own feature set.

Figure 16. Structure of the RNN model used for the paper [17].

 44

For the ML models, the authors train a recurrent neural network with a single

bidirectional long-short term memory (LSTM) layer, and an input layer that is one-hot

encoded [17]. This is shown in Figure 16 and this model is created for each of the 3

datasets.

Tests are then down for each of the dataset models and a final test is performed

for an ensemble of the mono and multi dataset models. The ensemble test has the two

models use confidence-based voting (the model with the higher confidence value in its

prediction wins) to determine if a byte is bogus. Four test sets are generated using a

different program from GitHub and used against each model and the ensemble. The

results of these tests are shown in Figure 17. Across all four tests the voting model

generally outperforms the other three, though often by a narrow margin [17]. These

results showcase the authors claim that BCF detection with a neural network is feasible

and could lead to automated code removal.

Figure 17. Results of BCF detection [17].

 45

3.3 Fine-Grained Static Detection of Obfuscation Transforms Using Ensemble-

Learning and Semantic Reasoning

 Tofighi-Shirazi et al. expanded upon the work done in [14] to account for the

layering of multiple obfuscations in a single program. In other words, they proposed and

showcased a method to detect multiple transformations that are present within a single

sample, as opposed to only detecting a single transformation [18]. They also showcase

that their method can be used to detect variants of transformations, causing them to label

their approach as fine-grained.

The dataset used for the experiments is identical to the dataset used in [14] and for

each experiment the authors perform the same two types of cross validation from that

paper as well [18]. The primary difference is in the features used for the samples and the

models created from training. Figure 18 outline the process used in the paper from data

extraction to training. The authors use disassembly to obtain the assembly instructions of

an obfuscated function, then convert from assembly into the intermediate representation

(IR) of the MIASM framework. Once converted, the IR instructions are then used to

produce a symbolic execution trace, the output of which is then normalized to remove

unique values and ID’s. This is done for every basic block in a function, with the output

of each basic block being the raw data for a file.

To handle the multi-label detection problem, the authors examine two different

ML methods [18]. The first is to use a single model to detect each type of obfuscation

present. This second approach is to use a chain of classifiers where each is only trained to

detect one type of classification and then gives its decision to the next classifier in the

chain, with the final classifier making its decision based on the input and the output of

 46

every preceding classifier. For both approaches, the authors also examine using an

ensemble classifier instead of a single model. All models used are decision trees and

random forest.

In the experiments performed, the models were able to achieve up to 91%

accuracy for labeling transformations and up to 100% accuracy for labeling variants of a

transformation [18]. Notably, the models performed much better in the experiments using

the variant training than the models from [14]. The results are promising but still show

room for improvement.

Figure 18. Design steps for detection system [18].

 47

CHAPTER IV

METHODOLOGY

The main goal of this research is to propose and investigate two approaches which

are called Adversarial Obfuscation and Obfuscation Expansion, which both make use of

adversarial machine learning to some degree to evade automated detection. Both

approaches will result in previously obfuscated programs that have been converted into

adversarial samples to evade automated detection. Programs modified in these ways will

have improved obfuscation stealth in the context of adversaries making use of machine

learning. In a series of three phases, we will demonstrate the evasion efficiency of both

methods while also comparing their impacts on obfuscation metrics other than stealth.

 In our first phase, we implement a suite of machine learning classifiers which

have been trained to detect and label obfuscation transformations. Each of these detectors

will be trained and tested on the same data set but using different feature sets to provide

diversity in the detectors. Next, we will begin using Adversarial ML to create sample

programs that are able to evade detection by some or all the classifiers. Samples will be

crafted based on both of our proposed methods. Generated samples will also be tested to

see if the changes made had significant impacts on obfuscation metrics. Lastly, we will

construct a tool will which automate the process of adding the changes of our proposed

 48

methods at the time of obfuscation in order to maximize the costs and benefits. This will

also be when we compare our proposed methods.

The work in this dissertation was done with the goal that each research question

forms the basis of one or more research papers. With that in mind, that subsequent

chapters for the three phases of our work are presented in paper format.

4.1 Dataset creation

For this research, we formed our dataset by first gathering a large quantity of

source code for a variety of C programs. It was important that we obtain source code for

these programs, as that would allow us to produce obfuscated variants. Our obfuscated

variants were produced using the Tigress and OLLVM obfuscators.

4.1.1 Dataset source

The C programs used to create our obfuscated variants are the same as the ones

used by Banescu et al in their obfuscation research, as well as other papers listed in our

related work. [95]. The programs in this dataset consist of:

1. A set of 48 programs with few lines of code constructed by varying code

characteristics such as: symbolic inputs, depth of control flow, number of loops,

etc.

2. Programs automatically generated by the RandomFuns transformation of the

Tigress C Diversifier/Obfuscator.

3. Non-cryptographic hash functions

4. Algorithms taught in Bachelor level computer science and programming courses.

 49

This brings us to a data set of 5,136 source c files. Figure 19 gives an example of

one of the programs from group 3, generated by Tigress.

Figure 19. Sample program generated by Tigress.

4.1.2 Obfuscations

We use obfuscators to apply various transformations in order to create a large set

of obfuscated programs. The application of obfuscation is done in two sets. For the first,

we apply only single transformations to the clean files. Every file is obfuscated with each

transformation to produce a number of variants equal to the number of transformations; a

 50

total of 8 variants per each original file. In addition to the 8 variants, some files were also

obfuscated to produce a JIT variant; however, not every sample was compatible with the

JIT transformation. This means that only some JIT transformed programs exist in our

dataset.

Then, for the second set, we once again obfuscate the clean samples, but this time

performing multiple transformation layered on top of each other. This produces a number

of variants equal to the number of chosen permutations. No layered variants involving

JIT were produced due to the complexity of the transformation.

Figure 20. Partial view of the script use to produce obfuscated variants.

After producing the obfuscated variants with Tigress and OLLVM, our data set

consists of over 100,000 programs split between both data sets. A list of the commands

for our obfuscators and the permutations used for the multi layered samples will be made

available.

 51

4.2 Detection Suite

Prior work [14, 17, 18] has shown that the detection of obfuscation is possible, to

the level of identifying the transformation in use, with machine learning. This phase will

involve the implementation of a suite such detectors. This will allow us to gain an

understanding of the current ability for obfuscation detection which will use a baseline

for evaluating the effectiveness of our proposed defenses. Each of these detectors will be

created differently, either relying on different machine learning models or feature set but

will all be trained on the same dataset as outlined from earlier research [14]. Table 1

outlines our proposed detectors as well as the feature sets and models used. While some

of our detectors will be based on related research, the rest will be created and

implemented for our work. We will implement two new detectors based on gadget and

image analysis, while also implementing a third based on opcode analysis from earlier

work [14] but with a support vector machine as the underlying model.

Table 1. Description of Classifiers.

Feature Set ML Models

Opcode TF-IDF Decision Tree, Naïve Bayes, SVM

IR Symbolic Trace Ensemble (Random Forest, Extra Tree)

Grayscale Binary Image Convolutional Neural Network

Binary Gadgets Decision Tree, Naïve Bayes, SVM

 52

The purpose of these new models is not only to expand the range of our detectors,

but also two determine the effectiveness of two new feature sets as well.

4.2.1 Gadget Based Detection

 Gadgets are chains of opcodes within programs that can be taken advantage of by

an attacker to cause a program to perform in a way other than intended even if the

program is protected from code execution attacks [90]. The last opcode in a gadget is

typically a return instruction that will be used to chain to the next gadget. As gadgets are

based on the opcodes within a program, and the obfuscations chosen for our research are

only those that would cause changes in opcodes, we reason that the programs in our

obfuscated dataset would have differing gadgets from their original counterparts.

Figure 21. Example of Gadget list from a binary.

 53

 The feature set for this detector will be the extracted gadget list taken from a

program. This detector will allow us to see if the distinct opcode changes introduced by

transformation will produce similarly distinct changes in the gadgets that are present.

4.2.2 Image Based Detection

 It has been shown that programs can be converted into images in order to be

analyzed [40]. In fact, this technique has seen successful use in malware detection [40].

This process is commonly done by taking the bytes of a program and having each of

those bytes represent a pixel in the formed image, producing a grayscale image that is a

representation of the original program [40]. Colored images can be produced by having 3

bytes of program represent the RGB values of a single pixel.

Figure 22. Two examples of a binary converted to a Grayscale image.

 54

We reason that since this technique has been successfully use for malware

detection, it can be used to identify obfuscations as well. Transformations alter the

opcode layout of a program in noticeable ways which we believe will be reflected in the

resulting image.

4.3 Evasion of Detectors

In the second phase, we will begin focusing on how we may modify obfuscated

samples in order to increase their stealth. In our context, we informally define stealth as a

samples ability to avoid detection by a machine learning based detector. This would mean

that decreases in the classification rate of our detectors equals an increase in the stealth of

our samples. From an adversarial view, increases in the evasion rate of our samples

equals an increase in the stealth of our samples. To accomplish this goal, we propose and

will explore two methods: Adversarial Obfuscation and Obfuscation Expansion. We will

determine the effectiveness of these methods by analyze the impact they have on the

baseline performance of our detectors determined from the previous phase.

4.3.1 Adversarial Obfuscation

Adversarial Obfuscation is what we are calling the process of transforming

obfuscated programs into adversarial examples made to evade detection by a machine

learning based detector. This is achieved by the application of Adversarial ML attacks

where we are acting as the adversary and the detectors are the models being attacked.

Due to this, this defense method follows heavily the general process outlined in earlier

 55

sections for creating adversarial samples. Some changes are required however for our

purposes. Figure 21 is a visual outline of this process.

Figure 23. Adversarial Obfuscation Process.

These changes are in relation to the requirements that after becoming adversarial

samples, the programs must still be functioning, and the obfuscating transformation must

remain intact with minimal negative impact to metrics. The first of these requirements

have been encountered before with the use of Adversarial ML to construct malware

samples that could evade detection [91, 92, 93]. This shows that there are workarounds

for this problem. The second constraint will require us to test the generated samples

potency, resilience, and cost against those of the original to see the impact the changes

have had [94, 28]. Using this, we will maximize our evasion potential while minimizing

the impact to metrics to produce adversarial samples that are functioning, evasive, and

obfuscated.

4.3.2 Obfuscation Expansion

We are calling our second proposed defense method Obfuscation Expansion. In

this method we will focus our analysis on identifying the features present in samples that

 56

result in their classification by detectors and then minimizing the uniqueness of those

features within the sample by “expanding” the code base. Figure 22 provides a visual.

Figure 24. Overview of Code Expansion Process.

We began with a program P that has been previously obfuscated. P has a set of set

of features F that will be extracted and examined by the detectors to classify the

transformation T used on P. This done using the relations the detector has determined

between the individual features in F and their relations to different T’s. In other words, if

the features in F from P relating to a given T are uniquely expressed from all other

features in F, P is considered to have been transformed using T. With this in mind, we

will expand the code base of P by introducing code that relates to features not associated

with the actual T using on the sample. This will mean that the features connected to T are

no longer unique within F. We believe this will result in misclassification.

In this research, we accomplish this by adding additional opcodes to the original

program. Even though two of our detectors are not based directly on opcode analysis,

both of their feature sets are derived from opcodes and therefore we believe they should

be affected by this method as well. We expect this method to increase the cost overhead

 57

of a transformation but with little to no impact on potency or resilience.

4.3.3 Impact on Obfuscation

 After samples have successfully evaded detection by one or more of our detectors,

we will analyze the samples to test for the impact our defenses have had on the

obfuscation present within the original samples. Since our proposed methods are either

modifying or adding to the existing code, we can expect this to impact the potency, cost,

and resilience of the transformation in some way. We will test our samples using

established ways to obtain these metrics to gain an understanding of these impacts [28,

94]. This will allow us to refine our defenses to maximize the increase in stealth while

minimizing the decreases to other metrics.

4.4 Automation and Comparison

Once the evasion experiments have been completed and our two proposed

modification methods can be properly applied to samples, we will construct a tool or

toolchain that will automate the process of creating samples with our modifications

applied. Ideally, we will construct a standalone tool capable of taking in an original

program that it will then obfuscate while applying either the Adversarial Obfuscation or

Obfuscation Expansion defenses at the choice of the user. If constraints prevent the

development of a standalone tool, we will instead create a toolchain that accomplishes the

same process using existing tools driven by software we create. There are two purposes

behind the automation of our defenses, enhanced speed of sample production and to aid

in additional research.

By automating the process of sample production outlined in phase 2, we will be

 58

able to produce many samples in a shorter period of time. This will enable to perform

more analysis on the impact our proposed defenses have on existing obfuscation across a

broader degree of programs. This will allow further fine tuning of our defenses. The

greater the number of samples we are able to analyze will also allow us to perform

comparisons of our two defenses, which will give us the answer to one of our research

questions. We will compare Adversarial Obfuscation and Obfuscation Expansion in

terms of evasion rate, potency impact, resiliency impact, and cost overheard in order to

gain an understanding of one method’s benefits over the other. If it exists, we will also

compare error rate, the rate at which our tool produces nonfunctioning samples of either

type.

