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ABSTRACT 

 

Parker, Colby B., Ph.D, University of South Alabama, May 2022. Adversarial Machine 

Learning for the Protection of Legitimate Software. Chair of Committee: Jeffrey Todd 

McDonald, Ph.D.  

 

Obfuscation is the transforming a given program into one that is syntactically 

different but semantically equivalent. This new obfuscated program now has its code 

and/or data changed so that they are hidden and difficult for attackers to understand. 

Obfuscation is an important security tool and used to defend against reverse engineering. 

When applied to a program, different transformations can be observed to exhibit 

differing degrees of complexity and changes to the program. Recent work has shown, by 

studying these side effects, one can associate patterns with different transformations. By 

taking this into account and attempting to profile these unique side effects, it is possible 

to create a classifier using machine learning which can analyze transformed software and 

identifies what transformation was used to put it in its current state. This has the effect of 

weakening the security of obfuscating transformations used to protect legitimate 

software.  

In this research, we explore options to increase the robustness of obfuscation 

against attackers who utilize machine learning, particular those who use it to identify the 

type of obfuscation being employed. To accomplish this, we segment our research into 

three stages. For the first stage, we implement a suite of classifiers that are used to 



 

 xiv 

identify the obfuscation used in samples. These establish a baseline for determining the 

effectiveness of our proposed defenses and make use of three varied feature sets.  

For the second stage, we explore methods to evade detection by the classifiers. To 

accomplish this, attacks setup using the principles of adversarial machine learning are 

carried out as evasion attacks. These attacks take an obfuscated program and make subtle 

changes to various aspects that will cause it to be mislabeled by the classifiers.  The 

changes made to the programs affect features looked at by our classifiers, focusing 

mainly on the number and distribution of opcodes within the program. A constraint of 

these changes is that the program remains semantically unchanged. In addition, we 

explore a means of algorithmic dead code insertion in to achieve comparable results 

against a broader range of classifiers. 

In the third stage, we combine our attack strategies and evaluate the effect of our 

changes on the strength of obfuscating transformations. We also propose a framework to 

implement and automate these and other measures. We the following contributions: 

1. An evaluation of the effectiveness of supervised learning models at 

labeling obfuscated transformations. We create these models using three 

unique feature sets: Code Images, Opcode N-grams, and Gadgets. 

2. Demonstration of two approaches to algorithmic dummy code insertion 

designed to improve the stealth of obfuscating transformations against 

machine learning: Adversarial Obfuscation and Opcode Expansion 

3. A unified version of our two defenses capable of achieving effectiveness 

against a broad range of classifiers, while also demonstrating its impact on 

obfuscation metrics. 



 

 1 

 

 

 

CHAPTER I 

INTRODUCTION 

 

A crucial component in the world economy that has grown immensely since the 

turn of the millennia is the software development industry. A broad global market and 

communications have been developed by dramatic improvements in technological 

functionality, internet and computer hardware efficiency, resulting in the convergence of 

computers and software in every area of human life: entertainment, education, military 

usage, medicine, transport [1]. This improvement and rapid expansion has had a large 

economic impact as well, with the software industry contributing more than $1 trillion to 

the United States economy and adding millions of jobs across a wide range of industries 

and at multiple skill levels [2]. This rapid growth and success have made the software 

industry a tempting target for crime and theft. In 2018, it was reported that cybercrime 

had taken potentially $109 billion from the U.S. economy in 2016 [3]. 

It should be no surprise that piracy is an issue the industry takes extremely 

seriously as intellectual property forms the backbone of its success. Laws in the United 

States define and protect intellectual property using suite of different classifications, all 

of which can be applied to different aspects of the software produced and sold by the 

industry [4]. Novel concepts, ideas, and features implemented in new software can be 

patented, allowing the developers holding the patent to obtain a competitive advantage 
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[4]. Companies worried about software being released that is eerily like theirs or that is 

their product repackaged can seek a copyright, which protects the way they have 

implemented their ideas [4]. While patents and copyrights can be infringed, trade secrets 

can be stolen if the company does not do their due diligence in keeping the secret safe 

[4]. Obtaining these classifications for their software allow players in the industry legal 

recourse in case someone tries to steal their ideas from them, and people and companies 

do try [4]. 

To preemptively defend their software from attack, developers and companies 

turn to software protection [5, 6, 7]. Protections in software take the form of 

modifications made to the original program that make it more resilient to attacks made by 

malicious actors [5]. A prominent form of software protection employed by developers at 

all levels is software obfuscation. Obfuscation is the process of taking a program and 

applying a transformative function in order to produce a new program that, while 

functionally equivalent to the original, now has code and/or data that is more concealed 

and is harder to understand for both people and automated systems. Obfuscation is a vital 

tool to security and is used heavily by companies and other entities to defend against 

reverse engineering of their created software. 

The importance of obfuscation can be seen by examining a man-at-the-end 

(MATE) attack scenario. In this attack, the malicious actor has full access to the software 

and the machine running the software, with the developer of the software having no input 

as the actor is a legitimate user [8]. This is the scenario companies face when combating 

software piracy and tampering. An unprotected piece of software in this scenario could be 

easily reverse engineered, analyzed, and then be at the mercy of the bad actor. This 
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highlights the importance of obfuscation. Since obfuscation is placed into the code at 

development, it would be present in the MATE scenario and give the program some 

defense against malicious user [5-7].  

In 2018, unlicensed, or pirated, software accounted for 37% of all software 

installed globally [9].  The money lost from this can have a strong impact on the global 

economy by hurting the software industry’s ability to foster and promote job growth 

while also pushing innovation [10]. In a worst-case scenario, compromised intellectual 

property can affect not just the economy but extend its harm to national security. Since 

this is a threat faced by all companies great and small, some of which could not handle to 

financial impact of piracy, many companies seek to prevent it in the first place [11]. This 

leads more and more companies to make use of software protections such as obfuscation.  

While obfuscating software may prevent an inexperienced adversary from gaining 

access to the software, it is not a silver bullet for protecting all software. With enough 

time and resources at their disposal, a sufficiently capable actor can eventually work 

through the transformations that have been applied to a piece of software and return it to 

something close enough to original form [7]. Due to the nature of MATE attacks, the 

attacker would always win in the end if nothing was done. Developers counteract this by 

using obfuscation not as an ironclad defense but as a way to buy time [6]. The goal 

becomes to make it so by the time the software has been reverse engineered it is no 

longer a victory for the attacker, either by making it so the software is obsolete or no 

longer functioning due to other factors [12]. 

Deobfuscation is the process of reverse engineering a piece of obfuscated 

software and retrieving or recreating the original program code. Although manual 
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deobfuscation is exceptionally reliable, it is a time-consuming process. Automatic 

deobfuscation tools are meant to speed up the process by automatically extracting some 

information or undoing an obfuscated transformation entirely [13, 14, 15]. These tools 

enable reverse engineers to scale their efforts with an increasingly large number of 

programs. There is a downside, as different obfuscating transformations often require 

specific techniques to undo and using these techniques on incorrect transformations 

would only make the process worse [13, 16]. Therefore, reverse engineers must first 

determine the type(s) of obfuscation(s) that were used on a given program to use any 

automated tools that they may possess. Identifying used obfuscations is often itself a 

manual task and therefore only increases the time needed to deobfuscate a program. 

     Obfuscations can be identified based on the unique changes different 

transformations will perform on the program as well as the impacts on the program’s 

complexity [6, 14]. Recent work has shown, that by studying these side effects, one can 

associate patterns with different transformations via machine learning [14, 17, 18]. 

Searching for and extracting those patterns within the obfuscated a program’s code or 

behavior enables machine learning classifiers to be trained to successfully identify the 

types of transformations used on obfuscated pieces of software. While this benefits the 

work of malware analysis, this also weakens the effectiveness of obfuscation used for 

protecting legitimate software. It may be possible as well to modify or remove the 

features created by obfuscation transformations, thus defeating the machine learning 

based identifiers.   

The altering of features to evade machine learning models is part of the field of 

adversarial machine learning [19].  Attacking a machine learning model involves 
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analyzing the way the model makes decisions and using what is learned to slowly modify 

a sample in subtle ways to craft an adversarial sample [19]. These samples will be viewed 

by the model not as what they are but as what the attacker wants them to be. Figure 1 

provides a visual example of an adversarial image crafted to be mislabeled by an image 

recognition model. Adversarial ML has been applied to a wide variety of field beyond 

just images, such as audio, health data, spam email, and even malware [19]. 

 

In this research, we examine if Adversarial ML can be leveraged for defense 

instead of attack. Models made to detect obfuscation rely on features left in the code by 

the transformation to make accurate decisions. Principles used in Adversarial ML attacks 

will allow us to identify the features being used to make decisions without having to 

analyze the models themselves. This information can then be used make changes to 

obfuscated programs to produce Adversarially Obfuscated samples that are more robust 

against detection. We also examine the concept of code expansion as separate defense 

 

Figure 1. An adversarial image using noise to fool detection. 
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against detection. Code expansion would rely on adversarial ML to identify relevant 

features but would then add additional features to the sample to make features less unique 

without modifying the obfuscated code. 

 

1.1 Research Questions 

Recent research exploring the concept of using machine learning to assist in 

bypassing the protection of malware and other similar software has inadvertently created 

a potential security risk for legitimate software. This has prompted the hypothesis to 

explore if tactics used to undermine the effectiveness of machine learning may be used to 

enhance legitimate software security. This research seeks to answer the following 

research questions: 

1. How reliably can obfuscation be detected using machine learning?  

2. How easily can we evade ML detection using adversarial ML?  

3. What are the constraints and possibilities for incorporating adversarial ML into an 

existing obfuscator? 

4. Can code expansion achieve similar or comparable protection to adversarial ML? 

 

1.2 Research Goals and Contributions 

This research aims to provide effective methods to improve the stealth of 

obfuscation against adversaries employing machine learning to identify protections in 

place within software. The goal is to employ adversarial machine learning tactics 

alongside our own code expansion approach to arrive at satisfactory evasion rates.  

We build upon previous work that has shown the potential for machine learning to 
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be used to accurate identify the type of obfuscating transformation applied to a piece of 

software without need for source code [14, 17, 18]. The methods we are implementing 

seek to enable the protections of legitimate software to not be weakened be adversaries 

who would benefit from this prior research. 

At completion of this research, we hope to produce a prototype of our own 

obfuscator that can automate the processes we develop by incorporating them at the time 

of obfuscation. This tool will be made available to other researchers to serve as a basis 

for new research that tests it in order to enhance it in meaningful ways. 

 

1.3 Document Outline 

The remainder of this prospectus is outlined as follows: Chapter II discusses 

background concepts relevant to the work being done such as obfuscation, machine 

learning, and adversarial machine learning. Chapter III is an examination of the related 

work that is adjacent and foundational to our research. Chapter IV presents a timeline and 

the activities involved in the dissertation research. 
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CHAPTER II 

BACKGROUND 

 

This chapter will discuss several concepts in depth that are needed to understand 

the goals of this research. The section will begin by discussing the software protection 

approach known as obfuscation with a focus on the different types and the metrics used 

to evaluate them. Then, an overview of the basics of machine learning and several 

different types of models will be provided. Finally, the section will conclude with an 

overview of adversarial machine learning. 