The second benefit of automation is that it will make future research in this area,

either adjacent or furthering, easier to perform as the production of samples will not be

left wholly up the researchers. We believe that at the completion of this research there

will still be more avenues to explore so automation will allow faster exploration of those

new research threads.

 59

CHAPTER V

OBFUSCATION CLASSIFICATION

The following chapter details our research in using machine learning to perform

automated metadata recovery of obfuscated programs. We develop and evaluate a variety

of classifiers based on three different categories of features extracted from source

programs. Parts of the content of this section are taken from the paper “Machine learning

classification of obfuscation using Image Visualization” which was published in the

Proceedings of the 18th International Conference on Security and Cryptography [96].

5.1 Introduction

This research explores three types of features that can be extracted from

obfuscated programs for the purpose of training machine learning classification models.

These models can then be used to perform automated metadata recovery attacks, which

can give an adversary information about the type of obfuscation in place on program. The

feature sets we explore are:

• Opcode N-Grams: opcode sequences of varying length, taken directly from the

assembly code of a program.

• Gadgets: Sequences of opcodes used in Return-Oriented Programing attacks.

 60

• Code Images: Grayscale images created by using a program’s bytes as pixel

values.

We train and evaluate our models on a corpus of obfuscated programs, made

using the Tigress and OLLVM obfuscators. Our tests frame this as both a binary problem

through the use of many individual models as well as a multi label problem via a single

model. Both approaches are shown to be highly effective at classifying a transformation

in a program, even in the presence of multiple transformations in a layered fashion.

Our results show that all feature sets can produce models with an average f1-score

over %95 at identifying a single obfuscating transformation present in a file. Further,

opcode n-grams and gadget lists produce f1-scores at over %96 at labeling transforms

that are either layered or present at different points in a program. Our feature sets are also

used to produce models that can identify fine-grained features of an obfuscating

transformation. We make the following contributions with this research:

• The use of image analysis via code visualization and convolutional neural

networks as an avenue for performing metadata recovery attacks on obfuscated

programs. Code visualization allows for features of a program to be analyzed

without any reverse engineering of the program.

• We evaluate the effectiveness of supervised learning models trained on images of

obfuscated programs at classifying the transformation in use on previously unseen

samples. The evaluations are performed with both binary and multi label

classification models. Both approaches show a high accuracy across a range of

transformations.

 61

• We demonstrate that the analysis of obfuscated images has potential for higher

granularity by evaluating against samples with transformations layered one after

the other. High accuracy is maintained for these samples, despite the increase in

complexity.

• We evaluate the use of extracted gadget lists as a means of training supervised

learning models for the purposing of identifying transformations present in

binaries.

5.2 Background

In this section, we briefly describe the basics of a convolutional neural network,

which will be used in the methodology of this chapter.

5.2.1 Convolutional Neural Networks

When using images as input for a classification task it is important to properly

capture the spatial relationships of the pixels in the image [97]. While there are many

ways to achieve this, Convolutional Neural Networks (CNN) have become a popular

choice. Designed with images in mind, CNN are capable of learning from an image in

pieces in order to understand the whole [98]. This is done with one or more convolutional

layers. These layers learn move through sections of the image, learning a representation

of that section. Convolutional layers are followed by pooling layers, and CNN are then

comprised of one or more dense layers as is common of Deep neural networks. The use

of CNN for analyzing images led to them being applied for tasks such as malware

detection [99, 100].

 62

5.3 Methodology

In this section, we will introduce and walkthrough the methodology for this

research. An outline of our methodology can be seen in Figure 25.

Figure 25. Outline of Methodology.

We must first form the feature sets that will be used to train and test our models.

This will be for each of the three feature types: images, n-grams, and gadgets. After

extracting these sets, we then use them to train various models to label transformations

within programs. For training the models, we will make use of 10-fold cross validation

and also a variant known as functional cross variation. This difference between functional

and regular cross validation lies in the forming of the train and validation sets. In the

functional variant, no version of a sample can be a part of the validation set if another

version of that sample appears in the training set. All versions of a sample must appear in

the training or validation set.

5.3.1 Dataset creation

The dataset used in this research is described in Chapter IV. For the purpose of

our supervised learning, the labels used for the samples will be the obfuscating

 63

transformations used on the programs. The following sections describe each of the

feature extractions.

5.3.1.1 Image Creation. The basics of creating grayscale images from programs was

outlined in Chapter IV. When creating the code images, we have two versions of each

sample. Both sets are square images, with the height and width of the first being

determined based on the size of the program. The second set is generated with a width of

256 and a computed height. The height is then padded in order to produce 256 x 256

images of each program.

5.3.1.2 Disassembly. For our opcode n-gram feature sets, we need to obtain assembly

code from the c-source files. The typical way an adversary who does not have access to

source code would obtain this is by using a disassembler on the compiled program. This

would give them an assembly representation of the program, with perhaps a few errors.

While going this route would be the most challenging for out model and a more real

world setting for a malicious actor creating the model, we chose instead to get a programs

true assembly representation by having it outputted directly from the gcc compiler. This

can be done by using the “-S” flag and will cause the source file to go through

preprocessing and initial compilation but will stop before the assembler is ran.

We do this so that the models trained on this feature set are representative of a

worst-case scenario where an adversary has perfect or near perfect assembly output. This

is done since prior work has already explored using disassembly to train models for

labeling obfuscations, and so that this model will be more resistant to the detection

avoidance techniques employed later in this research. Figure 26 shows an example of

disassembly output.

 64

Figure 26. Sample assembly output.

5.3.1.3 Gadget Extraction. The final feature set is the gadget lists. The basics of gadgets

were explained in Chapter IV. The gadgets were extracted using the tool ROPGadget

[101]. Similar to the image feature set, there are two variants of each gadget list.

ROPGadget has option that removes duplicate gadgets from the list, leaving only one

gadget of each sequence of opcodes. We run ROPGadget both with and without this

option, to see the impacts of duplicates on the models during training and testing.

 65

5.3.2 Classifiers

This section details the classifiers used in this work and the feature sets used to

train each classifier.

5.3.2.1 CNN. For the supervised learning model developed from our image dataset, we

choose to use a CNN, as high accuracy has been observed from CNN when classifying

images made from malware samples. For our model architecture, we choose to use a

small model consisting of four convolutional layers which feed into two dense layers.

This is because models with this architecture and others similar to it have been shown to

be proficient at classifying the Malimg data set without requiring high degree of

resources. The specifics of our model can be seen in Fig. 27. Our input layer is shaped to

take in the pixel values of our images directly as opposed to extracting some feature or

aspect of the whole image. This is to see how much information can be obtained without

a high degree of preprocessing or prior analysis.

5.3.2.2 FCNN. Since programs can come in a wide range of sizes, we train and test a

Fully Convolutional Neural Network (FCNN). This FCNN is created by reimplementing

all the dense layers of our CNN as convolutional layers, with a number of filters equal to

the nodes in the dense layer and featuring 1x1 convolutions. The specifics of this model

can be seen in Figure 28. This style of model is commonly used in image segmentation

tasks and allows to process models of varying sizes, without any modifications.

 66

Figure 27. Figure showing CNN architecture.

 67

Figure 28. Fully Convolutional Neural Network Architecture.

 68

5.3.2.3 Opcode. For our opcode analysis, we construct three different types of classifiers:

Naïve Bayes (NB), Decision Tree (DT), and Support Vector Machine (SVM). All of

these models will be trained using the disassembly files as their dataset; with the feature

set being extracted opcode n-grams. An opcode n-gram is a sequence of adjacent opcodes

of length n. For this research, we extract three sets of n-grams of increasing lengths. The

first set consists only of 1-gram sequences; just normal opcodes. The second includes the

first set, as well as 2-gram sequences. The final set combines the first two and adds in 3-

gram sequences. We remove the operands and leave only the opcodes. For example,

given the disassembly [add, mov, jp, xchg, sub, ret]:

• 1st set: add, mov, jp, xchg, sub, ret.

• 2nd set: add mov, mov jp, jp xchg, xchg sub, sub ret, add, mov, jp, xchg,

sub, ret.

• 3rd set: add mov jp, mov jp xchg, jp xchg sub, xchg sub ret, add mov, mov

jp, jp xchg, xchg sub, sub ret, add, mov, jp, xchg, sub, ret.

While n-grams will be used as our features, Term Frequency-Inverse Document

Frequency (TFIDF) will be used as the feature values. TFIDF can be calculated as

follows:

𝑡𝑓𝑖𝑑𝑓(𝑤, 𝑑, 𝐷) = 𝑡𝑓(𝑤, 𝑑) ∗ 𝑖𝑑𝑓(𝑤, 𝐷)

𝑡𝑓(𝑤, 𝑑) = 𝑙𝑜𝑔⁡(1 + 𝑓(𝑤, 𝑑))

𝑖𝑑𝑓(𝑤, 𝐷) = ⁡log⁡(
𝑁

𝑓(𝑤,𝐷)
)

With w being the n-gram, d being a single document, D being the entire dataset, N

being the number of samples in the dataset, and the functions being the frequency of the

 69

n-gram within the sample and a dataset. Our three classifiers will each have three

variants, based on the feature set used for training. This is done to examine the

importance of sequence length to metadata recovery. As a final step before training,

feature selection is performed using chi-squared [102]. Anything with a p-value below

95% is removed from the feature set.

5.3.2.4 Gadgets. Our gadget dataset will use the same classification algorithms as our

disassembly. This is due to the fact that gadgets can be viewed as a type of opcode

sequence. Since the gadgets are in order based on the location of the first opcode in the

sequence, we still use the same n-gram sets as discussed previously. For example, given

the gadgets [add add jmp, add jmp, add test je call] our sets would be:

• 1st: add add jmp, add jmp, add test je call

• 2nd: (add add jmp, add jmp), (add jmp, add test je call), add add jmp, add jmp,

add test je call

• 3rd: (add add jmp, add jmp, add test je call), (add add jmp, add jmp), (add jmp,

add test je call), add add jmp, add jmp, add test je call

Much like with the disassembly, we remove the operands and leave only the

opcodes in the gadget sequence.

5.4 Results

This section details the results of the methodology described in the previous

section. Each of our models will be trained and evaluated using functional cross

validation. The reported value for testing is the models f1-score.

 70

5.4.1 CNN

Table 2 shows the results of our CNN classification test. The results are separated

based on the number of layers present in the samples used for training and testing. This

was done so to examine the impact of layering on our image analysis and to see what the

changes in accuracy were across the range of transformation during layering. This model

was trained and tested on the images that were padded to 256x256 squares.

Table 2. F1-scores of CNN model at differing layers.

 1-layer 2-layer 3-layer 4-layer 5-layer

Flatten 99.5 98.2 95.7 91.1 85.4

Virtualize 100 99.2 95.2 92.7 85.7

Encode L. 99.1 97.3 90.6 83.4 75.3

Encode A. 99.7 97.9 94.1 90.7 86.9

Opaque 99.6 96.4 89.3 82.8 75.4

5.4.2 FCNN

 Table 3 shows the results of our FCNN training and testing. The training setup for

this network was identical to the previous network. The only difference is with the

training and test data. This model was trained on the images produced at algorithmically

determined square sizes.

5.4.3 Opcode

 For our opcode-based classifiers, we train three groups of classifiers with each

group having three variants of the same type of model. The three variants are the ones

based on the different lengths of n-grams discussed previously. The three models in

question are decision trees (specifically a Gini tree), naïve bayes, and a support vector

 71

machine. Tables 4, 5 and 6 show the different classification results for the single layer

samples, while Tables 7, 8, and 9 show the results for the multi-layer samples.

Table 3. Classification f1-scores for fully convolutional model.

 1-layer 2-layer 3-layer 4-layer 5-layer

Flatten 70.2 68.3 67.2 63.5 69.3

Virtualize 72.4 68.3 64.2 62.9 61.8

Encode L. 73.9 68.3 66.2 63.2 62.1

Encode A. 78.2 71.2 67.5 65.7 65.4

Opaque 69.1 69.5 67.1 64.1 59.2

Table 4. Naive Bayes single layer results.

 1-GRAM 1,2-GRAM 1,2,3-GRAM

FLATTEN 98 99 99

VIRTUALIZE 99 100 100

ENCODE L. 98 100 98

ENCODE A. 100 99 97

OPAQUE 95 93 90

Table 5. Naive Bayes multi-layer results.

 1-GRAM 1,2-GRAM 1,2,3-GRAM

FLATTEN 50 47 48

VIRTUALIZE 86 86 83

ENCODE L. 72 74 71

ENCODE A. 83 84 83

OPAQUE 50 47 48

 72

Table 6. Decision Tree single layer results.

 1-GRAM 1,2-GRAM 1,2,3-GRAM

FLATTEN 99 99 99

VIRTUALIZE 99 100 100

ENCODE L. 99 99 99

ENCODE A. 99 99 99

OPAQUE 99 100 99

Table 7. Decision Tree multi-layer results.

 1-GRAM 1,2-GRAM 1,2,3-GRAM

FLATTEN 98 98 98

VIRTUALIZE 99 99 99

ENCODE L. 98 98 98

ENCODE A. 99 99 99

OPAQUE 99 99 99

Table 8. SVM single layer results.

 1-GRAM 1,2-GRAM 1,2,3-GRAM

FLATTEN 100 100 100

VIRTUALIZE 100 100 100

ENCODE L. 100 100 99

ENCODE A. 100 100 100

OPAQUE 99 100 99

Table 9. SVM multi-layer results.

 1-GRAM 1,2-GRAM 1,2,3-GRAM

FLATTEN 99 100 99

VIRTUALIZE 99 100 99

ENCODE L. 98 100 98

ENCODE A. 99 100 99

OPAQUE 98 100 98

 73

5.4.4 Gadgets

Tables 10, 11, and 12 show the classification f1-scores for our models trained and

tested on gadgets lists from our obfuscated samples. These models were formed the same

as the opcode n-gram models.

Table 10. Naïve Bayes single layer results.

 1-GRAM 1,2-GRAM 1,2,3-GRAM

FLATTEN 99 100 99

VIRTUALIZE 100 100 100

ENCODE L. 100 100 99

ENCODE A. 99 99 99

OPAQUE 99 99 99

Table 11. Naive Bayes multi-layer results.

 1-GRAM 1,2-GRAM 1,2,3-GRAM

FLATTEN 97 96 99

VIRTUALIZE 100 100 100

ENCODE L. 98 97 97

ENCODE A. 97 95 96

OPAQUE 93 91 91

Table 12. Decision Tree single layer results.

 1-GRAM 1,2-GRAM 1,2,3-GRAM

FLATTEN 99 99 99

VIRTUALIZE 99 100 100

ENCODE L. 99 99 100

ENCODE A. 99 100 100

OPAQUE 99 99 99

 74

Table 13. Decision Tree multi-layer results.

 1-GRAM 1,2-GRAM 1,2,3-GRAM

FLATTEN 99 99 99

VIRTUALIZE 99 100 100

ENCODE L. 99 100 99

ENCODE A. 99 99 99

OPAQUE 99 99 99

Table 14. SVM single layer results.

 1-GRAM 1,2-GRAM 1,2,3-GRAM

FLATTEN 99 99 99

VIRTUALIZE 99 100 99

ENCODE L. 99 99 99

ENCODE A. 100 100 100

OPAQUE 99 99 99

Table 15. SVM multi-layer results.

 1-GRAM 1,2-GRAM 1,2,3-GRAM

FLATTEN 99 100 99

VIRTUALIZE 99 100 98

ENCODE L. 98 100 99

ENCODE A. 98 100 99

OPAQUE 99 100 99

5.4 Discussion

We will discuss our groups of models in the order that they were tested. Our CNN

model was shown to be highly accurate on single- and two-layer samples, scoring over

97% for each transformation. However, beginning with the 3-layer samples, we started to

see a drop in performance. This is most likely due to the transformations serving to hide

each other from the type of analysis being performed. The most recent transformations

 75

are obscuring the ones that were applied first, meaning that the information was not

extracted via the pixel values. We can notice with these results however that we can gain

a glimpse of which transformations are ‘heavy’ or that are harder to hide. The

transformations that dropped in classification performance faster are lighter

transformations. Our other CNN, the FCNN, did not successfully trained and can be

viewed as a failure.

The second group of classifiers, the opcode-based models, performed above

expectations. Both the decision tree and svm model sets-maintained scores above 98%

across all n-gram sizes and independent of multi or single layer samples. The only model

to underperform is the Naïve Bayes model. While it kept pace with the other models in

the single layer, it was unable to properly classify multi-layer samples.

The last model set, the gadget-based models, was the highest performing set. Each

model was capable of reaching a score of 100% for certain transformations in both single

and multi-layered settings.

When compared to related work discussed in Chapter III, our models performed

comparably. This shows that we can be confident in moving forward with these models

in upcoming work.

5.5 Future Work

Our current course with this work falls along 2 paths: feature set

exploration/refinement and increasing the granularity of our ML models. In combination

with related work, five feature sets have been shown capable of training models for

automated metadata recovery [14,17,18]. Exploration of other feature sets will broaden

 76

range of models that can created for analyzing software. More feature sets also allow for

models that can cover gaps and capabilities presented by other models. This will help us

to further understand the level of metadata that can be automatically extracted.

The second path is concerned with increased granularity of our attacks. In this

work, we showcased the ability to determine the types of transformations used on a file,

as well as certain information about that transformation. Further increasing the

granularity could potentially allow for all aspects of a transformation to be learned,

giving analysts a much greater ability to perform deobfuscation tasks. Our immediate

goal on this path is the ability to label the bytes of a program that are part of a given

transformation.

5.6 Conclusion

In this section, we have proposed and evaluated methods for automated labeling

of obfuscating transformations applied to software, via three unique feature sets: Code

visualization, Opcode N-grams, and Gadgets. A range of supervised learning models

produced using these sets were able properly perform metadata recovery attacks and

identify the types of transformations that had been applied to the file. For code

visualization, our models produced f1-scores above 96% when presented with files

containing only a single transformation. While the models scores did begin to drop as

layered transformations were introduced into training and testing, most transformations

could be identified with a score over 90% in the presence of four transformations layered

over each other.

 77

Models produced on our other two feature sets outperformed our image-based

models in our various tests. Both opcode and gadget-based models were able to identify

single transformations at 98%, with layered transformations only dropping to 95% across

all transformations. This shows that gadget analysis is an effective feature set for

obfuscation analysis along with opcodes and images.

 78

CHAPTER VI

EVADING OBFUSCATION CLASSIFICATION

The sections in this chapter detail our efforts to improve the stealth of obfuscating

transformations in order to deter automated metadata recovery attacks.

6.1 Adversarial Machine Learning

The research in this section makes use of adversarial machine learning in order to

modify obfuscated programs into functional adversarial examples (AE). These modified

programs are harder to classify for certain types of models without requiring extensive

modification of the program.

6.1.1 Introduction

This research introduces and explores the process of Adversarial Obfuscation; a

method of creating functional adversarial examples from obfuscated programs and AEs

generated from adversarial machine learning algorithms. In the same vein as adversarial

attacks in image analysis, AEs of obfuscated programs are executable binaries that have

been modified with the purpose of evading a supervised learning model. Unlike natural

images, these binaries cannot be changed freely, as they must preserve the original

functionality of the program.

 79

We present a process of creating executable adversarial examples from obfuscated

binaries, by making minimal modifications based on computed distance between the

original and a non-executable AE. This approach is extended from related work target at

crafting AEs from malware binaries, in order to be used in the multi-class/multi-label

space of obfuscation detection. We dub this modified approach as “Adversarial

Obfuscation.”

We report the misclassification rate of our adversarial obfuscated binaries against

a suite of supervised learning classifiers, many of which were shown in Chapter V. We

craft and test our samples using both single and multi-layered obfuscation samples.

The main contributions of this work are as follows:

• We present an approach for generating adversarial obfuscated binaries and for

algorithmic dead code insertion using code images.

• We show that our adversarial obfuscated binaries are effective in black box

attacks via adversarial transference.

• We explore the effectiveness our method against classifiers that do not make use

of image analysis.

• We compare samples generated using our method against the approaches of

instruction substitution and random dead code insertion.

6.1.2 Executable Adversarial Examples

Unlike natural images, there is an additional hurdle to consider to when creating

adversarial examples (AE) from programs; the resultant AE must remain a functional

program that is semantically equivalent to the original. This means that the noise

introduced by adversarial ML algorithms cannot be used as is and must be modified or

 80

adapted in some way, in order to be usable. The modifications however must still enable

to program to function as an AE. This problem has been explored before in research

focusing on the creation of AE for malware [103 - 105]. Some methods focus on limiting

the changes to parts of the program outside of the .text section. In other words, the non-

executable parts of the program. The problem with this method is that it is ineffective on

any analysis that only focuses on executable portions. For example, if a model’s

preprocess involves the removal of the program header or the .data section.

Another approach that has seen success is inserting semantic NOPs into a

program in order to form an AE [106]. This method involves first creating a non-

functioning AE and measuring the distance between the original and the AE. Semantic

NOPs are then inserted to minimize the distance between the original and the AE.

Samples produced in this way have been shown to be effective and the changes are not

limited to certain portions of the program. This is the approach we will be taking in this

work.

Figure 29. Basic nop insertion.

 81

6.1.3 Methodology

This section explains the methodology used in this portion of our research. We

continue to make use of the same dataset introduced and used in the previous chapters.

We also use the classifiers created in Chapter V as the targets for our evasion attacks. We

begin by taking an obfuscated program whose transformation(s) can be correctly labeled

by our classifiers. We then put this program through the process of Adversarial

Obfuscation. An overview of this process can be seen in Figure 30.

Figure 30. Adversarial Obfuscation overview.

We begin by transforming our sample into an image and producing an AE using

the Fast Gradient Sign (FGSM) and Carlini-Wagner (CW) methods. We use our binary

neural networks in order to perform these attacks. After the AE is created, we measure

the distance between our original and the AE. The original sample then goes through a

round of guided insertion of semantic NOPs. The goal of these insertions is to reduce a

distance metric and bring the original sample closer to the AE. If at the end of the

insertion round, the original sample is still not sufficient as an AE, a new AE is generated

by CW using the modified sample and another round of insertion begins. After the final

 82

round of the process, the original sample will have been modified into a semantic

preserved AE.

In addition, we also perform distance comparisons on variants of the same sample

produced by different obfuscating transformations. This is to explore the possibility of

generating an AE using a different variant instead of a non-functioning AE.

6.1.3.1 Distance Comparisons. We will measure the distance both between the various

transformations, as well as between the function and nonfunctional examples during

adversarial obfuscation. Distance can be viewed as the measure of similarity between two

points. To measure distance, we explore the use of four different equations: L1-norm

(Manhattan distance), L2-norm (Euclidean distance), structural similarity image measure

(SSIM), and binary distance (BD). These equations can be seen below. The L1 and L2

norms are common distance metrics, and the L2-norm will be used as part of our CW

attack to generate AEs.

𝐿1(𝑎, 𝑏) = |𝑎1 − 𝑏1| + ⋯+ |𝑎𝑛 − 𝑏𝑛|

𝐿2(𝑎, 𝑏) = ⁡√(𝑎1 − 𝑏1)
2 + (𝑎2 − 𝑏2)

2 +⋯+ (𝑎𝑛 − 𝑏𝑛)
2

𝑆𝑆𝐼𝑀(𝑥, 𝑦) = ⁡
(2𝜇𝑥𝜇𝑦 + 𝑐1)(𝜎𝑥𝑦 + 𝑐2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝑐1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝑐2)

𝐵𝐷(𝑥, 𝑦) = ⁡∑{
0⁡⁡⁡⁡𝑥[𝑖] = 𝑦[𝑖]
1⁡⁡⁡⁡𝑥[𝑖] ≠ 𝑦[𝑖]

𝑛

𝑖=0

SSIM was created as a method for predicting the perceived quality of digital

television. It measures the amount of noise between two images and reports that as

 83

similarity. We treat this similarity as distance. Binary distance is used specifically for

measuring the distance between two binary vectors. Each bit of the vectors is compared,

if they are different then the distance is increased by one. It should be noted that all of the

given distance metrics require the objects being measured to be of equal size or length.

6.1.3.2 Adversarial Obfuscation. The following section details the Adversarial

Obfuscation process. This process is used to modify obfuscated binaries into functional

adversarial examples.

6.1.3.2.1 Generating adversarial examples is the first step in the process. We

generate our adversarial examples using FGSM and CW using the binary neural networks

created in Chapter V as the targets. We use the binary neural networks as it makes

creating samples for the multi-labeled programs significantly easier. We begin by

applying multiple passes of FGSM to the code image. This is done as FGSM is not a

computationally intensive process. This allows us to quickly generate an AE in order to

significantly drop accuracy.

After FGSM has been applied, we use the L2-attack of CW to achieve the desired

evasion rate for the AE. The CW attack can make more subtle and impactful changes to

the image, but it is much slower and more computationally heavy. This is why it is done

after multiple rounds of the. FGSM This gives us our final non-functioning AE.

This AE is then compared to our original binary using the binary distance metric.

With both transformed to binary vectors, we begin traversing through the original binary.

Making use of a list of insertion points, locations where a semantic nop can be inserted

without changing the original semantics, at each point the algorithm compares the change

in distance caused by inserting the various semantic nops. Distance is measured from the

 84

current insertion point to the end of the binaries. The nop that has the greatest reduction

in distance is inserted and the algorithm continues. If no nop reduces distance, then

nothing is inserted. As nops our inserted, our original binary will be longer than our

adversarial example. The binary will be padded at the front with zeros, as padding the

end would impact the distance measure.