 

2.1 Obfuscation 

The process of transforming the source code of software to make to it incredibly 

difficult for attackers to successfully analyze the code is known as obfuscation [5, 6, 7]. It 

is not wholly uncommon for obfuscation to be mistaken for “security by obscurity” in 

some areas [5]. Obfuscation is a part of a category of techniques that are to defend 

software against analysis and reverse engineering, particularly in Man at the End 

(MATE) attack scenarios [5]. In these attacks the malicious user has complete access to 

the software and control of the execution environment [6, 7]. As previously noted, these 

techniques are not complete protection, but instead focus on making it extremely difficult 

for the malicious user to successfully perform their attacks successfully [20]. Obfuscation 
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is accomplished through various transformations applied to the source code. This section 

will provide background on the concept of obfuscation as well as descriptions for the 

transformations used in this research. The metrics used to evaluate transformations will 

also be discussed as well as a look at the landscape of obfuscation focused research. 

Obfuscation is accomplished by using a transformation, T, on a program in some 

representation (binary, intermediate, high level, etc.).  T then produces a new program, 

P’, which is semantically equivalent to the original program, meaning that for a 

transformation to be valid T(P) = P’. P’ is most often outputted in the same form as the 

original program. In order to achieve a satisfactory level of protection, multiple different 

kinds of transformations, even multiple iterations of the same transformation, will usually 

be applied to the original program. These transformations will be both layered on top of 

each other and applied to different parts of the program. Obfuscation is rarely performed 

by hand on large sources and is instead accomplished using programs known as 

obfuscators, which apply transformations based on the algorithms designed into them [1].  

From this, we can define obfuscators, O, as programs that apply transformations, 

T, from a selected set, t, to a source program, P. For example, given t = {T1, T2, T3, T4, 

T5}, an obfuscator O acts as a transformer (where O(P) = P’) through application of some 

number and order of transformations.  Multiple variants of a program can be generated 

from the same set of transformations be reordering the sequence that the transformations 

are in applied in. For example, O(P) = T3(T1(T4(T5(P)))) = P’ would produce a program 

that is syntactically different from O(P) = T1(T5(T4(T3(P)))) = P’. Adding to this the fact 

that every transformation can be modified using various inputs and settings before they 
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are applied, an obfuscator can ensure that is variant generated is unique enough from 

each other [21]. 

Researchers created a formal definition of an obfuscator in order to determine if a 

program could be obfuscated to create a program that gave no information about itself 

other than the input/output relation, a virtual-black box [22]. The work determined that 

this was an impossibility for general programs and suggested instead that computational 

indistinguishability should be the goal for obfuscation instead. This would mean that if 

given two programs that are different but functionally equivalent, their obfuscated 

variants should be indistinguishable from one another [22]. 

The goal of obfuscation is to alter a source program in a way that creates a new 

program that is functionally identical to the original but is now more difficult to 

understand. The semantic equivalence between the original and the variant can be stated 

as: x: P(x) = P’(x).  This all done to defeat man-at-the-end attacks performed by 

malicious end users who have unrestricted access to deployed code. Several commercial 

and open-source obfuscators are available and are in active use by software companies 

and researchers across the board [23, 24, 25].  

An important component of obfuscation that must be remembered is that, while 

the obfuscating transformations themselves are not a secret, when where and how they 

are applied in the program are kept hidden. This further increases the effort and 

computing resources required since the adversary must first find the transformation and 

the determine which one it is. 
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2.1.1 Obfuscation Transformations 

Obfuscation transformations are traditionally divided into three categories based 

on the workings of the transformations [1]. The categories are layout transformations, 

which focus on making source-code unreadable; data transformations, which focus on 

replacing data structures; and control transformations, which manipulate control 

structures. It is possible for transformations to be classified as dynamic transformations, 

which means that the transformation will be applied to the program at runtime [1]. 

Outside of this property, dynamic transformations can be placed into one of three 

preceding categories. 

The following sections will give overviews of the transformation categories, as 

well as the transformations within those categories that are relevant to this research. 

Those transformations are Virtualization, Just-in-time Compilation (Jitting), Opaque 

Predicates, Control-flow Flattening, Encoding Literals and Encoding Arithmetic. As our 

work is not concerned with layout or dynamic transformations, these sections will be 

brief and are here for completeness’ sake.  

2.1.1.1 Layout Transformations, also called lexical transformations, differ from the two 

remaining categories by being concerned only with the readability and layout of source 

code [6]. In other words, they only alter the appearance of programs they are used on 

without any impact on semantics.  The nature of these mean that they are one-way 

transformations. Once applied, the original form cannot be recovered.  Examples of these 

transformations include removing comments, the reformatting of source code, and the 

changing of variable names. 
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Since the semantics of the program has not been altered, layout transformations 

have almost no cost impact and the general unintelligibility of transformed code means 

that the potency of these transformations is high as well; however, resilience and stealth 

are poor with many of the transformations [14]. The major drawback of these types 

however is that the transformations effect only source code and are erased with 

compilation.  Nevertheless, layout transformations remain popular with JavaScript and 

other noncompiled languages.  

2.1.1.2 Data Transformations are concerned with altering the data structures within a 

program to hide both what they are used for and their operations [26].  Collberg et al 

further subdivided these transformations by describing them as performing storage, 

encoding, aggregation, or data ordering [6]. A transformation as described as storage if it 

alters the container that holds the data in question. On the other hand, encoding 

transformations operate by changing what the data appears as, often by changing data 

types or creating functions specifically to store and return the data [14]. A transformation 

is an aggregation if it combines variables or structures into larger or more complex forms, 

thereby preventing an adversary from being able to immediately discern their usage [14]. 

Lastly, ordering means that a transformation alters the order of parameters or functions 

inside of classes and variables within method headers.  

The only data transformation of interest to us within this research is of the 

encoding type.  Specifically, we are interested in the encoding of string and integer 

literals. For strings, encoding is often accomplished by getting the value via function 

instead of storing it while integers use opaque expressions for encoding [27].   
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2.1.1.3 Control Transformations are the final category. As stated previously, this 

category contains transformations that alter the control structure of programs [6]. Like the 

data group, this category can be subdivided into three groups based on the effect had on 

the code. A transformation in this group with the effect of aggregation would either break 

down control structures, computation, or methods into multiple smaller units, or it could 

have the opposite effect and combine unrelated pieces of code into one [6]. 

Transformations of this type can also replace method calls with the full body of the 

method or vice-versa [7].  Figures 2 and 3 show examples of aggregating 

transformations. 

 

 
 

Figure 2. Inlining and Outlining of transformations [6]. 

 

 

 

 
 

Figure 3.  Splitting one function into two [5]. 
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An ordering transformation would alter, potentially randomly, the order in which 

parts of the code are executed [6]. For example, statements could execute earlier or later 

than intended, or entire loops may be completely reordered. Since transformations of this 

type can heavily impact the semantics of a program, they must be heavily checked and 

validated to ensure the program still functions as intended [28]. To mitigate this risk, 

transformations of this type are usually performed on independent blocks of code [14]. 

The final type in this category is computational transformations, which operate by 

inserting useless code into the program [6]. Changes introduced by these transformations 

obscure the proper control flow as the inserted code will appear as possible alternate 

paths when, they have no purpose. This can be used to make the possible paths through 

the program seemingly grow at an extremely high rate [6]. The bulk of transformations 

we are concerned with in this research comes from the control category. These 

transformations are Virtualization, Just-in-time Compilation (Jitting), Opaque Predicates, 

Control-flow Flattening, and Encoding Arithmetic.  

2.1.1.3.1 Virtualization is a type of ordering transformation that operates by 

creating a unique virtual environment within the transformed software [29]. This is 

accomplished by constructing an interpreter, usually in the form of a large switch 

statement, that is complete with its own unique instruction set. After the interpreter is 

created and placed within the software, target parts of the binary will then be transformed 

from their original source into commands from the interpreters newly generated 

instruction set [5].  

Virtualization has shown to be quite effective against reverse engineering attacks 

making it a popular option for software protection [30-33]. 
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2.1.1.3.2 Just in Time Compilation, called Jitting for short, is another 

transformation of interest to us in the control category. As the name implies, this 

transformation effectively adds dynamic compilation to the transformed program. When 

the transformation is applied, target statements will be replaced by method calls unique to 

that statement [7]. Unlike similar aggregate transformations, these functions do not 

simply contain the original code, but instead contain code that will compile and load into 

memory the original statement at runtime [34]. 

 

 
 

Figure 4. Control Flow Flattening [5]. 

 

 

 

2.1.1.3.3 Control Flow Flattening is a transformation that alters the flow of the 

program by combining areas of code containing branch statements into one large 

seemingly infinite loop [7]. This loop will be controlled by one segment of code, the 

dispatcher, that will determine the next code block to be executed. This allows the 

program to still be executed in the proper order despite the now flattened control flow. 

Once the code has been executed properly, the dispatcher will terminate the loop on the 
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next cycle, allowing the control flow to continue as normal [6]. Figure 4 shows an 

example of source code before and after it has been flattened.  

2.1.1.3.4 Opaque Predicates is a transformation that can be classified within the 

control group as computational. When applied to code, multiple new branches will be 

introduced at points, giving the appearance that the code now has multiple execution 

paths in addition to the original [7]. The code comprising these branches is dummy code 

that performs no action relevant to the program and will never be executed. The new 

branch statements introduced for the paths will contain opaque predicates, predicates that 

will always evaluate to the same value, which are crafted by the obfuscator to appear as 

though they could be true or false [6, 35]. These dead branches can then not be 

immediately ignored by reverse engineering tools and make processes such as 

disassembly more difficult [6]. Figure 5 is an example. 

 

 
 

Figure 5. Opaque predicate used to introduce bogus control flow [17]. 
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2.1.1.3.5 Encoding Arithmetic is a transformation which replaces mathematical 

expression found in the source with longer, more complex calculations [6]. This a type of 

aggregate transformation within this category. 

2.1.2 Metrics for Obfuscation 

In addition to semantic equivalence, a transformed program P’ must be satisfactory in 

four other areas to be considered fully obfuscated [1]: 

• Analysis and modification of P’ should require more time than the original 

• Construction of automated tool to analyze P’ should be more difficult than the 

original 

• Increases to time and overhead should be minimal 

• P’ should have the same statistical properties as the original [36]. 

These requirements are the basis for the metrics that are used to measure and compare 

obfuscating transformations: potency; resilience; cost; and stealth [5, 6, 7]. The 

requirements can be reworded and expanded to serve as informal definitions for the 

metrics. Going further, three of the above metrics can be given formal definitions. 

The first metric, potency, measures how difficult a transformation makes it to 

understand obfuscated code as compared to the original. Put another way, potency is a 

transformations impact on the complexity of the source code [5, 6, 7]. Complexity in this 

scenario can be a measure of some aspect of the code or the performance of an analysis 

done against the code. As this means complexity can be measured in multiple ways, it 

becomes important to view the potency of a transformation with respect to the 

effectiveness of a transformation [36]. We can describe effectiveness by modifying the 

description of potency so that the effectiveness of a transformation is a measure of its 
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impact on a given complexity metric. Potency can then be defined using effectiveness 

such that the potency of a transformation is a measure of its effectiveness across a set of 

complexity metrics. 

To formally define effectiveness, let T be a transformation, P be a source 

program, P’ be an obfuscated variant of P such that T(P)=P`, and C be a given 

complexity metric for a program. The effectiveness of T, Teff, can be obtained by taking 

the difference between C(P`), the complexity metric of P’, and C(P), the complexity 

metric of P. Viewing this as a formula, Teff = C(P`) - C(P). Using this formula a 

transformation can be labeled: effective if  Teff >0, meaning it increased complexity; 

ineffective if Teff =0, meaning there was no meaningful change; and defective if Teff <0, 

meaning it decreased complexity [5, 6, 7].  

Based on the definition on the formal definition for effectiveness, a 

transformation T can be considered potent against a set of complexity metrics C if for an 

obfuscated program P’=T(P), there is one or more Ci  C such that T is effective with 

respect to P’ and the measurement of Ci, while for all other Cj  C (not equal to Ci), T is 

not defective with respect to P’ and measurement using Cj. The potency of T, Tpotency, can 

be viewed as the collective increase across all metrics in C [5, 6, 7]. In other words, a 

transformation is potent if, with regards to complexity, it increases one or more metrics 

while not decreasing any other metric, and a transformations potency can be measured as 

the increase in all complexity metrics.  

The second metric, resilience, can be informally defined as the strength of a 

transformation against deobfuscation, via the use of an automated deobfuscator [5]. In 

other words, it is a measure of how time and resource intensive it would be for an 
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automated tool to deobfuscate a transformed program, undoing the transformation and 

producing something equivalent to the original program. In addition, resilience also 

considers the time and resources needed for an actor to create the tool. These two values 

are called deobfuscator effort and programmer effort respectively, with effort being a 

combination of time and resources [5].  

With this description in mind, for a given transformation T and a program P, the 

resilience of T when applied to P is found by the formula: 

Tres(P) = Resilience (TDeobfuscator_Effort, TProgrammer_Effort) 

 Resilience is a qualitative measure that uses a scale of trivial, weak, strong, full, 

and one-way [5]. It should be remembered that all obfuscating transformations can be 

undone with enough effort, meaning that even one-way transformations simply require an 

extremely high amount of effort [20]. 

The third metric is cost, and it can be viewed as the simplest to understand and 

define. Cost is defined as the overhead introduced by the transformation after it is applied 

to the program [5]. It is a measurement of the added time needed to execute the program 

and the space needed for the program. Transformation cost (Tcost) w.r.t program P was 

formally defined as follows [36]: 

 

dear if time/resources takes to execute P’ is exponential  

costly if time/resources taken to execute P’ is O(np)  

cheap if time/resources taken to execute P’ is O(n) 

Free if time/resources taken to execute P’ is O(1) 

Tcost(P) = 
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The final metric is stealth. Stealth is defined as how well the transformed parts of 

the code are concealed in the original code. In other words, how closely do the 

obfuscations resemble the non-transformed areas of code [5]. Stealth is the only metric 

without a true formal definition. This is due to the nature of stealth being hard to measure 

and largely context sensitive. 

 

2.2 Machine Learning 

Machine Learning (ML) is an area of computer science that focuses primarily on 

the automation of analysis for data sets of varying sizes [37]. Through this analysis, 

models can be produced that reflect various relationships found in the data and can be 

used to make decisions for new data [37]. This section is not intended to serve as a 

complete overview of machine learning, but rather to provide a basic background and 

reference. Terms explained in this section will be used throughout the remainder of this 

dissertation. The following subsections will introduce the categories of machine learning, 

the basics of data collection, and provide overview for the training and testing process. 

2.2.1 Categories 

ML can be divided into 3 broad and distinct learning categories: supervised, 

unsupervised, and reinforcement. The main differentiation between the three categories 

are the types of data that is needed/being used for analysis and the expected output [38]. 

Beyond that each category also has techniques and algorithms unique to that class and 

well as different types of models produced at the end; though it is possible for models 

produced by the different categories to be used for similar applications. We will briefly 
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describe each of the categories, though for this research we are only concerned with 

supervised learning. 

2.2.1.1 Supervised Learning is used for the analysis of labeled datasets. Samples in 

these datasets all have labels attached to them which represent the output that should be 

obtained as a result of analyzing that sample [39]. The goal of supervised learning then is 

to analyze the given samples of each label then learn how the features of those samples 

resulted in them being given that label.  The result of this is a model that can take in 

samples and then properly label them, even if the samples were not part of the original 

dataset. This process can be given one of two names depending on the nature of the label. 

If the label places the sample into a category, group, or class it’s called classification. 

Examples of classification are malware detection, translation, and spam filtering [40, 41, 

42]. If the label represents a continuous numerical value, then it’s called regression. 

Examples of regression include predicting an employee’s potential salary and predicting 

the expected value of house [43, 44]. 

2.2.1.2 Unsupervised Learning, contrasting the previous category, is used for the 

analysis of datasets comprised of samples with no labels. The common goal of this kind 

of learning is to use a chosen similarity metric to find the distance between samples in the 

set and then use this distance to create groups that can then be labeled [45]. This kind of 

task is known as clustering. It is possible to use unsupervised learning to assist in the 

training of other models [46]. 

2.2.1.3 Reinforcement Learning, is used to produce an agent that can act autonomously 

within a given environment or to serve as a policy for creating planning and control 

schemes [47]. To that end, datasets for this task take the form of “runs” through a 
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simulation of the environment in question. Each sample in the set will take the form of 

the sequence of actions taken in the run and the rewards that were received. Unlike the 

previous methods, this kind of dataset does not need to exist prior to learning beginning. 

The agent can be placed into the simulated environment and learn from scratch as it tries 

new actions [48]. 

2.2.2 Phases 

Machine Learning of any category can be broken down into three phases. These 

are data collection, training, and testing. The following subsections will walk through 

these phases and give a basic overview of each. As mentioned earlier, our research is  

 

 
 

Figure 6. Diagram of a generic ML system. Arrows represent information flow [49]. 
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focused only on supervised learning so these sections will focus examples primarily on 

that category.  Figure 6 shows a general view of a ML system.  

2.2.2.1 Data Collection primarily consists of gathering a large number of samples that 

will be analyzed to form a dataset. The type and nature of this data will be dependent on 

the problem that is being solved and the learning style being used [38]. For an application 

of supervised learning, such as spam filtering, the dataset would consist of emails that 

would be labeled as either “spam” or “not spam” [42]. A dataset for unsupervised 

learning, such as one being used for anomaly detection, would consist of samples that 

described events with no label attached to them [50]. The goal here would be to use ML 

to find the events in the set that are outliers or anomalous. Finally, a dataset for 

reinforcement learning that would be used to train an agent to play a video would be 

playthroughs of the game made up the possible states of the game, what actions were 

taken in those states, and the result of those action [47]. 

2.2.2.2 Training and Testing are the next two phases. The training phase is where the 

data is analyzed to learn the model [51]. Generally, a ML model can be described as a 

parametrized function that takes in a sample as input. The sample can be given to the 

model in its original form, or it can represent as a set of features that describe the original 

data. The output of this function is then the predicted answer for whatever question is 

being asked or the value for a property of interest. The goal of the training phase is for 

the learning algorithm that was chosen to find the correct parameters for the function 

[51]. The parameters are determined based on the category of learning being used. For 

supervised learning the parameters are modified so that the predictions of the model 
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match the labels from the dataset. This is accomplished through a loss function which 

gives a value for how dissimilar the models prediction is from the correct label [51]. 

After training is complete, the next step is testing. In supervised learning, this is 

done by using the created model to predict labels from a test dataset and scoring its 

performance. This test dataset is comprised of samples that were not included in the 

training data. This is done to validate that the model can perform sufficiently on data that 

was previously unseen. 

 

2.3 Adversarial Machine Learning 

As ML became more and more prevalent, it became clear that the reliance on 

large amounts data at the training phases and the uncertain nature of new data at the 

testing/inference phases presented unique security challenges [52]. Chief among these 

was the potential for an adversary to manipulate the data to achieve a variety of ends such 

as impacting performance, or the stealing of sensitive data previously seen by the model. 

The study of theses security issues gave rise to the field of Adversarial Machine Learning 

(AML). AML research focuses on the attacks used on ML systems and the capabilities 

required for them; improving the design of and adding defenses in order the mitigate 

those attacks; and the overall consequences of a successful attack [19, 52, 53]. AML is 

not concerned with the study of flaws and biases that may impact a system as they are not 

intentional attacks [49, 19]. 

 In this section we will first focus on describing the taxonomy of an AML attack 

by examining the ML attack surface, the techniques available in AML, and the different 

knowledge levels an attacker can have of a system. We will then provide more detail on 
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Evasion Attacks, the type of attacks used in our work, as well as detail on the crafting of 

adversarial examples. As defense is not relevant to our work, we will not be discussing 

the various defenses used in AML. 

2.3.1 Machine Learning Attack Surface 

An attack surface is the different locations in a system that can be targeted by an 

attacker. One goal of security is to try and keep the number of targets in systems attack 

surface as low as possible as these targets can allow an attacker to manipulate input, 

impact system functionality, or steal data [49]. While the attack surface of a specific ML 

system will vary slightly based on the type of learning being used, purpose, and 

implementation of the system, it is possible to model an attack surface for AML based on 

the general design of an ML system and the ML pipeline [39, 19].  The NIST taxonomy 

for AML attacks defines the attack surface (called ‘target’ in the taxonomy) using the ML 

pipeline and identifies three target areas: physical domain, digital representation, and the 

ML model [19]. Figure 7 shows the ML pipeline with these targets labeled. 

The first attack target is the input portion of the physical domain. This would be 

the inputs collected from sensors, users, or a data system. Following this, the next target 

area is the digital representation. This is the portion of the pipeline where inputs that have 

been collected are converted into the proper data form and then preprocessed before 

being given to the ML model. The next target is the ML model in use and encompasses 

the model being given the features taken from the input and producing an output. The end 

of the pipeline is part of the physical domain attack surface just like the beginning but 

deals with the handling of output by the system instead of inputs [19]. There is one more 
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attack target not shown in the pipeline model and that is the data collection process as 

well as the training stage of the model [19, 54]. 

 

 
 

Figure 7. ML pipeline with labels attack surfaces. The first row is generic while the 2nd 

and 3rd rows are for specific systems [39]. 

 

 

 

 

Figure 8. Known attacks and attack surfaces on ML systems [49]. 
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A different description of the ML attack surface is given in [49] based on a more 

detailed but still generic overview of an ML system can be seen in Figure 8. 

Manipulation attacks are pictured in red at the site of attack: (1) data manipulation. (2) 

input manipulation. (3) model manipulation. Extraction attacks are pictured in blue, 

showing the flow of information: (4) data extraction. (5) input extraction. (6) model 

extraction. Attack surfaces roughly correspond to gray plates: deployment, engineering, 

and data sources [49]. While this model only has three target areas and was not created 

specifically for AML, it does not contradict the NIST taxonomy and can be seen as 

complimentary. 

2.3.2 Techniques 

After identifying the target area of the ML system, the next component of an 

AML attack is the technique being used for the attack. The technique used in an attack 

will be chosen based on multiple factors, namely the chosen target and goals of the 

attacker. Techniques are generally classified first into two groups based on the target and 

then into smaller groups based on the goal of the attack [49, 19]. The following 

subsections will describe these two broad categories as well as the subcategories within 

each. For this dissertation we will use the six categories from [49] and as shown on 

Figure 8. Again, while not intended for AML, the subcategories generally used and as 

shown on the NIST taxonomy fit well into these categories.  We will briefly describe 

categories and techniques but will not go into detail. Readers wishing to know more 

about specific techniques are encouraged to view the NIST AML taxonomy [19] which 

contains references for all recognized techniques. 



 

 28 

2.3.2.1 Training category techniques are used for attacks that target the data collection or 

training phases of an ML system. All techniques in this category fall into the first 

category of Figure 8. Also called “causative” and “poisoning” techniques, the goal of 

attacks using these techniques is to corrupt or influence the model so that once trained it 

behaves differently than what would be expected [55 ,56]. To accomplish this, techniques 

operate on either the training data being used or tamper with the settings used for the 

models training. The latter techniques are called Logic Corruptions and can modify the 

ML algorithm in order to alter the entire learning process [57, 58]. 