At the end of this process, the modified binary is put through the original

classifier. If the sample is misclassified, then the algorithm is a success. In the event that

the sample is still not misclassified or a desired probability value from the model is not

achieved, the modified exampled can be used to create a new AE using Carlini-Wagner

and the process will begin again. We call the process Adversarial Obfuscation (AO) and

introduce it as a variant of Adversarial Malware Alignment Obfuscation (AMAO) [106].

Figure 31. Waterfall version of Adversarial Obfuscation. n = the number of obfuscations

or target obfuscations.

In the event that the binary possesses multiple obfuscations, or a targeted attack is

desired (making the binary appear to have a transformation it does not), the waterfall

variant of AO is used. This a lengthier process that sees the sample going through the

traditional AO process with each label, being fed back into the previous classifiers after

each successful completion. By the end of the process, it will achieve the desired labels

as an adversarial example.

 85

6.1.3.2.2 Semantic nops, also called dummy or dead code, are code sequences

that do not affect the program logic. These sequences are named after the nop opcode.

These nops can be inserted into a program to modify the makeup of the program in a

semantic preserving fashion. Nops can vary in length but in this work, we deal mainly

with nops consisting mainly of 1 – 2 instructions. Our list of nops can be seen in Table 16

[107].

Table 16. Semantic NOPs.

mov edi, edi mov bx, bx xchg ecx, ecx add 0, rax

xchg ebx, ebx xchg bx, bx xchg edx, edx and eax, eax

xchg cx, cx sub 0, eax mov bl, bl and edi, edi

push rax; pop rax mov esi, esi nop nop DWORD PTR [eax]

push rbx; pop rbx mov al, al xchg ax, ax nop DWORD PTR

[eax+eax*1+0x0]

mov ax, ax push rcx; pop rcx mov cx, cx nop DWORD PTR

[eax+0x0]

6.1.3.3 Using on Each Classifier. To test the effectiveness of our generated samples, we

attempt to classify them with a variety of models. We evaluate in both a white-box and

black-box setting. In our white box attack, we use a new CNN capable of classifying the

samples as the means to generate the AE. This CNN is shown in Figure 32. After going

through AO the samples are fed back into the same model.

In our black-box attack, we attempt to classify the samples with new CNNs. This

would constitute a substitution attack. Our CNNs for this attack consist of one new CNN,

the CNN from the previous chapter, and the InceptionV3 neural network [108].

InceptionV3 is included to test against a large and robust network.

 86

Figure 32. Architecture of CNN used to generate AEs.

 87

We also classify the samples with the opcode n-gram and gadget classifiers from

the last section as well. We do not expect the samples to be very effective against these

models, but they are included to examine the overall effectiveness of our approach. For

these models, we choose to test against only the 1,2-gram multi-layer models.

6.1.4 Results

 The following tables showcase the results of the experiments performed in this

section. For this test, we randomly selected obfuscated samples, both single and multi-

layered, to be used in the creation of our adversarial examples. We begin by generating

these samples for a nontargeted attack. Table 17 shows the classification results against

our models, with the score for random insertion being presented as range, due to the

attack being carried out multiple times. For multilayer samples, we make use of the

waterfall model to evade all relevant classifiers. For the CNN score, this is an average

obtained from all of the layered models. Only the model labeled CNN1 is a white box

attack as this model was used to generate the samples.

Table 18 shows the results of applying our waterfall model to produce targeted

attacks. We perform these attacks on both single and multi-layer samples. We generate

samples to have up to 5 targets. We carried out this attack against CNN 2 and CNN 3.

6.1.5 Discussion

 Our results show that adversarial examples created from our Adversarial

Obfuscation approach are capable of successfully evading obfuscation detection systems

based on image analysis. Our generated samples reduced the f1-scores of three

Convolutional neural networks with different architectures to 0 and impacted the score of

the InceptionV3 model. Our approach was also effective at creating examples for targeted

 88

attacks. The same level of impact was achieved and was maintained even when a sample

was made to target multiple classifiers.

Table 17. Classification results for Adversarial Obfuscation.

 Original Adversarial
Obfuscation

Random
Insertion

CNN 1 90.8% 0% 25-35%

CNN 2 89.4% 0% 25-35%

CNN 3 89.7 0% 25-35%

InceptionV3 90.3% 31.5% 55-65%

Decision Tree (1,2-
gram)

99.4% 61.5% 70-90%

Naïve Bayes (1,2-
gram)

70.1% 53.7% 40-60%

SVM (1,2-gram) 99.2% 74% 70-90%

Decision Tree
(gadget)

99% 99% 99%

Naïve Bayes
(gadget)

98% 98% 98%

Naïve Bayes
(gadget)

99% 99% 99%

Table 18. Results for Targeted attacks.

 1-layer 2-layer 3-layer 4-layer 5-layer

Flatten 0 0 0 0 0

Virtualize 0 0 0 0 0

Encode L. 0 0 0 0 0

Encode A. 0 0 0 0 0

Opaque 0 0 0 0 0

 Outside of the CNNs, the generated samples were shown to have an effect on the

opcode-based models but not to the same degree. We can assume the reason for this is

 89

that these samples were created from our CNNs which, while they do take into account

opcodes through the pixel values, are also concerned with the spatial aspects of the image

itself. Our opcode classifiers would most likely be more effected by methods that focus

on increasing counts or other derived metrics.

 Our adversarial examples had the least effect on the gadget-based classifiers. This

is due to the inserted code being semantic nops. Since the code is functionally “dead” it

was unable to make any changes to the gadget list of a sample. While this means that the

accuracy of these classifiers is unaffected, we do not view this as a failure as increasing

the gadgets present in a program is by no means an improvement to a program’s security.

6.1.6 Future Work

The future work for this research, involves broadening the scope of the attack

outside of classifiers that rely on image analysis. As seen in our results, models that do

not take any information specific to image analysis will only have minor impacts and

even then, only after large changes. We believe that this attack can be expanded to

include means of attacking those types of models as well, either through larger, more

involved code insertion or by adding additional methods of modification to the process.

6.1.7 Conclusion

In this section, we have proposed and evaluated an extension to existed methods

for creating functional adversarial examples for from software binaries. This modified

algorithm, which we call Adversarial Obfuscation, was capable of using distance

measurements and semantic nop insertion in order to construct adversarial examples from

obfuscated programs. These adversarial examples were shown to be effective at reducing

the classification accuracy of CNN that rely of code image analysis. We showcased the

 90

effectiveness of this algorithm in both a white and black box setting, with our samples

able to reduce the accuracy of our models under attack to as low as 0%. Even the more

robust InceptionV3 model was brought below 50% in a black box setting.

We further showed that our approach is effective on layered obfuscations as well,

with our models misclassifying samples with 2 or more transformations present. This

approach was extended to successfully perform targeted attacks as well, both for single

and layered transformations.

6.2 Opcode Expansion

 This section introduces and analyzes our opcode expansion approach to defeating

automated code analysis. This approach involves algorithmically adding opcodes to a

program in order to modify the feature set of the program. This can be viewed as a

specific variant of adversarial example crafting.

6.2.1 Introduction

This research introduces and explores the process of opcode expansion. A method

of modifying the opcode composition of an executable in order to deter metadata

recovery attacks using machine learning. As shown in the previous section, traditional

adversarial example creation methods based on image analysis, may not be as effective

when transferred to other supervised learners that make use of different feature sets, such

a pure opcode n-gram. Much like the methods shown in the previous section, the goal of

this approach is to modify the samples via guided dead code insertion, to produce a

semantically equivalent program that has improved stealth against machine learning.

 91

The core of opcode expansion is to selectively add segments of dummy code into

a program in order shift the feature sets derived from opcodes, either in a given direction

for a targeted attack or just away from the original in an untargeted attack. We explore

three approaches for expansion: Uniform, Profile, and Target. We evaluate the

effectiveness of this method by attempting to classify the generated samples with our

suite of supervised learning classifiers. Two of our methods are black box attacks, while

one is white box but can performed in the same style as a substitution attack. As before,

we test this method on both single and multi-layered obfuscations.

We make the following contributions:

• We evaluate the approach of Opcode Expansion, a method for generating

adversarial obfuscated binaries and for algorithmic dead code insertion.

• We show that our expanded binaries are effective in black box attacks via

adversarial transference.

• We explore the effectiveness our method against classifiers that make use of

image analysis.

• We compare samples generated using our method against the approaches of

instruction substitution and random dead code insertion.

6.2.2 Methodology

The methodology for this research was introduced in Chapter IV, and we

elaborate on it further in this section. The goal of our expansions is to alter the count, or

other derived statistic, of opcodes within a program to predetermined levels to decrease

the effectiveness of automated metadata recovery. To expand the code, we insert dead

code segments of varying lengths. We first obtain the assembly of our obfuscated c

 92

source files in the same manner as Chapter V. For our uniform expansion, we insert code

to ensure that the metric in question for all opcodes are equal. For profile expansion, we

must first profile the various obfuscating transformations and then use the profiles to alter

the opcodes of our files. Our last expansion type is guided expansion, and it will be

detailed in a later section.

For our expansion, we expand both specific opcodes and opcode groups. Opcodes

in x86 are divided into four groups:

• Arithmetic: the mathematic instructions such as add, sub, and multi.

• Data: the instructions that deal with processing of data such as mov, load, pop,

and push.

• Control: instructions that handle the control flow of a program such as jmp, call,

and ret. The nop instruction is considered a control instruction.

• Logic: instructions that act as checks/gates such as and, or, and test. These are

often paired with control instructions.

Instead of modifying specific opcodes, we can make use of these groups for our

expansions. This can give us the ability to modify the statistics of opcodes that are rarely

used in dead code samples and allow for more variety in expansion. An outline of our

methodology can be seen in Figure 33.

6.2.3.1 Code Segments. Before performing counts, we first determine the number of

segments we wish to divide the code into. Code can be divided into a number of

segments 1>= s <= total length, with s being the number of segments and total length

being the total number of instructions within the assembly. The purpose of these

segments is to localize and better target the effects of our expansions. Instruction counts

 93

and code insertion will be on the divided sections. We segment our samples by the

powers of 2 but any number or system could be used so long as it falls within the

parameters. Code could also be segmented via program structures such as functions,

logic, or basic blocks.

Figure 33. Outline of expansion process. Metric targets are based on the expansion type.

6.2.3.2 Uniform Expansion. For uniform expansion, the goal is to ensure that, for a

given metric, every opcode or group is equal within the program segments. For this work,

we choose to expand based on counts. This can be done in one of three ways, equaling

every count to the highest single count across the segments, finding the highest counts

per instruction/group and equaling those, or setting a target higher than any given count.

For example:

• Per option 1: If a sample is dived into 16 segments and the count for control is 42

in one segment, then all groups would be expanded to 42 in each segment.

• Per option 2: If within the same sample the highest counts for the groups across

all segments is 42, 27, 18, and 12, then every segment will be expanded to 42, 27,

18, and 12.

 94

• Per option 3: Based on the highest count found, 42, a target would be chosen

above that, such as 64. All counts would be increased to this number. For our

purposes, we use again use powers of 2.

Regardless of the option chosen, after identifying our target counts, we limit

increases to this count to avoid unnecessary expansions. The code is then processed

segment by segment, inserting varying lengths of dead code to reach the target count. We

insert longer code segments first to have a greater impact on the counts, then switch to

progressively smaller segments as more precise changes are needed.

6.2.3.3 Profile Expansion. For profile expansion, instead of expanding to achieve

uniformity within the program, we expand the opcodes to match a profile, a

predetermined set of opcode metrics taken from another program. For this research, we

are expanding to obfuscation profiles. We first form these profiles before beginning

expansions. Similar to uniform expansion, we continue to work with opcode count.

Creating obfuscation profiles is the first step. We create two different types of

obfuscation profiles, average and instance. To form our average profiles, we first take our

obfuscated dataset and perform our opcode counts on all samples containing the a given

transformation. These counts are then averaged together to form a general profile for the

given obfuscation. In addition to the counts, we also take the average counts for our clean

samples and measure the percentage change between the clean and obfuscated profile.

These counts are also taken at different segmentation levels as well. It is important to

note, an average profile is only formed from samples that contain only the given

transformation. Samples with layered transformations are not included in the averages but

could be used to form averages for various combinations. We do not explore this.

 95

For our instance profiles, we first take the sample to be expanded and obfuscate

this sample with one or more new transformations. This new variant is then segmented

and counted to form a profile. We measure the percentage change between this new

variant and the original as well. The profile now represents a given transformation

specific to one instance.

After profiles are formed, we expand the target in much the same way as with

uniform expansion. The key differences are that segments are now expanded to the

matching segment from the profile. In addition, segments can also be expanded to the

percentage targets, rather than just to the raw counts.

6.2.3.4 Guided Expansion. The last expansion approach we explore is targeted

expansion. This expansion can be viewed as an adversarial machine learning attack as it

relies on exploiting information gained from a machine learning model. For our

approach, we rely on the decision tree model created in previous chapters. Decision trees

are unique as it is considerably easy to view and understand why the model makes the

decisions that it does. We can exploit this to expand a sample in certain ways to force a

different decision.

This attack can happen in one of two ways, the first relies specifically on decision

trees and the second just relies on understanding the feature importance of the model. For

the method, we analyze the generated decision to tree to understand the decisions that

lead to the file being classified correctly (or incorrectly in a target attack). We can then

modify the opcode metrics of the sample to push it down a different branch of the tree.

Since this attack is dependent on the type of features the tree is using, this process may be

more involved than simply matching counts. In our work, the decision tree uses TF-IDF

 96

as its feature value, so the TF-IDF of opcodes must be calculated and used to guide the

opcode insertion.

The second approach can be used both with a decision tree and also for other

models. First a model is created to accurately classify samples. This model can then be

analyzed to find the features that are considered most impactful to the decision-making

process. These features can be compared to another sample that is classified differently or

modified at random in order to push the classification in a different direction. We explore

both of these approaches. Table 19 shows the total number of features for each

transformation, as well as the top 50 features. These are the features that would be

targeted during guided expansion.

6.2.3 Results

The following showcase the results from the various tests performed using opcode

expansion. These results will be discussed in the next section.

6.2.3.1 Opcode Profiles. Table 20 shows the average opcode group counts and

percentage increases from the various transformations that we considered. For this

purpose the flatten and bogus control-flow transformation from OLLVM are considered

under the Flat and Opaque groups together with the equivalent Tigress transforms.

6.2.3.2 Uniform. For our uniform expansion test, we selected 1,000 files at random and

expanded the files to uniformity based on the three metrics for uniformity presented

above. After expansion, these files were presented to our classifier suite. Table 21 shows

the results of options 1,2, and 3 with our classifiers at being trained on multi-layer

sample.

 97

Table 19. Feature amount and top 50 features.

Encode A:

Selected features: 213

addl addl,addl andl,addl orl,addq,addq movb,andl,andl addl,andl leal,andl movl,andl sarl,andl

subl,cmpb,cmpb jne,cmpl movzbl,cmpq,cmpq jne,jg leaq,jmp,jmp cmpb,jne,jne movq,jns,jns

leaq,jns movl,js,js leaq,js movl,leal,leal movl,leal movzbl,leal movzwl,movabsq addq,movb

addl,movl,movl addl,movl movl,movl movslq,movl orl,movl subl,movl subq,movl testl,movl

xorl,movq,movq addq,movq cmpq,movq jmp,movq movq,movq orq,movslq,movslq movq

Encode L:

Selected features: 295

addl,addl jmp,addl movl,addl nop,addq,addq movb,addq movq,andl,call,call call,cmpb,cmpb

jne,cmpl movzbl,cmpq,cmpq je,cmpq jne,je cmpl,jg cmpl,jmp,jmp cmpb,jmp movq,jne,jne

movq,leaq,leaq addq,movb,movb addl,movl movl,movl movq,movl movslq,movl

subl,movq,movq addq,movq cmpq,movq jmp,movq movq,movq subq,movslq,movslq

movq,movzbl,movzbl andl,movzwl,nop nop,subl,subl cmpl,subl movl,subq,jmp cmpl,movq

leaq,movq movl

Flat:

Selected features: 229

addl movl,addl movq,addq movb,addq notrack,call leaq,call movq,cmpb jne,cmpl jg,cmpl

movzbl,cmpq ja,ja,ja movq,je jmp,jg,jg movq,jmp,jmp call,jmp cmpb,jmp cmpl,jmp jmp,jmp

movl,jmp movq,leaq,movb addl,movl movq,movl movslq,movl subl,movq addq,movq

jmp,movslq,movslq movq,notrack,notrack jmp,subl,subl cmpl,cmpb,cmpq je,cmpl jle,jle,addq

movq,subl movl,addl cmpl,movq movq,cmpq jne,jne,andl sarl,leaq leaq,movl jmp,jmp

movzbl,leaq movl

Opaque:

Selected features: 204

addl,addl movl,addq,addq movb,addq movq,call jmp,call movq,cmpb,cmpb jne,cmpl

movzbl,cmpq,cmpq je,cmpq jne,je movq,jle movq,jmp cmpb,jmp jmp,jne,jne cmpl,jne jmp,jne

movl,leaq subq,movb,movb addl,movl movslq,movl subl,movq,movq addq,movq cmpq,movq

jmp,movq movq,movslq,movslq movq,movzbl andl,subl,subl cmpl,subl movl,subq leaq,jmp

cmpl,movl call,movq movl,jne movq,andl,je,sarl,movq leaq,movzbl,jne leaq,andl sarl,movl xorl

Virtualize:

Selected features: 300

addl,addl movl,addq,addq movb,addq movl,addq movq,addq popq,andl,call,call addq,call jmp,call

movl,cmpb,cmpb jne,cmpl ja,cmpl movq,cmpl movzbl,cmpq,cmpq je,cmpq jne,ja movl,jg

testl,jmp cmpb,jmp movl,jne,jne movq,leaq movl,movb,movb addl,movb cmpb,movl,movl

call,movl cmpl,movl movl,movl movslq,movl subl,movq,movq addq,movq cmpq,movq jmp,movq

leaq,movq movq,movq movslq,movq pushq,movq subq,movslq,movzbl,movzbl andl,movzbl

movzbl,movzwl

 98

Table 20. Average instruction group counts and percentage increase.

 Average Counts Average Percentage Increase

 Arith. Logic Data Control Arith. Logic Data Control

Virtualize 124.67 43.96 316.33 87.60 79.17 69.67 79.87 76.79

Flatten 33.6057 16.21 102.77 42.11 11.88 6.21 29.32 44.93

Encode A 46.94 32.02 101.87 25.57 44.70 58.36 37.49 20.50

Encode L 117.59 16.80 269.01 43.85 77.92 20.64 76.33 53.64

Opaque 29.49 27.47 164.75 55.49 12.00 51.47 61.35 63.37

6.2.3.3. Profile. Our profile-based expansion test utilizes another 1,000 files chosen once

again at random. To perform this test, the profile counts and averages were used to move

the samples into an obfuscation not currently present in the sample. This means that no 5-

layers samples were able to be used. Table 22 shows the results of profiles formed with

counts created from instance profiles, as well as the accuracies formed from average

percentage profiles.

Table 21. Classification results for uniform expansion.

 Original Option1 Option 2 Option 3

CNN 1 90% 76% 84% 53%

CNN 2 89% 72% 87% 54%

CNN 3 89% 71% 85% 53%

InceptionV3 90% 83% 89% 64%

Decision Tree (1,2-gram) 99% 88% 78% 46%

Naïve Bayes (1,2-gram) 70% 62% 52% 14%

SVM (1,2-gram) 99% 87% 81% 38%

Decision Tree (gadget) 99% 95% 91% 94%

Naïve Bayes (gadget) 98% 93% 92% 83%

SVM (gadget) 99% 94% 94% 92%

 99

Table 22. Classification results for profile expansion.

 Original Instance Average

CNN 1 91% 89% 84%

CNN 2 88% 87% 87%

CNN 3 90% 87% 88%

InceptionV3 92% 89% 90%

Decision Tree (1,2-gram) 98% 95% 94%

Naïve Bayes (1,2-gram) 65% 61% 63%

SVM (1,2-gram) 97% 93% 92%

Decision Tree (gadget) 99% 98% 97%

Naïve Bayes (gadget) 98% 96% 96%

SVM (gadget) 99% 98% 97%

6.2.3.4 Guided. Guided expansion was tested using a smaller sample set for the decision

tree-based expansion. This is due to parts of this process not yet being fully automated.

Table 23 showcases the accuracies of our tree models for files expanded both targeted

and non-targeted. All models used in this test were trained on multi-layer samples.

Table 23. Classification results for guided expansion.

 Untargeted Targeted

Trees 1-gram 1,2-gram 1,3-gram 1-gram 1,2-gram 1,3-

gram

Encode A 5% 0% 15% 10% 0% 15%

Encode L 10% 0% 5% 5% 0% 10%

Virtualize 5% 0% 0% 10% 0% 20%

Flatten 0% 0% 5% 5% 0% 15%

Opaque 10% 0% 10% 15% 0% 0%

 100

Table 24. Guided expansion classification results.

 Original Guided Expansion

CNN 1 90.8% 22.5%

CNN 2 89.4% 21.7%

CNN 3 89.7% 22.8%

InceptionV3 92.1% 43.2%

Decision Tree (1,2-
gram)

99.7% 14%

Naïve Bayes (1,2-
gram)

71.2% 0%

SVM (1,2-gram) 99.4% 27%

Decision Tree
(gadget)

99% 92%

Naïve Bayes
(gadget)

98% 88%

SVM (gadget) 99% 91%

The next test for Guided Expansion utilized the highest performing features for

our 2-gram decision tree. For the untargeted attack, we inserted to dead code with the

intention of lowering or raising the frequency of opcodes that were identified as valuable

features. For the targeted attack, we compared samples of the target transformation to our

samples and adjusted the frequency of the features accordingly. Table 24 showcases the

results of our models attempting to classify samples that were expanded based on this

extracted feature importance.

6.2.4 Discussion

 Looking over the results, there are few key takeaways and points worth exploring,

starting with profile expansion. The opcode group profiles provide a good look at the

impact of the obfuscating transformations on the opcode makeup of a binary. This

information can be useful to heuristic approaches to code analysis both inside and out of

 101

our work. Unfortunately, expanding a programs opcode profile based on these did not

have the desired result. Neither instance nor average based expansion were able to

achieve significant impact to the performance of our supervised learners. We believe that

this method still holds promise and that it can be further refined.

 Our next tests, had to deal with uniform based expansion. We explored all three

of the presented options and found all to be effective and obscuring a programs metadata.

Option 3 is clearly the best performance, reducing the decision tree and svm classifiers to

a score below 50%. While this method was successful, it will need to be further analyzed

to compare the achieved results with the impact on program cost. Especially if applied to

larger programs.

 Guided was the last type of expansion tested and, unlike the other methods, is at

its core closer to an adversarial machine learning attack. Our first result showed that

decision trees can be exploited by directly analyzing the tree structure and inserting code

sequences base on the tree structure. This was even shown to work on similar trees,

which would fall into the principle of adversarial transference. Our second result showed

that expanding based on features extracted from a ML model can greatly enhance the

impact of the expansion.

6.2.5 Future Work

Our future work for Opcode Expansion will be to continue to streamline the

process and more easily automate the Guided Expansion approach. We wish to explore

performing the expansions based on metrics beyond counts and for feature outside of n-

gram analysis.

 102

6.2.6 Conclusion

In this section, we have proposed and evaluated a method of algorithmic dead

code insertion and a means of adversarial example generation. This approach, which we

call Opcode Expansion, was capable of using opcode metrics such as counts and

extracted TF-IDF values to guide dead code insertion in order to modify and improve the

stealth of obfuscated programs. These expanded examples were shown to be effective at

reducing the classification accuracy of supervised learners that real on opcode features.

We showcased the effectiveness of this algorithm in both a white and black box setting,

with our samples able to reduce the accuracy of our models under attack to as low as 0%.

Our model was also shown to be effective at reducing the accuracy of image based

CNNs.

We further showed that our approach is effective on layered obfuscations as well,

with our models misclassifying samples with 2 or more transformations present. This

approach was extended to successfully perform targeted attacks as well, both for single

and layered transformations.

 103

CHAPTER VII

IMPLEMENTATION AND EVALUATION

This chapter details our proposal of an obfuscation framework that takes

advantage of methods discussed in previous chapters to improve the overall stealth of

obfuscations. We measure the metrics of code produced by the proposed framework to

show that it has no negative impacts to obfuscating transformations.

7.1 Introduction

In recent chapters, we detailed the capabilities of supervised machine learning to

analyze and detail both obfuscating transformations using different feature sets, as well as

some fine-grained components of the transformation. We then described two methods of

that can be used to modify obfuscate binaries in order to improve the stealth of those

binaries against automated analysis. As both of these methods has successes and

shortcomings, we propose the creation of a unified method that combines the best of both

algorithms. We dub this approach Adversarial Expansion. At the simplest, it is the

previous two methods applied at the same time to a sample, ensuring that both maintain

the full stealth benefit. We propose and showcase a way to truly combine the two

approaches, that allows the expansions from Opcode Expansion to be guided by the

distance analysis of Adversarial Obfuscation.

 104

To accomplish this, we propose the LOKI Obfuscation framework. Loki will be a

collection of scripts and processes that will rely on other tools to enhance the obfuscation

of files from beginning to end. For this research, we only showcase LOKI’s ability to

improve the stealth of a file via Adversarial Expansion and leave further showcases to

future work. We evaluate the Adversarial Expansion process against the same suite of

classifiers to examine the stealth impacts. We also use cyclomatic complexity and

analysis with GCC to test that LOKI’s changes have not negatively impacted potency or

resilience.