 Attacking the training data is accomplished through either Data Injection or Data 

Manipulation [19]. Injection techniques insert new data into the training set that has been 

modified in some way so that it will cause the model to learn incorrect input output 

mapping [59].  Manipulation techniques modify data that is already present in the training 

set with the same end goals. The data introduced or modified as part of these two 

techniques can accomplish the goals of the attack even if the data is simply noisy and not 

malicious [60]. Models that continue to train after deployment, known as online models, 

can be targeted by these techniques at initial training or after deployment [19, 54]. The 

unique training nature of reinforcement learning has been shown to be vulnerable to these 

types of attacks as well [61]. 

2.3.2.2 Inference techniques are all other techniques that target the model after it is 

completed and deployed and are labeled inference techniques. Attacks using these 

techniques are known as Exploratory Attacks, and do not tamper with or change the 

target model and focus only on getting a chosen output or learning about inputs or 
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training data [55]. Attacks using these techniques are the most often researched aspect of 

AML [49, 19]. 

 The goal of changing a model’s output is accomplished via Evasion. Techniques 

used for this purpose craft what is known as “adversarial samples” by modifying existing 

samples using calculated noise in order to shift that sample across a model’s decision 

boundary [62, 63]. Figure 8’s input manipulation category is the equivalent to evasion 

techniques. Techniques used for Model Inversion, use the given output responses of a 

model to learn information. This can be unseen inputs, data from the training set, or if a 

given sample was part of training set [64, 65]. These techniques are part of groups 4 and 

5 on Figure 8 depending on the type of information being gained.  

The remaining techniques in this category are used for Model Extraction and 

belong to group 6 on Figure 8. These techniques query the system under attack in order to 

reconstruct the ML model using the information gained from the input-output pairs [66, 

67]. Any technique in the Inference category can also be described Oracle Technique if 

the only interaction with the ML system is the querying of chosen inputs and then 

analysis of the outputs [19, 68]. 

2.3.3 Adversary Knowledge 

 The last component for defining an AML attack is the knowledge possessed of the 

ML system by the adversary [49, 19]. In this instance, the adversary’s knowledge also 

encompasses the level of access they have to the system in question [63]. Much like 

attacks in other security or analysis areas, attacks in AML are placed on a scale where 

one end is an adversary having complete knowledge of an ML system, Whitebox Attacks, 
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and the other end is an adversary with only the bare minimum of knowledge, Blackbox 

Attacks [69].  

 If an attack falls into the Whitebox scenario, an adversary can be assumed to 

know any relevant information about the system to perform the attack to its full effect 

[49, 19]. This can include knowing the nature of the training data used, specifics of how 

the model was trained, the parameters found and used for the model’s function, the nature 

and features of input data as well as output data, etc [19, 63, 69]. When viewing 

Whitebox attacks from an access perspective, the adversary is assumed to have access to 

any relevant step of the ML system [57]. It is possible for an attacker to obtain Whitebox 

access to a deployed model through a variety of means such as reverse engineering the 

deployed system [70]. 

 Blackbox scenarios on the other hand, involve attackers whose knowledge of the 

system includes only the information which can be obtained from using the ML system 

[58]. More specifically, Blackbox attacks are assumed at most to only have knowledge of 

the output for certain inputs; however, the attacker’s knowledge of the inputs and outputs 

is often still limited to the raw data going into the system and the systems provided 

output. They may still lack knowledge of any changes performed on the raw data, and the 

knowledge of the output is not assumed to include the actual output of the model, just the 

system [63, 57, 58].  

 In practice attacks often fall into a middle ground called Graybox Attacks, in 

which the attacker has some combination of knowledge relevant to the attack [19]. Figure 

9 provides an example of the aspects the adversary may need knowledge of for training 

and inference techniques. 
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2.3.4 Evasion Attacks 

For the work done in this dissertation, we are concerned with the category of 

attacks with the goal of evading the model. These Evasion Attacks, as mentioned 

previously, are performed by feeding selectively modified inputs known as Adversarial 

Examples (AE) that will cause the output of the model to be different than it would have 

been for the original input [62, 71]. The changes made to these samples are known as 

adversarial perturbations and act as noise to confuse the ML model by altering the 

features the model will process [63]. While evasion attacks can be performed against 

unsupervised and reinforcement learning, the most often studied attacks are shown 

against supervised learning models, particularly those performing classification [49, 19, 

72]. As our work is only concerned with classification, this section will only discuss 

evasion attacks of that nature as well. 

Figure 10 gives a visual example of various AE created for evasion attacks for 

different kinds of inputs. The noise added to samples is determined the input-output 

relationship of the model being targeted [55].  Finding the noise needed to create an 

Figure 9. This figure shows the components of an ML system. Parts that can be attacked 

by the two categories as well as what knowledge is generally required [39]. 
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adversarial example has been formalized as the minimization problem: 

arg min f(x + r) = l s.t.  x* = x + r ∈ D 

         r 

where x, an input correctly classified by f, is modified with some perturbations r, to 

produce an adversarial sample x* that is part of the same input domain D but will now  

appear as a new label l [73].  The attacker can either choose l or let it be any label other 

than the original, resulting in the attack being targeted or nontargeted respectfully [74]. 

The type of analysis that can be performed is dependent on whether the attacker has 

Whitebox or Blackbox knowledge of the model [75].  

 

 

 

 

 

Figure 10. Four examples of adversarial inputs. 
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2.3.4.1 Whitebox Evasion consists of attackers performing evasion attacks with 

Whitebox knowledge can analyze varying aspects of the function f that represents that 

ML model as well the parameters θ for that function [69]. This knowledge allows 

different methods to be used to solve the problem for creating an AE, with this being the 

primary difference between Whitebox attacks. The first techniques shown made use of 

optimizers already in use in machine learning as the approximation to solve the problem 

[76, 71].  Szegedy et al. used the L-BFGS optimizer and were the first to find that ML 

models, including deep neural networks, were misled by r values that were not easily 

seen by human observers [77]. 

 The remaining techniques make various assumptions to craft samples more 

efficiently. The first of these techniques was the Fast Gradient Sign Method [78]. This 

technique makes an assumption about the linearization of the model resulting in the 

equation for making an adversarial sample: 

x*=x+ϵ⋅sign(▽xJ(θ,x,y)) 

where J is the cost function used for f  [78]. This technique has proven to highly effective 

at crafting samples in a variety of instances [19]. Many other techniques that make other 

assumptions or constraints have been created as well [63, 57, 71]. For instance, if there is 

a need to place limits on the changes introduced via r, there are techniques for varying 

levels of constraint [74, 79, 80]. The bounds placed on the changes allowed for a sample 

are often determined based on the domain [70]. 

 In this research, we intend to utilize the Fast Gradient Sign Method (FGSM) and 

the Carlini & Wagner Method (C&W) to generate adversarial samples [81]. We will 

describe both methods in a later section. 
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2.3.4.2 Blackbox Evasion. Many challenges arise when evasion attacks are attempted in 

a Blackbox setting. Without knowledge of internals such as the gradient for the target 

model, the methods used for crafting AE cannot be used [71]. The only guaranteed 

information in this attack scenario is the output responses given by the system, which 

makes these attacks similar to reconnaissance attacks used to probe a system for info 

[58]. With this in mind, AML borrows the concept of an oracle from cryptography and 

uses this to describe the most common type of Blackbox attacks. The oracle in these 

attacks is the target ML system. The attacker can query the oracle with any valid input 

and receive the output from the oracle but nothing else [58]. Even with this limitation, 

oracle attacks are still effective as a large amount of information can be gained from just 

observing the output [68]. 

 Methods used to craft adversarial examples via an oracle, are compared by the 

amount information that gain be observed with respect to the number of queries. One 

such method uses the weighted difference between x to x* associate a cost function with 

transforming x to x* [82]. The problem then becomes finding the number of queries that 

results in the lowest cost for the modification. This was shown to work well for 

continuous values, such as those found in regression, but less so for discrete values, such 

as labels for classification [83]. If the output given by the system is the probability of a 

sample being a certain class, the number of details that can be recovered make crafting 

AE easier. With this kind of output the features of a given sample can be modified using 

genetic algorithms, where the fitness of samples is determined by the probability given by 

the oracle [84].  
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It was observed that if an AE created for a model was given as input to a different 

model performing a similar function, then that AE would often be misclassified by that 

model as well. This is known as the concept of adversarial transferability and has been 

observed even on models that were trained on different datasets [62]. This led to concept 

of the substitution attack model. In this model the attacker performs a model extraction 

attack by querying the oracle with chosen inputs to have the oracle provide the proper 

labels so that the attacker can construct a surrogate data set. The attacker then trains their 

own ML model on this data set in order to produce a model with a similar decision 

boundary [85]. Due to adversarial transferability, the attacker can then perform a 

Whitebox attack against this new model to create samples to be used against the 

Blackbox model. This attack has been shown to work with models trained on datasets not 

labeled by the oracle but that are similar in nature [86]. 

2.3.5 Crafting Adversarial Examples 

 As mentioned previously, we will be making use of the FGSM and C&W to craft 

adversarial samples for this research. In this section we will introduce both methods and 

explain their components and functions. Before this we will describe the machine 

learning algorithm known as a Deep Neural Network (DNN) as it will be the primary ML 

algorithm used in this work and describing it here will aid in the description of the two 

AE crafting methods. 

2.3.5.1 Deep Neural Network. A DNN is a neural network that consists of an input 

layer, two or more hidden layers, and an output layer [37]. These layers are comprised of 

neurons which are connected to the neurons of the layer preceding and following, with 

the input layer having no preceding connection and the output layer having no following 
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connection [38, 51]. The connections between neurons have varying weights associated 

with them and all neurons after the input layer contain a chosen activation function [51]. 

When a sample is given to a DNN the different features of that sample are each given to a 

corresponding neuron in the input layer, then sent along that neuron connections to the 

neuron in the next layer. Values will be modified with the weight of the connections 

between the neurons and will be used as input in the new neuron’s activation function 

[37, 38, 51]. The value of that will then be sent to the next layer until the final values are 

given from the output layer. Figure 11 shows an example of a DNN. 

 

 

 

 

 

Figure 11. Example of a DNN. Output being the probability of the input being in one of 

N classes [87]. 

 

 

 

 As a DNN is trained the weights of the connections are adjusted to accomplish the 

model’s learning. For classification, the weights are adjusted by on a loss function that 

compares the expected output to the given output and then adjusts the weights through 
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backpropagation or another means. For classification task, the output layer will consist of 

an equal number of neurons to the possible classes. Output is given in the form a 

probability, with each neuron showing the probability that the input is of that neuron’s 

respective output. This is sometimes called confidence.  

 To align with the view of an ML used previously, we can view a DNN as a 

composition of parameterized functions equal to the number of layers. The weights of a 

layer’s connections form the parameters θ for that layer’s function. This allows us to 

view our DNNs function as: 

f(x) = fn (θ n, fn1 (θ n1, ... f2 (θ 2, f1 (θ 1, x)))) 

This large number of parameters and the common failure of neural networks to properly 

generalize learning results in DNNs being vulnerable to most of the methods used to craft 

AE [62, 78, 74]. 

2.3.5.2 Fast Gradient Sign Method.  The FSGM is a method used to solve the 

optimization problem of crafting AE using approximation [78]. FGSM creates AE using 

the following function: 

x*=x+ϵ⋅sign(▽xJ(θ, x,y)) 

where ▽xJ is the gradient of the loss function of a target model f, θ is the vector of all 

parameters from f, and y is the correct label of input x. The sign of the gradient is then 

taken and will return +1 if an increase in a feature will increase loss (the model’s error) or 

-1 if a decrease in a feature will increase loss. This is then multiplied by the input 

variation ϵ. This value controls the intensity of changes: higher values result in more 

drastic changes to the sample while lower values are more subtle changes.  
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2.3.5.3 Carlini and Wagner Method. The Carlini & Wagner Method is a way to 

generate targeted AE that optimizes for misclassification while at the same time 

minimizing the distance between the original sample and the generated AE [81]. This is 

accomplished by limiting the scope of possible changes to the sample using a chosen 

distance measure. The base formula for the is: 

 min D(x, x*) s.t. C(x + δ) = t, x + δ ∈ X 

where D is the chosen distance function, δ represents the noise added to the sample, C is 

the objective function of a classifier, and t is the target class. The last part is a constraint 

stating that the created AE cannot be changed so much that it is no longer a viable sample 

from the set X.  

 The formula is then expanded and modified in order make the optimization easier 

and to solve issues related to the use of gradient analysis and the constraints of the 

formula. This results in three distinct attack methods using either the L0, L2, or L∞ 

distance measures. For this work we choose to use the L2 distance. When using this 

distance, the formula for finding δ is: 

δ = 1/2 (tanh(w) + 1) – x 

where tanh() is the hyperbolic tangent function and w is a variable that is optimized by: 

min ||1/2 (tanh(w) + 1) – x||2 + c · f(1/2(tanh(w) + 1) 

where c is a chosen constant greater than zero and f is the function: 

f(x*) = max(max{Z(x*)i : i≠t} − Z(x*)t, −κ) 

where κ is a chose value representing confidence and Z() is the models raw, unnormalized 

class probability predictions for a given sample [81].  
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CHAPTER III 

RELATED WORK 

 

Our research is based on foundational work done by several other researchers that 

showcased using machine learning to identify obfuscating transformations applied to 

programs. These papers described below. 

 

3.1 Metadata Recovery from Obfuscated Programs Using Machine Learning 

Salem and Banescu proposed and showcased the concept that a ML model could 

be trained to perform metadata recovery on an obfuscated program [14]. Metadata 

recovery is a process performed, generally manually, by reverse engineers that involves 

analyzing an obfuscated program to identify the transformation used for obfuscation. 

Salem and Banescu proposed that since transformations leave uniquely identifiable side 

effects in programs, it would be possible to use ML to detect these changes [14]. Figure 

12 is taken from the paper and gives an example of this idea. To the best of our 

knowledge this was the first paper to showcase this idea.  

To test their proposal, the authors used 2 datasets of C programs in a series of 

classification experiments [14]. The first was a set a of 40 programs that consisted of 

various implementations of mathematical functions, array operations, and other 

operations that made use of a wide range of functions in the C language [88]. The second 
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and larger dataset was a set of 1920 C programs generated using Tigress obfuscator [24]. 

The programs all shared a similar template but differed in the operations performed 

within the program. Both data sets were then obfuscated using Tigress to produce 

obfuscated variants. The second dataset was obfuscated using the default options for 5 

transformations (1920*5=9605), while the second used a variety of options for the 5, 

resulting in 39 variants of each program with some having to be discarded due to errors 

(39*5-90=1470) [14]. All programs were then compiled using GCC to strip the symbols 

table and relocation information and then again using GCC with default settings. This 

results in two variants of each dataset for four datasets total. 

 

 

 

  

 

Figure 12. Flowchart showing side effects in code. These can be used to determine the 

transformation [14]. 

 

 

 

The features chosen for classification are the Term Frequency-Inverse Document 

Frequency (TF-IDF) of the opcodes within the programs. The authors extract opcode 
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both statically and dynamically giving each program two different feature sets. Two 

different ML algorithms were used to create models from the data: Naïve Bayes and 

Decision Trees [14]. The authors vary the hyperparameters for each, resulting in a total of 

four different models (two Naïve Bayes and 2 Decision Trees) for each feature set [14]. 

Figure 13 from the paper outlines this process. 

 

 

 

 

 

Figure 13. ML pipeline for [14]. 

 

 

 

Two experiments were performed in the paper. The first had the classifiers trained 

using 10-fold cross validation, while the second experiment used training and test sets 

with any variant of a program appearing only in one set [14]. This was performed with 10 

different set variations with the accuracy being averaged. The results of these 

experiments for both datasets can be seen in Figures 14 and 15. Overall, the experiments 

showed that detection of obfuscation was feasible, provided that a program similar to the 

one being analyzed had been part of the training set. 

Another contribution of this paper was the Oedipus framework. Written in 

Python, it is collection of scripts that makes use of various python packages and other 

software that can be used to recreate the experiments performed in the paper [14].  
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Figure 14. Classification accuracies for experiments 1 and 2 (in red). Using 40 self-

gathered C programs [14]. 

 

 

 

 
 

Figure 15. Classification accuracies for experiments 1 and 2 (red). Using 1920 random 

programs [14]. 

 

 

 

3.2 ByteWise: A case study in neural network obfuscation identification 

 Jones et al. proposed and showcased that a neural network could identify and 

label the bogus control flow (BCF) of a program introduced as part of an Opaque 

Predicate [17]. Based on the idea that transformations only insert or delete code, they 

state that if a pattern exists across all of the inserted code in a program, then the inserted 

code can be identified at the byte level. This differs from the previous paper which 

focused on binary level analysis. The method and concept were based upon work done 

using neural networks to identify the boundaries of functions in a compiled program [17, 

89].  

 To perform their approach, the authors create a variant of Obfuscator-LLVM 

(OLLVM) which they refer to as an annotating obfuscator. The purpose of this obfuscator 
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is to place unique markers within the basic blocks introduced as part of a bogus control 

flow to make identifying the blocks easier [17]. The annotated binaries are only used for 

the purpose of creating a labeled dataset. Every annotated binary has an accompanying 

unannotated binary that is identical.  

The authors use programs written in C that were obtained from GitHub as the 

basis of their three datasets [17]. The three data sets are: Mono, containing 7 binaries 

obfuscated with a BCF; Duo, containing 14 binaries with 7 having a BCF and 7 not 

obfuscated; and Multi, containing 72 binaries with 7 having no obfuscation and the 

remaining having some combo of BCF, Instruction Substitution, and Control-Flow 

Flattening. For all three datasets the annotated versions are used to label the basic blocks 

of the unannotated versions as bogus or not. Once a binary has had all its basic blocks 

checked, a feature set is constructed with the values of the bytes from the basic blocks 

labeled either bogus or not. Each of the datasets has one large feature set instead of each 

sample having its own feature set. 

 

 

 

 

Figure 16. Structure of the RNN model used for the paper [17]. 
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For the ML models, the authors train a recurrent neural network with a single 

bidirectional long-short term memory (LSTM) layer, and an input layer that is one-hot 

encoded [17]. This is shown in Figure 16 and this model is created for each of the 3 

datasets. 

Tests are then down for each of the dataset models and a final test is performed 

for an ensemble of the mono and multi dataset models. The ensemble test has the two 

models use confidence-based voting (the model with the higher confidence value in its 

prediction wins) to determine if a byte is bogus. Four test sets are generated using a 

different program from GitHub and used against each model and the ensemble. The 

results of these tests are shown in Figure 17. Across all four tests the voting model 

generally outperforms the other three, though often by a narrow margin [17]. These 

results showcase the authors claim that BCF detection with a neural network is feasible 

and could lead to automated code removal. 

 

 

 
 

Figure 17. Results of BCF detection [17]. 
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3.3 Fine-Grained Static Detection of Obfuscation Transforms Using Ensemble-

Learning and Semantic Reasoning 

 Tofighi-Shirazi et al. expanded upon the work done in [14] to account for the 

layering of multiple obfuscations in a single program. In other words, they proposed and 

showcased a method to detect multiple transformations that are present within a single 

sample, as opposed to only detecting a single transformation [18]. They also showcase 

that their method can be used to detect variants of transformations, causing them to label 

their approach as fine-grained. 

The dataset used for the experiments is identical to the dataset used in [14] and for 

each experiment the authors perform the same two types of cross validation from that 

paper as well [18]. The primary difference is in the features used for the samples and the 

models created from training. Figure 18 outline the process used in the paper from data 

extraction to training. The authors use disassembly to obtain the assembly instructions of 

an obfuscated function, then convert from assembly into the intermediate representation 

(IR) of the MIASM framework. Once converted, the IR instructions are then used to 

produce a symbolic execution trace, the output of which is then normalized to remove 

unique values and ID’s. This is done for every basic block in a function, with the output 

of each basic block being the raw data for a file.   

To handle the multi-label detection problem, the authors examine two different 

ML methods [18]. The first is to use a single model to detect each type of obfuscation 

present. This second approach is to use a chain of classifiers where each is only trained to 

detect one type of classification and then gives its decision to the next classifier in the 

chain, with the final classifier making its decision based on the input and the output of 



 

 46 

every preceding classifier. For both approaches, the authors also examine using an 

ensemble classifier instead of a single model. All models used are decision trees and 

random forest. 

In the experiments performed, the models were able to achieve up to 91% 

accuracy for labeling transformations and up to 100% accuracy for labeling variants of a 

transformation [18]. Notably, the models performed much better in the experiments using 

the variant training than the models from [14]. The results are promising but still show 

room for improvement.  

 

 

 
 

Figure 18. Design steps for detection system [18]. 
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CHAPTER IV 

METHODOLOGY 

 

The main goal of this research is to propose and investigate two approaches which 

are called Adversarial Obfuscation and Obfuscation Expansion, which both make use of 

adversarial machine learning to some degree to evade automated detection. Both 

approaches will result in previously obfuscated programs that have been converted into 

adversarial samples to evade automated detection. Programs modified in these ways will 

have improved obfuscation stealth in the context of adversaries making use of machine 

learning. In a series of three phases, we will demonstrate the evasion efficiency of both 

methods while also comparing their impacts on obfuscation metrics other than stealth.  

  In our first phase, we implement a suite of machine learning classifiers which 

have been trained to detect and label obfuscation transformations. Each of these detectors 

will be trained and tested on the same data set but using different feature sets to provide 

diversity in the detectors. Next, we will begin using Adversarial ML to create sample 

programs that are able to evade detection by some or all the classifiers. Samples will be 

crafted based on both of our proposed methods. Generated samples will also be tested to 

see if the changes made had significant impacts on obfuscation metrics. Lastly, we will 

construct a tool will which automate the process of adding the changes of our proposed 
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methods at the time of obfuscation in order to maximize the costs and benefits. This will 

also be when we compare our proposed methods.  

The work in this dissertation was done with the goal that each research question 

forms the basis of one or more research papers. With that in mind, that subsequent 

chapters for the three phases of our work are presented in paper format. 

 

4.1 Dataset creation 

For this research, we formed our dataset by first gathering a large quantity of 

source code for a variety of C programs. It was important that we obtain source code for 

these programs, as that would allow us to produce obfuscated variants. Our obfuscated 

variants were produced using the Tigress and OLLVM obfuscators.  

 

4.1.1 Dataset source 

The C programs used to create our obfuscated variants are the same as the ones 

used by Banescu et al in their obfuscation research, as well as other papers listed in our 

related work. [95]. The programs in this dataset consist of:  

1. A set of 48 programs with few lines of code constructed by varying code 

characteristics such as: symbolic inputs, depth of control flow, number of loops, 

etc. 

2. Programs automatically generated by the RandomFuns transformation of the 

Tigress C Diversifier/Obfuscator.  