• A unified approach to improving the stealth of obfuscation via Adversarial

Expansion.

• The proposal of the LOKI framework in order to fully automate the process and guide

the obfuscation process

• We examine the metric impact of Adversarial Obfuscation to ensure that potency and

resilience are maintained.

7.2 LOKI Obfuscator Framework

We believe that machine learning can assist in the obfuscation of programs in

many ways. To that end and to make full use of the information gained in this research,

we propose the creation of the LOKI framework. LOKI exists as a collection of scripts

and modules created in Python that will link to various tools in order to guide the

obfuscation process. LOKI will make use of various machine learning obfuscation

research outside of the adversarial research shown in this work. LOKI will be open -

 105

source and available of Github once it more pieces of the framework are complete. A

brief overview of LOKI’s proposed capabilities is described in the following sections.

7.2.1 Capabilities

As is currently planned, LOKI will consist of modules, which themselves are

collections of scripts. LOKI will have modules for each of the capabilities described in

the following sections.

7.2.1.1 Guided Obfuscation. The guided obfuscation module will be the module used to

begin the obfuscation process. The capabilities of this module will be to modify the initial

obfuscation process in order to achieve high results in potency and resilience for the

source code and chosen obfuscations. Examples of this include proposing the strongest

ordering of layered obfuscations, the depth of arithmetic encoding, and the choice of

options for a variety of other transformations. Some machine learning research will

benefit his module, such as neural networks that can predict potency and resilience.

7.2.1.2 Adversarial. The Adversarial module will be how LOKI implements the three

adversarial processes described in this work. There will be script collections for

Adversarial Obfuscation, Opcode Expansion, and Adversarial Expansion. The

obfuscation and expansion scripts will drive the processes detailed in Chapter VI. These

scripts will support the implementation of the two basic types of expansion (uniform and

profile). Guided expansion will be added to the framework once the process becomes

more easily automated.

Adversarial Expansion is detailed further in this chapter will be implemented

shortly after the initial deployment of LOKI.

 106

7.2.1.3 Obfuscation Analysis. Analysis will be where scripts relating to the analysis of

obfuscations will be kept. This analysis will primarily consist of using machine learning

and other tools to analyze metrics and features present in obfuscated files.

7.3 Methodology

This section describes the methodology used in this chapter. We describe the

process of Adversarial Expansion, which is a combination of the previous two algorithms

described in this work. We will perform adversarial expansion and then test the impact on

the four obfuscation metrics. The goal of this algorithm is only to improve stealth and

avoid damaging any of the other metrics. For testing the metrics:

• Stealth will be analyzed using the misclassification rate of classifiers,

• Potency will be measured using the cyclomatic complexity of the samples,

• Resilience will be measured by compiling the code with various optimization

levels and seeing the impact to code size,

• Cost will be measured by examining code size and runtime.

7.3.1 Adversarial Expansion

Adversarial expansion is the combination of adversarial obfuscation and opcode

expansion. This will be implemented in two ways. The first will be to simply apply the

two algorithms on top of each other. Both algorithms will be in a closed loop to ensure

that the goals of both algorithms are met, without one damaging the other.

The second method involves having the methods feed into each other. First,

guided obfuscation will form of a list of dead code snippets, L, that must be inserted to

 107

evade the n-gram feature analysis. After this list is given, it will replace the list of

semantic nops typically used by adversarial obfuscation. An image will be generated

using FGSM and CW. The binary distance metric will be used to reduce the distance

between the code binary and the non-functioning AE. Insertion will proceed as normal,

except with the standard list being replaced by the list from expansion. Some of the

semantic nops may be present in the new list but it will also contain the longer samples

used in expansion. The overall process can be seen in Figure 34. This method will

implement the waterfall method as well for multiple labels and targeted attacks.

If Adversarial Obfuscation is unable to achieve the desired misclassification rate,

nop instructions can be inserted throughout the program. The locations of these

instructions will replace the traditional insertion points and the algorithm will resort to

using the standard semantic nop list, similar to [109].

Figure 34. Adversarial Expansion Process.

 108

7.3.2 Metrics

After adversarial expansion has completed, the samples will be analyzed to

determine the impact that adversarial expansion has on the obfuscation metrics. The

metrics themselves are defined in Chapter II. The goal is to decrease stealth, while having

no negative impact on potency and resilience. For cost, the goal is to minimize the impact

as it is unavoidable.

7.3.2.1 Stealth. Stealth is a measure of how well obfuscation blends in with the

surrounding code. As there is no accepted measurement for stealth, we choose to define

stealth as the classification accuracy of machine learning algorithms. Our samples will be

fed through our suite of supervised learning to determine the classification accuracy of

the models. Both the original and expanded samples will be given to the models to

compare the results.

7.3.2.2 Potency. Potency is a measure of how dissimilar and complicated obfuscation has

made the original code. For this metric, we will measure the cyclomatic complexity (CC)

of the code. CC is used to measure the stability and level of confidence in a program

[110]. Programs with lower CC are considered easier to understand and modify. As such,

higher CC can be used to determine the impact of an obfuscation. CC uses the control

flow graph and can be calculated with the following formula: M = E – N + 2P. Where E

is the number of edges in the graph, N is the number of nodes, and P is the number of

connected components.

7.3.2.3 Resilience. Resilience is described as the difficulty in removing the obfuscations

on a program. We are using GCC compiler optimization options (0, 1, 2, 3, s, fast) to

measure the amount of time or resources taken to deobfuscate the transformations with

 109

and without Adversarial Expansion. We will use file size as the primary metric for

determining the resilience. Higher size after the optimizations implies more resilient

changes.

7.3.2.4 Cost. Cost will be measured as the file size in bytes of the samples at optimization

level 0 with GCC.

7.4 Results

The following sections detail the results of our methodology.

7.4.1 Impact on Stealth

 We continue to define stealth as the classification rate of our machine learning

algorithms. We run our samples and the originals through the multi-layer variants trained

in Chapter V. For the CNN the presented score is the average of the individual layered

networks. We do not make use of the FCNN shown in Chapter V. Table 25 shows the

classification scores.

7.4.2 Impact on Potency

Table 26 shows the results of using the CC measurement on the original

obfuscated binaries and on the same binaries modified via Adversarial Expansion. As we

can see by examining the table, the dummy code inserted into the file has increased the

cyclomatic complexity of the samples. No sample was negatively impacted, and we can

observe that the impact of the dummy code is dependent on the type of transformation.

 110

Table 25. Classification scores for our generated samples.

 ORIGINAL ADVERSARIAL EXPANSION

CNN 1 90.8% 0%
CNN 2 89.4% 0%
INCEPTIONV3 90.3% 20.7%
DECISION TREE (1-GRAM) 98.15 22.7%
DECISION TREE (1,2-GRAM) 99.4% 23.4%
DECISION TREE (1,2,3-GRAM) 97.2% 22.6%
NAÏVE BAYES (1-GRAM) 65.3% 0%
NAÏVE BAYES (1,2-GRAM) 70.1% 0%
NAÏVE BAYES (1,2,3-GRAM) 72.% 0%
SVM (1-GRAM) 99.5% 24.1%
SVM (1,2-GRAM) 99.2% 27.7%
SVM (1,2,3-GRAM) 99.4% 21.6%

Table 26. Cyclomatic complexity measures for transformation combinations.

 Original Adversarial Expansion

A 1.7 6

ALO 5.4 10.1

AO 8.0 14.7

F 3.7 5.2

FAL 2.8 6.7

FO 9.0 16.9

FOAL 6.2 20.3

L 1.6 5

O 7.3 11.5

OA 7.3 12.3

OAL 5.0 12.1

OF 22.3 24.9

OL 4.9 8.2

V 12.3 16.0

VAL 9.5 13.3

VF 34.7 41.2

VFOAL 57.0 71.3

VO 22.7 29.1

VOAL 62.0 78.1

VOLAF 80.5 93.4

 111

7.4.3 Impact on Resilience

 Table 27 shows the results of our evaluation of the samples resilience. As stated

previously, we made use of the gcc compiler to compile the code with varying levels of

optimizations. As optimization is the inverse of obfuscation, the serves as a stand in for

an attacker performing deobfuscation. We can observe that for each sample, our

expanded variants were able to maintain more of their code through the optimization

process. Our samples were even shown to have varying degrees of resistance against

differing obfuscation levels, unlike the base samples.

Table 27. Sample Size Comparison.

 ORIGINAL ADVERSARIAL EXPANSION

 0 1 2 3 s 0 1 2 3 s
A 55033 54521 54629 54629 54629 57024 56000 56620 56795 56108
ALO 57016 55992 56100 56100 56100 62034 58898 59021 59102 58921
AO 56412 55388 55496 55496 55496 59904 57423 57598 57609 57481
F 55545 54521 54629 54629 54629 57541 56953 57014 57134 56988
FAL 55673 55125 55745 55745 55233 58300 57372 57598 57629 57419
FO 56412 55900 55496 55496 55496 60849 58492 59837 59975 58637
FOAL 57564 56028 56100 56100 56100 65007 61734 62938 62987 62029
L 55637 55125 55233 55233 55233 57403 55394 55419 55498 55419
O 56412 55388 55496 55496 55496 59513 57852 57902 57937 57871
OA 56924 55388 55496 55496 55496 59637 58879 58930 58965 58903
OAL 58730 56170 56278 56278 56278 62348 59748 59948 60027 59839
OF 57436 56412 57032 57032 56520 60594 57858 58963 59074 58756
OL 58218 56170 56278 56278 56278 61120 58642 58673 59003 58679
V 56645 56133 56241 56241 55729 61123 60178 60258 60097 60204
VAL 58220 56172 56792 56792 56280 62637 58938 59103 59340 58985
VF 58693 57157 57777 57777 56753 63902 60386 60847 61084 60743
VFOAL 73423 62671 62267 62267 63291 82672 67891 68122 68496 68038
VO 59048 56488 57108 57108 56596 65657 59645 60464 60931 60004
VOAL 85711 57551 57659 57659 57659 93976 78348 79436 79614 78509
VOLAF 90319 64719 64827 64827 64315 101,661 68286 69334 69579 68589

 112

7.4.4 Impact on Cost

 Referring again to Table 27, we can see that the size of the samples did increase

by an amount roughly >= 10,000 bytes for each sample. While this is unfortunate, we

believe that this can be mitigated with a more efficient and varied dead code database.

We can also observe that the increase in size due not appear to scale at a large rate with

file size.

7.5 Discussion

Reviewing the results for the metric testing of adversarial expansion, we are

confident in saying that the algorithm achieves its desired results. In the stealth test, the

samples were able to achieve a misclassification rate of below 50% for all classifiers with

the exception of the gadget-based classifiers. InceptionV3 is the only CNN model to be

above 0% with a score of 20.7%, and the n-gram based decision trees and SVMs have

been reduced to scores in range of 20% - 35%. This is a vast improvement over the two

individual methods, which were unable to seriously impact the type of classifier that they

were not constructed for. This makes Adversarial Expansion as our strongest algorithm

for generating adversarial examples.

7.6 Future Work & Conclusion

In this section, we proposed and showcased the combined version of our two prior

adversarial creation methods (adversarial obfuscation and opcode expansion) Adversarial

Expansion. This method uses the dead code segment selected as part of guided expansion

to form the insertion list for a round of adversarial obfuscation. Our samples generated

 113

with Adversarial Expansion, were shown to have the benefits of both methods and are

capable of evading both the image based neural networks and the N-gram based opcode

classifiers. With this method, several of the limitations encountered previously are

overcome.

After testing the metric impacts of Adversarial Expansion on our obfuscated

samples, we found that all goals were achieved across the four metrics. For stealth, the

classification accuracy was reduced to as low as 0%, with both categories of classifiers

being affected. This was done without requiring the heavy-handed approach of uniform

expansion. Potency was not only maintained across the range samples, but it was also as

much as doubled for the weaker transformation. A similar situation was observed with

resilience. As the initial goal was simply to avoid a negative impact, this means the

method performed above expectation. The final metric of cost was impacted negatively;

however, the impact was not extreme and could be mitigated with a larger dead code base

to pull from and a more mature version of the algorithm.

For future work, the first and main goal is to further automate the adversarial

expansion process. Much of the work is done by hand with automation only assisting in

certain parts of the process. A fully automated process will allow for further

improvements to be made and for the process to be broadened more easily to other

feature sets and applications. In addition, once the process has been hard coded and

automated, the scripts can be compiled into modules and the LOKI framework can be

made live.

 114

REFERENCES

[1] “Prelude: Computing from Ancient Times to the Modern Era,” InformIT, 2013.

[Online]. Available:

http://www.informit.com/articles/article.aspx?p=2163344&seqNum=5 [Accessed

February 13th, 2021].

[2] “The Growing $1 Trillion Economic Impact of Software,” BSA Foundation, 2017.

[Online]. Available: https://software.org/reports/2017-us-software-impact/

[Accessed March 3rd, 2021].