3. Non-cryptographic hash functions  

4. Algorithms taught in Bachelor level computer science and programming courses.  
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This brings us to a data set of 5,136 source c files. Figure 19 gives an example of 

one of the programs from group 3, generated by Tigress. 

 

 

 

 

Figure 19. Sample program generated by Tigress. 

 

 

 

4.1.2 Obfuscations 

We use obfuscators to apply various transformations in order to create a large set 

of obfuscated programs. The application of obfuscation is done in two sets. For the first, 

we apply only single transformations to the clean files. Every file is obfuscated with each 

transformation to produce a number of variants equal to the number of transformations; a 
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total of 8 variants per each original file. In addition to the 8 variants, some files were also 

obfuscated to produce a JIT variant; however, not every sample was compatible with the 

JIT transformation. This means that only some JIT transformed programs exist in our 

dataset.  

Then, for the second set, we once again obfuscate the clean samples, but this time 

performing multiple transformation layered on top of each other. This produces a number 

of variants equal to the number of chosen permutations. No layered variants involving 

JIT were produced due to the complexity of the transformation. 

 

 

 

 

 

 

 

 

 

 

Figure 20. Partial view of the script use to produce obfuscated variants. 

 

 

 

After producing the obfuscated variants with Tigress and OLLVM, our data set 

consists of over 100,000 programs split between both data sets. A list of the commands 

for our obfuscators and the permutations used for the multi layered samples will be made 

available. 
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4.2 Detection Suite 

Prior work [14, 17, 18] has shown that the detection of obfuscation is possible, to 

the level of identifying the transformation in use, with machine learning. This phase will 

involve the implementation of a suite such detectors. This will allow us to gain an 

understanding of the current ability for obfuscation detection which will use a baseline 

for evaluating the effectiveness of our proposed defenses. Each of these detectors will be 

created differently, either relying on different machine learning models or feature set but 

will all be trained on the same dataset as outlined from earlier research [14]. Table 1 

outlines our proposed detectors as well as the feature sets and models used. While some 

of our detectors will be based on related research, the rest will be created and 

implemented for our work. We will implement two new detectors based on gadget and 

image analysis, while also implementing a third based on opcode analysis from earlier 

work [14] but with a support vector machine as the underlying model. 

 

 

Table 1. Description of Classifiers. 

 

Feature Set ML Models 

Opcode TF-IDF Decision Tree, Naïve Bayes, SVM 

IR Symbolic Trace Ensemble (Random Forest, Extra Tree) 

Grayscale Binary Image Convolutional Neural Network 

Binary Gadgets  Decision Tree, Naïve Bayes, SVM 
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The purpose of these new models is not only to expand the range of our detectors, 

but also two determine the effectiveness of two new feature sets as well. 

4.2.1 Gadget Based Detection 

 Gadgets are chains of opcodes within programs that can be taken advantage of by 

an attacker to cause a program to perform in a way other than intended even if the 

program is protected from code execution attacks [90]. The last opcode in a gadget is 

typically a return instruction that will be used to chain to the next gadget. As gadgets are 

based on the opcodes within a program, and the obfuscations chosen for our research are 

only those that would cause changes in opcodes, we reason that the programs in our 

obfuscated dataset would have differing gadgets from their original counterparts. 

 

 

 

 

Figure 21. Example of Gadget list from a binary. 
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 The feature set for this detector will be the extracted gadget list taken from a 

program. This detector will allow us to see if the distinct opcode changes introduced by 

transformation will produce similarly distinct changes in the gadgets that are present. 

4.2.2 Image Based Detection 

 It has been shown that programs can be converted into images in order to be 

analyzed [40]. In fact, this technique has seen successful use in malware detection [40]. 

This process is commonly done by taking the bytes of a program and having each of 

those bytes represent a pixel in the formed image, producing a grayscale image that is a 

representation of the original program [40]. Colored images can be produced by having 3 

bytes of program represent the RGB values of a single pixel. 

 

 

 

 

 

 

Figure 22. Two examples of a binary converted to a Grayscale image. 
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We reason that since this technique has been successfully use for malware 

detection, it can be used to identify obfuscations as well. Transformations alter the 

opcode layout of a program in noticeable ways which we believe will be reflected in the 

resulting image. 

 

4.3 Evasion of Detectors 

In the second phase, we will begin focusing on how we may modify obfuscated 

samples in order to increase their stealth. In our context, we informally define stealth as a 

samples ability to avoid detection by a machine learning based detector. This would mean 

that decreases in the classification rate of our detectors equals an increase in the stealth of 

our samples. From an adversarial view, increases in the evasion rate of our samples 

equals an increase in the stealth of our samples. To accomplish this goal, we propose and 

will explore two methods: Adversarial Obfuscation and Obfuscation Expansion. We will 

determine the effectiveness of these methods by analyze the impact they have on the 

baseline performance of our detectors determined from the previous phase. 

 

4.3.1 Adversarial Obfuscation 

Adversarial Obfuscation is what we are calling the process of transforming 

obfuscated programs into adversarial examples made to evade detection by a machine 

learning based detector. This is achieved by the application of Adversarial ML attacks 

where we are acting as the adversary and the detectors are the models being attacked. 

Due to this, this defense method follows heavily the general process outlined in earlier 
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sections for creating adversarial samples. Some changes are required however for our 

purposes. Figure 21 is a visual outline of this process. 

 

 
 

Figure 23. Adversarial Obfuscation Process. 

 

 

 

These changes are in relation to the requirements that after becoming adversarial 

samples, the programs must still be functioning, and the obfuscating transformation must 

remain intact with minimal negative impact to metrics. The first of these requirements 

have been encountered before with the use of Adversarial ML to construct malware 

samples that could evade detection [91, 92, 93]. This shows that there are workarounds 

for this problem. The second constraint will require us to test the generated samples 

potency, resilience, and cost against those of the original to see the impact the changes 

have had [94, 28]. Using this, we will maximize our evasion potential while minimizing 

the impact to metrics to produce adversarial samples that are functioning, evasive, and 

obfuscated. 

4.3.2 Obfuscation Expansion 

We are calling our second proposed defense method Obfuscation Expansion. In 

this method we will focus our analysis on identifying the features present in samples that 
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result in their classification by detectors and then minimizing the uniqueness of those 

features within the sample by “expanding” the code base. Figure 22 provides a visual. 

 

 
 

Figure 24. Overview of Code Expansion Process. 

 

 

  

We began with a program P that has been previously obfuscated. P has a set of set 

of features F that will be extracted and examined by the detectors to classify the 

transformation T used on P. This done using the relations the detector has determined 

between the individual features in F and their relations to different T’s. In other words, if 

the features in F from P relating to a given T are uniquely expressed from all other 

features in F, P is considered to have been transformed using T. With this in mind, we 

will expand the code base of P by introducing code that relates to features not associated 

with the actual T using on the sample. This will mean that the features connected to T are 

no longer unique within F. We believe this will result in misclassification.  

In this research, we accomplish this by adding additional opcodes to the original 

program. Even though two of our detectors are not based directly on opcode analysis, 

both of their feature sets are derived from opcodes and therefore we believe they should 

be affected by this method as well. We expect this method to increase the cost overhead 
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of a transformation but with little to no impact on potency or resilience. 

4.3.3 Impact on Obfuscation 

 After samples have successfully evaded detection by one or more of our detectors, 

we will analyze the samples to test for the impact our defenses have had on the 

obfuscation present within the original samples. Since our proposed methods are either 

modifying or adding to the existing code, we can expect this to impact the potency, cost, 

and resilience of the transformation in some way. We will test our samples using 

established ways to obtain these metrics to gain an understanding of these impacts [28, 

94]. This will allow us to refine our defenses to maximize the increase in stealth while 

minimizing the decreases to other metrics. 

 

4.4 Automation and Comparison 

Once the evasion experiments have been completed and our two proposed 

modification methods can be properly applied to samples, we will construct a tool or 

toolchain that will automate the process of creating samples with our modifications 

applied. Ideally, we will construct a standalone tool capable of taking in an original 

program that it will then obfuscate while applying either the Adversarial Obfuscation or 

Obfuscation Expansion defenses at the choice of the user. If constraints prevent the 

development of a standalone tool, we will instead create a toolchain that accomplishes the 

same process using existing tools driven by software we create. There are two purposes 

behind the automation of our defenses, enhanced speed of sample production and to aid 

in additional research.  

By automating the process of sample production outlined in phase 2, we will be 
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able to produce many samples in a shorter period of time. This will enable to perform 

more analysis on the impact our proposed defenses have on existing obfuscation across a 

broader degree of programs. This will allow further fine tuning of our defenses. The 

greater the number of samples we are able to analyze will also allow us to perform 

comparisons of our two defenses, which will give us the answer to one of our research 

questions. We will compare Adversarial Obfuscation and Obfuscation Expansion in 

terms of evasion rate, potency impact, resiliency impact, and cost overheard in order to 

gain an understanding of one method’s benefits over the other. If it exists, we will also 

compare error rate, the rate at which our tool produces nonfunctioning samples of either 

type. 

The second benefit of automation is that it will make future research in this area, 

either adjacent or furthering, easier to perform as the production of samples will not be 

left wholly up the researchers. We believe that at the completion of this research there 

will still be more avenues to explore so automation will allow faster exploration of those 

new research threads.  
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CHAPTER V 

OBFUSCATION CLASSIFICATION 

 

The following chapter details our research in using machine learning to perform 

automated metadata recovery of obfuscated programs. We develop and evaluate a variety 

of classifiers based on three different categories of features extracted from source 

programs. Parts of the content of this section are taken from the paper “Machine learning 

classification of obfuscation using Image Visualization” which was published in the 

Proceedings of the 18th International Conference on Security and Cryptography [96]. 

 

5.1 Introduction 

This research explores three types of features that can be extracted from 

obfuscated programs for the purpose of training machine learning classification models. 

These models can then be used to perform automated metadata recovery attacks, which 

can give an adversary information about the type of obfuscation in place on program. The 

feature sets we explore are: 

• Opcode N-Grams: opcode sequences of varying length, taken directly from the 

assembly code of a program. 

• Gadgets: Sequences of opcodes used in Return-Oriented Programing attacks. 
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• Code Images: Grayscale images created by using a program’s bytes as pixel 

values. 

We train and evaluate our models on a corpus of obfuscated programs, made 

using the Tigress and OLLVM obfuscators. Our tests frame this as both a binary problem 

through the use of many individual models as well as a multi label problem via a single 

model. Both approaches are shown to be highly effective at classifying a transformation 

in a program, even in the presence of multiple transformations in a layered fashion.  

Our results show that all feature sets can produce models with an average f1-score 

over %95 at identifying a single obfuscating transformation present in a file. Further, 

opcode n-grams and gadget lists produce f1-scores at over %96 at labeling transforms 

that are either layered or present at different points in a program. Our feature sets are also 

used to produce models that can identify fine-grained features of an obfuscating 

transformation. We make the following contributions with this research:  

• The use of image analysis via code visualization and convolutional neural 

networks as an avenue for performing metadata recovery attacks on obfuscated 

programs. Code visualization allows for features of a program to be analyzed 

without any reverse engineering of the program.  

• We evaluate the effectiveness of supervised learning models trained on images of 

obfuscated programs at classifying the transformation in use on previously unseen 

samples. The evaluations are performed with both binary and multi label 

classification models. Both approaches show a high accuracy across a range of 

transformations. 
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• We demonstrate that the analysis of obfuscated images has potential for higher 

granularity by evaluating against samples with transformations layered one after 

the other. High accuracy is maintained for these samples, despite the increase in 

complexity. 

• We evaluate the use of extracted gadget lists as a means of training supervised 

learning models for the purposing of identifying transformations present in 

binaries. 

 

5.2 Background 

In this section, we briefly describe the basics of a convolutional neural network, 

which will be used in the methodology of this chapter. 

 

5.2.1 Convolutional Neural Networks 

When using images as input for a classification task it is important to properly 

capture the spatial relationships of the pixels in the image [97]. While there are many 

ways to achieve this, Convolutional Neural Networks (CNN) have become a popular 

choice. Designed with images in mind, CNN are capable of learning from an image in 

pieces in order to understand the whole [98]. This is done with one or more convolutional 

layers. These layers learn move through sections of the image, learning a representation 

of that section. Convolutional layers are followed by pooling layers, and CNN are then 

comprised of one or more dense layers as is common of Deep neural networks. The use 

of CNN for analyzing images led to them being applied for tasks such as malware 

detection [99, 100]. 
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5.3 Methodology 

In this section, we will introduce and walkthrough the methodology for this 

research. An outline of our methodology can be seen in Figure 25. 

 

 

 
 

Figure 25. Outline of Methodology. 

 

 

 

We must first form the feature sets that will be used to train and test our models. 

This will be for each of the three feature types: images, n-grams, and gadgets. After 

extracting these sets, we then use them to train various models to label transformations 

within programs. For training the models, we will make use of 10-fold cross validation 

and also a variant known as functional cross variation. This difference between functional 

and regular cross validation lies in the forming of the train and validation sets. In the 

functional variant, no version of a sample can be a part of the validation set if another 

version of that sample appears in the training set. All versions of a sample must appear in 

the training or validation set.  

 

5.3.1 Dataset creation 

The dataset used in this research is described in Chapter IV. For the purpose of 

our supervised learning, the labels used for the samples will be the obfuscating 
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transformations used on the programs. The following sections describe each of the 

feature extractions. 

5.3.1.1 Image Creation. The basics of creating grayscale images from programs was 

outlined in Chapter IV. When creating the code images, we have two versions of each 

sample. Both sets are square images, with the height and width of the first being 

determined based on the size of the program. The second set is generated with a width of 

256 and a computed height. The height is then padded in order to produce 256 x 256 

images of each program. 

5.3.1.2 Disassembly. For our opcode n-gram feature sets, we need to obtain assembly 

code from the c-source files. The typical way an adversary who does not have access to 

source code would obtain this is by using a disassembler on the compiled program. This 

would give them an assembly representation of the program, with perhaps a few errors. 

While going this route would be the most challenging for out model and a more real 

world setting for a malicious actor creating the model, we chose instead to get a programs 

true assembly representation by having it outputted directly from the gcc compiler. This 

can be done by using the “-S” flag and will cause the source file to go through 

preprocessing and initial compilation but will stop before the assembler is ran.  

We do this so that the models trained on this feature set are representative of a 

worst-case scenario where an adversary has perfect or near perfect assembly output. This 

is done since prior work has already explored using disassembly to train models for 

labeling obfuscations, and so that this model will be more resistant to the detection 

avoidance techniques employed later in this research. Figure 26 shows an example of 

disassembly output. 
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Figure 26. Sample assembly output. 

 

 

 

5.3.1.3 Gadget Extraction. The final feature set is the gadget lists. The basics of gadgets 

were explained in Chapter IV. The gadgets were extracted using the tool ROPGadget 

[101]. Similar to the image feature set, there are two variants of each gadget list. 

ROPGadget has option that removes duplicate gadgets from the list, leaving only one 

gadget of each sequence of opcodes. We run ROPGadget both with and without this 

option, to see the impacts of duplicates on the models during training and testing. 
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5.3.2 Classifiers 

This section details the classifiers used in this work and the feature sets used to 

train each classifier. 

5.3.2.1 CNN. For the supervised learning model developed from our image dataset, we 

choose to use a CNN, as high accuracy has been observed from CNN when classifying 

images made from malware samples. For our model architecture, we choose to use a 

small model consisting of four convolutional layers which feed into two dense layers. 

This is because models with this architecture and others similar to it have been shown to 

be proficient at classifying the Malimg data set without requiring high degree of 

resources. The specifics of our model can be seen in Fig. 27. Our input layer is shaped to 

take in the pixel values of our images directly as opposed to extracting some feature or 

aspect of the whole image. This is to see how much information can be obtained without 

a high degree of preprocessing or prior analysis. 

5.3.2.2 FCNN. Since programs can come in a wide range of sizes, we train and test a 

Fully Convolutional Neural Network (FCNN). This FCNN is created by reimplementing 

all the dense layers of our CNN as convolutional layers, with a number of filters equal to 

the nodes in the dense layer and featuring 1x1 convolutions. The specifics of this model 

can be seen in Figure 28. This style of model is commonly used in image segmentation 

tasks and allows to process models of varying sizes, without any modifications. 
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Figure 27. Figure showing CNN architecture. 
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Figure 28. Fully Convolutional Neural Network Architecture. 
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5.3.2.3 Opcode. For our opcode analysis, we construct three different types of classifiers: 

Naïve Bayes (NB), Decision Tree (DT), and Support Vector Machine (SVM). All of 

these models will be trained using the disassembly files as their dataset; with the feature 

set being extracted opcode n-grams. An opcode n-gram is a sequence of adjacent opcodes 

of length n. For this research, we extract three sets of n-grams of increasing lengths. The 

first set consists only of 1-gram sequences; just normal opcodes. The second includes the 

first set, as well as 2-gram sequences. The final set combines the first two and adds in 3-

gram sequences. We remove the operands and leave only the opcodes. For example, 

given the disassembly [add, mov, jp, xchg, sub, ret]: 

• 1st set: add, mov, jp, xchg, sub, ret. 

• 2nd set: add mov, mov jp, jp xchg, xchg sub, sub ret, add, mov, jp, xchg, 

sub, ret. 

• 3rd set: add mov jp, mov jp xchg, jp xchg sub, xchg sub ret, add mov, mov 

jp, jp xchg, xchg sub, sub ret, add, mov, jp, xchg, sub, ret. 

While n-grams will be used as our features, Term Frequency-Inverse Document 

Frequency (TFIDF) will be used as the feature values. TFIDF can be calculated as 

follows: 

𝑡𝑓𝑖𝑑𝑓(𝑤, 𝑑, 𝐷) = 𝑡𝑓(𝑤, 𝑑) ∗ 𝑖𝑑𝑓(𝑤, 𝐷) 

𝑡𝑓(𝑤, 𝑑) = 𝑙𝑜𝑔(1 + 𝑓(𝑤, 𝑑)) 

𝑖𝑑𝑓(𝑤, 𝐷) = log(
𝑁

𝑓(𝑤,𝐷)
) 

With w being the n-gram, d being a single document, D being the entire dataset, N 

being the number of samples in the dataset, and the functions being the frequency of the 
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n-gram within the sample and a dataset.  Our three classifiers will each have three 

variants, based on the feature set used for training. This is done to examine the 

importance of sequence length to metadata recovery. As a final step before training, 

feature selection is performed using chi-squared [102]. Anything with a p-value below 

95% is removed from the feature set. 

5.3.2.4 Gadgets. Our gadget dataset will use the same classification algorithms as our 

disassembly. This is due to the fact that gadgets can be viewed as a type of opcode 

sequence. Since the gadgets are in order based on the location of the first opcode in the 

sequence, we still use the same n-gram sets as discussed previously. For example, given 

the gadgets [add add jmp, add jmp, add test je call] our sets would be: 

• 1st: add add jmp, add jmp, add test je call 

• 2nd: (add add jmp, add jmp), (add jmp, add test je call), add add jmp, add jmp, 

add test je call 

• 3rd: (add add jmp, add jmp, add test je call), (add add jmp, add jmp), (add jmp, 

add test je call), add add jmp, add jmp, add test je call 

Much like with the disassembly, we remove the operands and leave only the 

opcodes in the gadget sequence. 

 

5.4 Results 

This section details the results of the methodology described in the previous 

section. Each of our models will be trained and evaluated using functional cross 

validation. The reported value for testing is the models f1-score.  
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5.4.1 CNN 

Table 2 shows the results of our CNN classification test. The results are separated 

based on the number of layers present in the samples used for training and testing. This 

was done so to examine the impact of layering on our image analysis and to see what the 

changes in accuracy were across the range of transformation during layering. This model 

was trained and tested on the images that were padded to 256x256 squares. 

 

 

Table 2. F1-scores of CNN model at differing layers. 

 

 1-layer 2-layer 3-layer 4-layer 5-layer 

Flatten 99.5 98.2 95.7 91.1 85.4 

Virtualize 100 99.2 95.2 92.7 85.7 

Encode L. 99.1 97.3 90.6 83.4 75.3 

Encode A. 99.7 97.9 94.1 90.7 86.9 

Opaque 99.6 96.4 89.3 82.8 75.4 

 

 

 

5.4.2 FCNN 

 Table 3 shows the results of our FCNN training and testing. The training setup for 

this network was identical to the previous network. The only difference is with the 

training and test data. This model was trained on the images produced at algorithmically 

determined square sizes. 

5.4.3 Opcode 

 For our opcode-based classifiers, we train three groups of classifiers with each 

group having three variants of the same type of model. The three variants are the ones 

based on the different lengths of n-grams discussed previously. The three models in 

question are decision trees (specifically a Gini tree), naïve bayes, and a support vector 
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machine. Tables 4, 5 and 6 show the different classification results for the single layer 

samples, while Tables 7, 8, and 9 show the results for the multi-layer samples. 

 

 

Table 3. Classification f1-scores for fully convolutional model. 

 

 1-layer 2-layer 3-layer 4-layer 5-layer 

Flatten 70.2 68.3 67.2 63.5 69.3 

Virtualize 72.4 68.3 64.2 62.9 61.8 

Encode L. 73.9 68.3 66.2 63.2 62.1 

Encode A. 78.2 71.2 67.5 65.7 65.4 

Opaque 69.1 69.5 67.1 64.1 59.2 

 

 

 

Table 4. Naive Bayes single layer results. 

 

 1-GRAM 1,2-GRAM 1,2,3-GRAM 

FLATTEN 98 99 99 

VIRTUALIZE 99 100 100 

ENCODE L. 98 100 98 

ENCODE A. 100 99 97 

OPAQUE 95 93 90 

 

 

 

Table 5. Naive Bayes multi-layer results. 

 

 1-GRAM 1,2-GRAM 1,2,3-GRAM 

FLATTEN 50 47 48 

VIRTUALIZE 86 86 83 

ENCODE L. 72 74 71 

ENCODE A. 83 84 83 

OPAQUE 50 47 48 
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Table 6. Decision Tree single layer results. 

 

 1-GRAM 1,2-GRAM 1,2,3-GRAM 

FLATTEN 99 99 99 

VIRTUALIZE 99 100 100 

ENCODE L. 99 99 99 

ENCODE A. 99 99 99 

OPAQUE 99 100 99 

 

 

 

Table 7. Decision Tree multi-layer results. 

 

 1-GRAM 1,2-GRAM 1,2,3-GRAM 

FLATTEN 98 98 98 

VIRTUALIZE 99 99 99 

ENCODE L. 98 98 98 

ENCODE A. 99 99 99 

OPAQUE 99 99 99 

 

 

 

Table 8. SVM single layer results. 

 

 1-GRAM 1,2-GRAM 1,2,3-GRAM 

FLATTEN 100 100 100 

VIRTUALIZE 100 100 100 

ENCODE L. 100 100 99 

ENCODE A. 100 100 100 

OPAQUE 99 100 99 

 

 

Table 9. SVM multi-layer results. 