[3] “The Cost of Malicious Cyber Activity to the U.S. Economy,” The Council of

Economic Advisers - Executive Office of the President of the United States, Feb.

2018. [Online]. Available: https://www.whitehouse.gov/wp-

content/uploads/2018/02/The-Cost-of-Malicious-Cyber-Activity-to-the-U.S.-

Economy.pdf.

[4] “Intellectual Property Rights in Software – What They Are and How to Protect

Them,” Freibrun Law. [Online]. Available: https://freibrun.com/intellectual-

property-rights-software-protect/ [Accessed March 3rd, 2021].

http://www.informit.com/articles/article.aspx?p=2163344&seqNum=5
https://software.org/reports/2017-us-software-impact/
https://freibrun.com/intellectual-property-rights-software-protect/
https://freibrun.com/intellectual-property-rights-software-protect/

 115

[5] J. Nagra and C. Collberg, Surreptitious software: obfuscation, watermarking, and

tamperproofing for software protection. Pearson Education. 2009.

[6] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscating

transformations,” Department of Computer Science, The University of Auckland,

New Zealand, Tech. Report. 1997.

[7] C. S. Collberg and C. Thomborson, "Watermarking, tamper-proofing, and

obfuscation - tools for software protection," IEEE Transactions on Software

Engineering, vol. 28, no. 8, pp. 735-746, Aug. 2002, doi:

10.1109/TSE.2002.1027797.

[8] P. Falcarin, C. Collberg, M. Atallah, & M. Jakubowski, “Software Protection.”

[Online]. Available:

https://www2.cs.arizona.edu/people/collberg/content/research/papers/falcarin11so

ftware.pdf [Accessed March 3rd, 2021].

[9] Security, P., 2021. What is Software Piracy? - Panda Security Mediacenter.

[online] Panda Security Mediacenter. Available at:

<https://www.pandasecurity.com/en/mediacenter/panda-security/software-

piracy/#:~:text=According%20to%20the%202018%20Global,know%20about%2

0the%20software%20laws.> [Accessed 27 March 2021].

[10] “BSA Global Software Survey: Seizing Opportunity Through License

Compliance,” Bsa.org, 2016. [Online]. Available:

https://globalstudy.bsa.org/2016/ [Accessed: March 26, 2021].

https://www2.cs.arizona.edu/people/collberg/content/research/papers/falcarin11software.pdf
https://www2.cs.arizona.edu/people/collberg/content/research/papers/falcarin11software.pdf
https://globalstudy.bsa.org/2016/

 116

[11] T. Miracco, “The Hidden Cost of Software Piracy in The Manufacturing

Industry,” Manufacturing.net, August 12, 2018. [Online]. Available:

https://www.manufacturing.net/article/2016/02/hidden-cost-software-piracy-

manufacturing-industry [Accessed March 3rd, 2021].

[12] J. M. Memon, A. Khan, A. Baig, & A. Shah, “A study of software protection

techniques,” in Innovations and Advanced Techniques in Computer and

Information Sciences and Engineering. Dordrecht: Springer, 2007, pp-249-253.

[13] S. K. Udupa, S. K. Debray, and M. Madou. Deobfuscation: Reverse engineering

obfuscated code. In Reverse Engineering, 12th Working Conference on, pages

10–pp. IEEE, 2005.

[14] A. Salem and S. Banescu, “Metadata recovery from obfuscated programs using

machine learning,” Proceedings of the 6th Workshop on Software Security,

Protection, and Reverse Engineering - SSPREW 16, 2016

[15] B. Yadegari, B. Johannesmeyer, B. Whitely, and S. Debray. A generic approach

to automatic deobfuscation of executable code. Technical report, technical report,

Department of Computer Science, The University of Arizona, 2014.

[16] A. Slowinska, T. Stancescu, and H. Bos. Howard: A dynamic excavator for

reverse engineering data structures. In NDSS. Citeseer, 2011.

[17] L. Jones, D. Christman, S. Banescu and M. Carlisle, "ByteWise: A case study in

neural network obfuscation identification," 2018 IEEE 8th Annual Computing

https://www.manufacturing.net/article/2016/02/hidden-cost-software-piracy-manufacturing-industry
https://www.manufacturing.net/article/2016/02/hidden-cost-software-piracy-manufacturing-industry

 117

and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA,

2018, pp. 155-164, doi: 10.1109/CCWC.2018.8301720.

[18] Ramtine Tofighi-Shirazi, Irina Măriuca Asăvoae, and Philippe Elbaz-Vincent.

2019. Fine-grained static detection of obfuscation transforms using ensemble-

learning and semantic reasoning. In Proceedings of the 9th Workshop on Software

Security, Protection, and Reverse Engineering (SSPREW9 '19). Association for

Computing Machinery, New York, NY, USA, Article 4, 1–12.

DOI:https://doi.org/10.1145/3371307.3371313

[19] Tabassi, E., K. Burns, M. Hadjimichael, A. Molina-Markham, J. Sexton, “A

Taxonomy and Terminology of Adversarial Machine Learning”, NIST Technical

Draft, Oct 2019, https://doi.org/10.6028/NIST.IR.8269-draft

[20] R. Manikyam, J. T. McDonald, W. R. Mahoney, T. R. Andel, & S. H. Russ,

“Comparing the effectiveness of commercial obfuscators against MATE attacks,”

In Proceedings of the 6th Workshop on Software Security, Protection, and

Reverse Engineering, December 2016, pp. 8.

[21] F. B. Cohen, “Operating system protection through program evolution,”

Computers & Security, vol. 12, no. 6, pp. 565-584. 1993.

[22] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and K.

Yang, “On the (im) possibility of obfuscating programs,” In Annual International

Cryptology Conference, August 2001, pp. 1-18.

 118

[23] VMProtect Software, VMProtect Software Protection. [Online]. Available:

https://vmpsoft.com/ [Accessed: March 26, 2021].

[24] Oreans Technology : Software Security Defined, Themida. [Online]. Available:

https://www.oreans.com/themida.php [Accessed: March 26, 2021].

[25] Tigress C Diversifier/Obfuscator. [Online]. Available:

http://tigress.cs.arizona.edu/ [Accessed: March 26, 2021].

[26] Xuesong Zhang, Fengling He, and Wanli Zuo. Theory and practice of program

obfuscation. INTECH Open Access Publisher, 2010.

[27] C. Collberg. Tigress: Transformations Index. University of Arizona, 2015.

[28] S. Banescu, M. Ochoa, and A. Pretschner. A framework for measuring software

obfuscation resilience against automated attacks. In 2015 IEEE/ACM 1st

International Workshop on Software Protection (SPRO), pages v–vi, May 2015.

[29] Rolf Rolles. Unpacking virtualization obfuscators, proceedings of the 3rd usenix

conference on offensive technologies. pages 1–1, 2009.

[30] B. Anckaert, M. Jakubowski, and R. Venkatesan, “Proteus: virtualization for

diversified tamper-resistance.” In Proceedings of the ACM workshop on Digital

rights management, October, 2006, pp. 47-58.

https://vmpsoft.com/
https://www.oreans.com/themida.php
http://tigress.cs.arizona.edu/

 119

[31] S. Ghosh, J. Hiser, and J. W. Davidson, “Replacement attacks against vm-

protected applications,” In Acm Sigplan Notices, March 2012, Vol. 47, No. 7, pp.

203-214.

[32] W. Hu, J. Hiser, D. Williams, A. Filipi, J. W. Davidson, D. Evans, ... & J.

Rowanhill, “Secure and practical defense against code-injection attacks using

software dynamic translation,” In Proceedings of the 2nd international conference

on Virtual execution environments, June 2006, pp. 2-12.

[33] J. Salwan, S. Bardin, & M. L. Potet, “Symbolic deobfuscation: From virtualized

code back to the original,” In International Conference on Detection of Intrusions

and Malware, and Vulnerability Assessment, June 2018, pp. 372-392.

[34] C. Collberg, S. Martin, J. Myers, and J. Nagra. Distributed application tamper

detection via continuous software updates. In Proceedings of the 28th Annual

Computer Security Applications Conference, ACSAC ’12, pages 319–328, New

York, NY, USA, 2012. ACM.

[35] A. Balakrishnan and C. Schulze. Code obfuscation literature survey. CS701

Construction of Compilers, 19, 2005.

[36] R. Manikyam, “Analyzing Program Protection Using Software Based Hardware

Abstraction,” Ph.D. Dissertation, University of South Alabama, 2019.

[37] Murphy, K. P. (2012) Machine Learning: A Probabilistic Perspective, MIT Press.

[38] Bishop, C. M. (2006) “Pattern Recognition,” Machine Learning.

 120

[39] N. Papernot, “Characterizing the Limits and Defenses of Machine Learning in

Adversarial Settings,” Ph.D. Dissertation, Pennsylvania State University, 2018.

[40] Yakura, H., Shinozaki, S., Nishimura, R., Oyama, Y., & Sakuma, J. (2017).

Malware Analysis of Imaged Binary Samples by Convolutional Neural Network

with Attention Mechanism. In Proceedings of the 10th ACM Workshop on

Artificial Intelligence and Security - AISec ’17 (pp. 55–56). New York, New

York, USA: ACM Press. https://doi.org/10.1145/3128572.3140457

[41] Sutskever, I., O. Vinyals, and Q. V. Le (2014) “Sequence to sequence learning

with neural networks,” in Advances in Neural Information Processing Systems,

pp. 3104–3112.

[42] Drucker, H., D. Wu, and V. N. Vapnik (1999) “Support vector machines for spam

categorization,” IEEE Transactions on Neural Networks, 10(5), pp. 1048– 1054.

[43] Das, Sayan & Barik, Rupashri & Mukherjee, Ayush. (2020). Salary Prediction

Using Regression Techniques. SSRN Electronic Journal. 10.2139/ssrn.3526707.

[44] Bala, Ravula & Surya, Kunamneni & Chandravas, Tadiparthi & J., Manikandan.

(2020). A Machine learning based Advanced House Price Prediction using

Logistic Regression. International Journal of Computer Applications. 176. 30-34.

10.5120/ijca2020920303.

[45] Jain, A. K., M. N. Murty, and P. J. Flynn (1999) “Data clustering: A review,”

ACM Computing Surveys, 31(3), pp. 264–323.

 121

[46] Erhan, D., Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S. Bengio

(2010) “Why does unsupervised pre-training help deep learning?” Journal of

Machine Learning Research, 11, pp. 625–660.

[47] Hu, J. and M. P. Wellman (2003) “Nash Q-learning for general-sum stochastic

games,” Journal of Machine Learning Research, 4, pp. 1039–1069.

[48] Sutton, R. S. and A. G. Barto (1998) Reinforcement Learning: An Introduction,

MIT Press.

[49] G. McGraw, H. Figueroa, V. Shepardson, and R. Bonett, “An architectural risk

analysis of machine learning systems: Toward more secure machine learning,”

Berryville Institute of Machine Learning, 2020. [Online]. Available:

https://www.garymcgraw.com/wp-content/uploads/2020/02/BIML-ARA.pdf

[Accessed on: Mar, 23].

[50] Sommer, R. and V. Paxson (2010) “Outside the closed world: On using machine

learning for network intrusion detection,” in IEEE Symposium on Security and

Privacy, pp. 305–316.

[51] Goodfellow, I., Y. Bengio, and A. Courville (2016) “Deep Learning,” Book in

preparation for MIT Press (www.deeplearningbook.org).

[52] L. Huang, A. D. Joseph, B. Nelson, B. I. P. Rubinstein and J. D. Tygar,

"Adversarial Machine Learning," in Proceedings of the 4th ACM Workshop on

Security and Artificial Intelligence, New York, NY, USA, 2011.

https://www.garymcgraw.com/wp-content/uploads/2020/02/BIML-ARA.pdf

 122

[53] Kloft, M. and P. Laskov (2010) “Online anomaly detection under adversarial

impact,” in 13th International Conference on Artificial Intelligence and Statistics,

pp. 405–412.

[54] Barreno, M., B. Nelson, R. Sears, A. D. Joseph, and J. D. Tygar (2006) “Can

machine learning be secure?” in ACM Symposium on Information, Computer and

Communications Security, pp. 16–25.

[55] Kloft, Marius, and Pavel Laskov. “A poisoning attack against online anomaly

detection.” In NIPS Workshop on Machine Learning in Adversarial Environments

for Computer Security. 2007.

[56] A. Chakraborty, M. Alam, V. Dey, A. Chattopadhyay and D. Mukhopadhyay,

"Adversarial Attacks and Defences: A Survey," 28 9 2018.

[57] N. Papernot, P. McDaniel, A. Sinha and M. P. Wellman, "SoK: Security and

privacy in machine learning," in 2018 IEEE European Symposium on Security

and Privacy (EuroS&P), 2018.

[58] Q. Liu, P. Li, W. Zhao, W. Cai, S. Yu and V. C. M. Leung, "A survey on security

threats and defensive techniques of machine learning: A data driven view," IEEE

access, vol. 6, pp. 12103-12117, 2018.

[59] Manwani, N. and P. S. Sastry (2013) “Noise tolerance under risk minimization,”

IEEE Transactions on Cybernetics, 43(3), pp. 1146–1151.

 123

[60] Behzadan, V. and A. Munir (2017) “Vulnerability of Deep Reinforcement

Learning to Policy Induction Attacks,” arXiv preprint arXiv:1701.04143.

[61] Szegedy, C., W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R.

Fergus (2014) “Intriguing properties of neural networks,” in International

Conference on Learning Representations.

[62] N. Akhtar and A. Mian, "Threat of adversarial attacks on deep learning in

computer vision: A survey," IEEE Access, vol. 6, pp. 14410-14430, 2018.

[63] Ateniese, G., G. Felici, L.V. Mancini, A. Spognardi, A. Villani, and D. Vitali.

“Hacking smart machines with smarter ones: How to extract meaningful data

from machine learning classifiers.” arXiv preprint arXiv:1306.4447 (2013).

[64] Fredrikson, Matthew, Eric Lantz, Somesh Jha, Simon Lin, David Page, and

Thomas Ristenpart. “Privacy in pharmacogenetics: An end-to-end case study of

personalized warfarin dosing.” In 23rd USENIX Security Symposium (USENIX

Security 14), pp. 17-32. 2014.

[65] Wang, B., Y. Yao, B. Viswanath, H. Zheng, and B. Y. Zhao, “With Great

Training Comes Great Vulnerability: Practical Attacks against Transfer

Learning,” 27th USENIX Security Symposium, 2018, pp. 1281–1297.

[66] Papernot, Nicolas, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z. Berkay

Celik, and Ananthram Swami. “Practical black-box attacks against machine

 124

learning.” In Proceedings of the 2017 ACM on Asia conference on computer and

communications security, pp. 506-519. ACM, 2017.

[67] Gilmer, Justin, Ryan P. Adams, Ian Goodfellow, David Andersen, and George E.

Dahl. “Motivating the Rules of the Game for Adversarial Example Research.”

arXiv preprint 1807.06732 (2018)

[68] Papernot, N., P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami

(2016) “Practical Black-Box Attacks against Deep Learning Systems using

Adversarial Examples,” arXiv preprint arXiv:1602.02697.

[69] B. Biggio and F. Roli, "Wild patterns: Ten years after the rise of adversarial

machine learning," Pattern Recognition, vol. 84, pp. 317-331, 2018.

[70] Hinton, G., O. Vinyals, and J. Dean (2014) “Distilling the knowledge in a neural

network,” in NIPS-14 Workshop on Deep Learning and Representation Learning,

arXiv:1503.02531.

[71] Yuan, Xiaoyong, Pan He, Qile Zhu, and Xiaolin Li, “Adversarial Examples:

Attacks and Defenses for Deep Learning.” IEEE Transactions on Neural Network

Learning Systems, 2019, pp. 1–20

[72] Huang, S., N. Papernot, I. Goodfellow, Y. Duan, and P. Abbeel (2017)

“Adversarial attacks on neural network policies,” arXiv preprint

arXiv:1702.02284.

 125

[73] Biggio, B., I. Corona, D. Maiorca, B. Nelson, N. Srndi ˇ c´, P. Laskov, G.

Giacinto, and F. Roli (2013) “Evasion attacks against machine learning at test

time,” in Machine Learning and Knowledge Discovery in Databases, Springer,

pp. 387–402.

[74] Papernot, N., P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami

(2016) “The Limitations of Deep Learning in Adversarial Settings,” in 1st IEEE

European Symposium on Security and Privacy.

[75] A. Mądry and L. Schmidt, "A Brief Introduction to Adversarial Examples,"

Gradient Science, [Online]. Available:

http://gradientscience.org/intro_adversarial/. [Accessed 19 July 2019]

[76] Biggio, Battista, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić,

Pavel Laskov, Giorgio Giacinto, and Fabio Roli. “Evasion attacks against

machine learning at test time.” In Joint European conference on machine learning

and knowledge discovery in databases, pp. 387-402. Springer, Berlin, Heidelberg,

2013.

[77] Liu, D. C. and J. Nocedal (1989) “On the limited memory BFGS method for large

scale optimization,” Mathematical programming, 45(1-3), pp. 503–528.

[78] Goodfellow, I. J., J. Shlens, and C. Szegedy (2015) “Explaining and Harnessing

Adversarial Examples,” in 3rd International Conference on Learning

Representations.

 126

[79] Moosavi-Dezfooli, S.-M., A. Fawzi, and P. Frossard (2016) “DeepFool: A simple

and accurate method to fool deep neural networks,” in IEEE Conference on

Computer Vision and Pattern Recognition, pp. 2574–2582.

[80] Huang, R., B. Xu, D. Schuurmans, and C. Szepesvari (2015) “Learning with a

strong adversary,” arXiv preprint arXiv:1511.03034

[81] Carlini, N. and D. Wagner (2017) “Towards evaluating the robustness of neural

networks,” in IEEE Symposium on Security and Privacy, pp. 39–57.

[82] Lowd, D. and C. Meek (2005) “Adversarial learning,” in Proceedings of the

eleventh ACM SIGKDD international conference on Knowledge discovery in data

mining, ACM, pp. 641–647.

[83] Nelson, B., B. I. Rubinstein, L. Huang, A. D. Joseph, S. J. Lee, S. Rao, and J.

Tygar (2012) “Query strategies for evading convex-inducing classifiers,” Journal

of Machine Learning Research, 13, pp. 1293–1332.

[84] Xu, W., Y. Qi, and D. Evans (2016) “Automatically evading classifiers: A Case

Study on PDF Malware Classifiers,” in Network and Distributed Systems

Symposium.

[85] Srndi ˇ c, N. ´ and P. Laskov (2014) “Practical evasion of a learning-based

classifier: A case study,” in IEEE Symposium on Security and Privacy, pp. 197–

211.

 127

[86] Vorobeychik, Y. and B. Li (2014) “Optimal randomized classification in

adversarial settings,” in 13th International Conference on Autonomous Agents

and Multi-Agent Systems, pp. 485–492.

[87] Papernot, N., P. McDaniel, X. Wu, S. Jha, and A. Swami (2016) “Distillation as a

Defense to Adversarial Perturbations against Deep Neural Networks,” in

Proceedings of the 37th IEEE Symposium on Security and Privacy, IEEE.

[88] Cquestions.com. C programming interview questions and answers, 2015.

[89] Eui Chul Richard Shin, Dawn Song, and Reza Moazzezi. 2015. Recognizing

Functions in Binaries with Neural Networks. In Proceedings of the 24th USENIX

Conference on Security Symposium (SEC’15). USENIX Association, Berkeley,

CA, USA, 611-626. http://dl.acm.org/citation.cfm?id=2831143.2831182

[90] A. V. Vishnyakov, “Classification of ROP gadgets”, Proceedings of ISP RAS,

28:6 (2016), 27–36

[91] Grosse, K., N. Papernot, P. Manoharan, M. Backes, and P. McDaniel (2017)

“Adversarial Perturbations Against Deep Neural Networks for Malware

Classification,” in 22nd European Symposium on Research in Computer Security.

[92] Anderson, H. S., Kharkar, A., Filar, B., & Roth, P. (2017). Evading machine

learning malware detection. Black Hat.

[93] Chen, L., Ye, Y., & Bourlai, T. (2017, September). Adversarial machine learning

in malware detection: Arms race between evasion attack and defense. In 2017

 128

European Intelligence and Security Informatics Conference (EISIC) (pp. 99-106).

IEEE.

[94] Canavese, Daniele & Regano, Leonardo & Basile, Cataldo & Viticchié, Alessio.

(2017). Estimating Software Obfuscation Potency with Artificial Neural

Networks. 193-202. 10.1007/978-3-319-68063-7_13.

[95] Sebastian Banescu, Christian Collberg, and Alexander Pretschner. 2017.

Predicting the resilience of obfuscated code against symbolic execution attacks

via machine learning. In Proceedings of the 26th USENIX Conference on Security

Symposium (SEC'17). USENIX Association, USA, 661–678.

[96] C. Parker, J. McDonald, and D. Damopoulos, “Machine learning classification of

obfuscation using Image Visualization,” Proceedings of the 18th International

Conference on Security and Cryptography, 2021.

[97] Albawi, S., Mohammed, T. A., and Al-Zawi, S. (2017). Understanding of a

convolutional neural network. In 2017 International Conference on Engineering

and Technology (ICET), pages 1–6. Ieee.

[98] Sainath, T. N., Mohamed, A.-r., Kingsbury, B., and Ramabhadran, B. (2013).

Deep convolutional neural networks for lvcsr. In 2013 IEEE international

conference on acoustics, speech and signal processing, pages 8614–8618. IEEE.

 129

[99] Kabanga, E. K. and Kim, C. H. (2017). Malware images classification using

convolutional neural network. Journal of Computer and Communications,

6(1):153–158.

[100] Kalash, M., Rochan, M., Mohammed, N., Bruce, N. D.,Wang, Y., and Iqbal, F.

(2018). Malware classification with deep convolutional neural networks. In 2018

9th IFIP international conference on new technologies, mobility and security

(NTMS), pages 1–5. IEEE.

[101] J. Salwan, “Storm: Ropgadget - gadgets finder and auto-roper,” shell. [Online].

Available: http://shell-storm.org/project/ROPgadget/. [Accessed: 10-Mar-2022].

[102] A. Wibowo Haryanto, E. Kholid Mawardi and Muljono, "Influence of Word

Normalization and Chi-Squared Feature Selection on Support Vector Machine

(SVM) Text Classification," 2018 International Seminar on Application for

Technology of Information and Communication, 2018, pp. 229-233, doi:

10.1109/ISEMANTIC.2018.8549748.

[103] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. D. McDaniel,

“Adversarial perturbations against deep neural networks for malware

classification,” CoRR, vol. abs/1606.04435, 2016. [Online]. Available:

http://arxiv.org/abs/1606.04435

[104] W. Hu and Y. Tan, “Black-box attacks against RNN based malware detection

algorithms,” CoRR, vol. abs/1705.08131, 2017. [Online]. Available:

http://arxiv.org/abs/1705.08131

http://arxiv.org/abs/1606.04435

 130

[105] ——, “Generating adversarial malware examples for black-box attacks based on

GAN,” CoRR, vol. abs/1702.05983, 2017. [Online]. Available:

http://arxiv.org/abs/1702.05983

[106] D. Park, H. Khan and B. Yener, "Generation & Evaluation of Adversarial

Examples for Malware Obfuscation," 2019 18th IEEE International Conference

On Machine Learning And Applications (ICMLA), 2019, pp. 1283-1290, doi:

10.1109/ICMLA.2019.00210.

[107] D. Park, H. Powers, B. Prashker, L. Liu and B. Yener, "Towards Obfuscated

Malware Detection for Low Powered IoT Devices," 2020 19th IEEE International

Conference on Machine Learning and Applications (ICMLA), 2020, pp. 1073-

1080, doi: 10.1109/ICMLA51294.2020.00173.

[108] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the

inception architecture for computer vision,” in The IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), June 2016.

[109] Yang, C., Xu, J., Liang, S. et al. DeepMal: maliciousness-Preserving adversarial

instruction learning against static malware detection. Cybersecur 4, 16 (2021).

https://doi.org/10.1186/s42400-021-00079-5

[110] C. Ebert, J. Cain, G. Antoniol, S. Counsell and P. Laplante, "Cyclomatic

Complexity," in IEEE Software, vol. 33, no. 6, pp. 27-29, Nov.-Dec. 2016, doi:

10.1109/MS.2016.147.

http://arxiv.org/abs/1702.05983

 131

BIOGRAPHICAL SKETCH

Name of Author: Colby B. Parker

Graduate and Undergraduate Schools Attended:

University of South Alabama, Mobile, Alabama

Degrees Awarded:

Doctor of Philosophy in Computing, 2022, Mobile, Alabama

Master of Science in Computer and Information Sciences, 2018, Mobile, Alabama

Bachelor of Science in Computer Science, 2017, Mobile, Alabama

Awards and Honors:

Upsilon Pi Epsilon Honor Society

Scholarship for Service

Publications:

C. Parker, J. T. McDonald, T. Johnsten and R. G. Benton, "Android Malware

Detection Using Step-Size Based Multi-layered Vector Space Models," 2018 13th

International Conference on Malicious and Unwanted Software (MALWARE),

Nantucket, MA, USA, 2018, pp. 1-10, doi: 10.1109/MALWARE.2018.8659372.

C. Parker, J. McDonald, and D. Damopoulos, “Machine learning classification of

obfuscation using Image Visualization,” Proceedings of the 18th International

Conference on Security and Cryptography, 2021.

	Adversarial Machine Learning for the Protection of Legitimate Software
	Recommended Citation

	THE UNIVERSITY OF SOUTH ALABAMA