 

 1-GRAM 1,2-GRAM 1,2,3-GRAM 

FLATTEN 99 100 99 

VIRTUALIZE 99 100 99 

ENCODE L. 98 100 98 

ENCODE A. 99 100 99 

OPAQUE 98 100 98 
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5.4.4 Gadgets 

Tables 10, 11, and 12 show the classification f1-scores for our models trained and 

tested on gadgets lists from our obfuscated samples. These models were formed the same 

as the opcode n-gram models. 

 

 

Table 10. Naïve Bayes single layer results. 

 

 1-GRAM 1,2-GRAM 1,2,3-GRAM 

FLATTEN 99 100 99 

VIRTUALIZE 100 100 100 

ENCODE L. 100 100 99 

ENCODE A. 99 99 99 

OPAQUE 99 99 99 

 

 

 

Table 11. Naive Bayes multi-layer results. 

 

 1-GRAM 1,2-GRAM 1,2,3-GRAM 

FLATTEN 97 96 99 

VIRTUALIZE 100 100 100 

ENCODE L. 98 97 97 

ENCODE A. 97 95 96 

OPAQUE 93 91 91 

 

 

 

Table 12. Decision Tree single layer results. 

 

 1-GRAM 1,2-GRAM 1,2,3-GRAM 

FLATTEN 99 99 99 

VIRTUALIZE 99 100 100 

ENCODE L. 99 99 100 

ENCODE A. 99 100 100 

OPAQUE 99 99 99 
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Table 13. Decision Tree multi-layer results. 

 

 1-GRAM 1,2-GRAM 1,2,3-GRAM 

FLATTEN 99 99 99 

VIRTUALIZE 99 100 100 

ENCODE L. 99 100 99 

ENCODE A. 99 99 99 

OPAQUE 99 99 99 

 

 

 

Table 14. SVM single layer results. 

 

 1-GRAM 1,2-GRAM 1,2,3-GRAM 

FLATTEN 99 99 99 

VIRTUALIZE 99 100 99 

ENCODE L. 99 99 99 

ENCODE A. 100 100 100 

OPAQUE 99 99 99 

 

 

 

Table 15. SVM multi-layer results. 

 

 1-GRAM 1,2-GRAM 1,2,3-GRAM 

FLATTEN 99 100 99 

VIRTUALIZE 99 100 98 

ENCODE L. 98 100 99 

ENCODE A. 98 100 99 

OPAQUE 99 100 99 

 

 

 

5.4 Discussion 

We will discuss our groups of models in the order that they were tested. Our CNN 

model was shown to be highly accurate on single- and two-layer samples, scoring over 

97% for each transformation. However, beginning with the 3-layer samples, we started to 

see a drop in performance. This is most likely due to the transformations serving to hide 

each other from the type of analysis being performed. The most recent transformations 
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are obscuring the ones that were applied first, meaning that the information was not 

extracted via the pixel values. We can notice with these results however that we can gain 

a glimpse of which transformations are ‘heavy’ or that are harder to hide. The 

transformations that dropped in classification performance faster are lighter 

transformations. Our other CNN, the FCNN, did not successfully trained and can be 

viewed as a failure.  

The second group of classifiers, the opcode-based models, performed above 

expectations. Both the decision tree and svm model sets-maintained scores above 98% 

across all n-gram sizes and independent of multi or single layer samples. The only model 

to underperform is the Naïve Bayes model. While it kept pace with the other models in 

the single layer, it was unable to properly classify multi-layer samples.  

The last model set, the gadget-based models, was the highest performing set. Each 

model was capable of reaching a score of 100% for certain transformations in both single 

and multi-layered settings. 

When compared to related work discussed in Chapter III, our models performed 

comparably. This shows that we can be confident in moving forward with these models 

in upcoming work. 

 

5.5 Future Work 

Our current course with this work falls along 2 paths: feature set 

exploration/refinement and increasing the granularity of our ML models. In combination 

with related work, five feature sets have been shown capable of training models for 

automated metadata recovery [14,17,18]. Exploration of other feature sets will broaden 
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range of models that can created for analyzing software. More feature sets also allow for 

models that can cover gaps and capabilities presented by other models. This will help us 

to further understand the level of metadata that can be automatically extracted. 

The second path is concerned with increased granularity of our attacks. In this 

work, we showcased the ability to determine the types of transformations used on a file, 

as well as certain information about that transformation. Further increasing the 

granularity could potentially allow for all aspects of a transformation to be learned, 

giving analysts a much greater ability to perform deobfuscation tasks.   Our immediate 

goal on this path is the ability to label the bytes of a program that are part of a given 

transformation. 

 

5.6 Conclusion 

In this section, we have proposed and evaluated methods for automated labeling 

of obfuscating transformations applied to software, via three unique feature sets: Code 

visualization, Opcode N-grams, and Gadgets. A range of supervised learning models 

produced using these sets were able properly perform metadata recovery attacks and 

identify the types of transformations that had been applied to the file. For code 

visualization, our models produced f1-scores above 96% when presented with files 

containing only a single transformation. While the models scores did begin to drop as 

layered transformations were introduced into training and testing, most transformations 

could be identified with a score over 90% in the presence of four transformations layered 

over each other.  
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Models produced on our other two feature sets outperformed our image-based 

models in our various tests. Both opcode and gadget-based models were able to identify 

single transformations at 98%, with layered transformations only dropping to 95% across 

all transformations. This shows that gadget analysis is an effective feature set for 

obfuscation analysis along with opcodes and images. 
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CHAPTER VI 

EVADING OBFUSCATION CLASSIFICATION 

 

The sections in this chapter detail our efforts to improve the stealth of obfuscating 

transformations in order to deter automated metadata recovery attacks.  

 

6.1 Adversarial Machine Learning 

The research in this section makes use of adversarial machine learning in order to 

modify obfuscated programs into functional adversarial examples (AE). These modified 

programs are harder to classify for certain types of models without requiring extensive 

modification of the program. 

6.1.1 Introduction 

This research introduces and explores the process of Adversarial Obfuscation; a 

method of creating functional adversarial examples from obfuscated programs and AEs 

generated from adversarial machine learning algorithms. In the same vein as adversarial 

attacks in image analysis, AEs of obfuscated programs are executable binaries that have 

been modified with the purpose of evading a supervised learning model. Unlike natural 

images, these binaries cannot be changed freely, as they must preserve the original 

functionality of the program.  
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We present a process of creating executable adversarial examples from obfuscated 

binaries, by making minimal modifications based on computed distance between the 

original and a non-executable AE. This approach is extended from related work target at 

crafting AEs from malware binaries, in order to be used in the multi-class/multi-label 

space of obfuscation detection. We dub this modified approach as “Adversarial 

Obfuscation.” 

We report the misclassification rate of our adversarial obfuscated binaries against 

a suite of supervised learning classifiers, many of which were shown in Chapter V. We 

craft and test our samples using both single and multi-layered obfuscation samples. 

The main contributions of this work are as follows: 

• We present an approach for generating adversarial obfuscated binaries and for 

algorithmic dead code insertion using code images. 

• We show that our adversarial obfuscated binaries are effective in black box 

attacks via adversarial transference. 

• We explore the effectiveness our method against classifiers that do not make use 

of image analysis. 

• We compare samples generated using our method against the approaches of 

instruction substitution and random dead code insertion. 

6.1.2 Executable Adversarial Examples 

Unlike natural images, there is an additional hurdle to consider to when creating 

adversarial examples (AE) from programs; the resultant AE must remain a functional 

program that is semantically equivalent to the original. This means that the noise 

introduced by adversarial ML algorithms cannot be used as is and must be modified or 



 

 80 

adapted in some way, in order to be usable. The modifications however must still enable 

to program to function as an AE. This problem has been explored before in research 

focusing on the creation of AE for malware [103 - 105].  Some methods focus on limiting 

the changes to parts of the program outside of the .text section. In other words, the non-

executable parts of the program. The problem with this method is that it is ineffective on 

any analysis that only focuses on executable portions. For example, if a model’s 

preprocess involves the removal of the program header or the .data section. 

Another approach that has seen success is inserting semantic NOPs into a 

program in order to form an AE [106]. This method involves first creating a non-

functioning AE and measuring the distance between the original and the AE. Semantic 

NOPs are then inserted to minimize the distance between the original and the AE. 

Samples produced in this way have been shown to be effective and the changes are not 

limited to certain portions of the program. This is the approach we will be taking in this 

work. 

 

 

 
 

Figure 29. Basic nop insertion. 
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6.1.3 Methodology 

This section explains the methodology used in this portion of our research. We 

continue to make use of the same dataset introduced and used in the previous chapters. 

We also use the classifiers created in Chapter V as the targets for our evasion attacks. We 

begin by taking an obfuscated program whose transformation(s) can be correctly labeled 

by our classifiers. We then put this program through the process of Adversarial 

Obfuscation. An overview of this process can be seen in Figure 30. 

 

 

 
 

Figure 30. Adversarial Obfuscation overview. 

 

 

 

We begin by transforming our sample into an image and producing an AE using 

the Fast Gradient Sign (FGSM) and Carlini-Wagner (CW) methods. We use our binary 

neural networks in order to perform these attacks. After the AE is created, we measure 

the distance between our original and the AE. The original sample then goes through a 

round of guided insertion of semantic NOPs. The goal of these insertions is to reduce a 

distance metric and bring the original sample closer to the AE. If at the end of the 

insertion round, the original sample is still not sufficient as an AE, a new AE is generated 

by CW using the modified sample and another round of insertion begins. After the final 
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round of the process, the original sample will have been modified into a semantic 

preserved AE. 

In addition, we also perform distance comparisons on variants of the same sample 

produced by different obfuscating transformations. This is to explore the possibility of 

generating an AE using a different variant instead of a non-functioning AE.  

6.1.3.1 Distance Comparisons. We will measure the distance both between the various 

transformations, as well as between the function and nonfunctional examples during 

adversarial obfuscation. Distance can be viewed as the measure of similarity between two 

points. To measure distance, we explore the use of four different equations: L1-norm 

(Manhattan distance), L2-norm (Euclidean distance), structural similarity image measure 

(SSIM), and binary distance (BD). These equations can be seen below. The L1 and L2 

norms are common distance metrics, and the L2-norm will be used as part of our CW 

attack to generate AEs. 

𝐿1(𝑎, 𝑏) = |𝑎1 − 𝑏1| + ⋯+ |𝑎𝑛 − 𝑏𝑛| 

 

𝐿2(𝑎, 𝑏) = √(𝑎1 − 𝑏1)
2 + (𝑎2 − 𝑏2)

2 +⋯+ (𝑎𝑛 − 𝑏𝑛)
2 

 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) = 
(2𝜇𝑥𝜇𝑦 + 𝑐1)(𝜎𝑥𝑦 + 𝑐2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝑐1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝑐2)
 

 

𝐵𝐷(𝑥, 𝑦) = ∑{
0𝑥[𝑖] = 𝑦[𝑖]
1𝑥[𝑖] ≠ 𝑦[𝑖]

𝑛

𝑖=0

 

SSIM was created as a method for predicting the perceived quality of digital 

television. It measures the amount of noise between two images and reports that as 
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similarity. We treat this similarity as distance. Binary distance is used specifically for 

measuring the distance between two binary vectors. Each bit of the vectors is compared, 

if they are different then the distance is increased by one. It should be noted that all of the 

given distance metrics require the objects being measured to be of equal size or length. 

6.1.3.2 Adversarial Obfuscation. The following section details the Adversarial 

Obfuscation process. This process is used to modify obfuscated binaries into functional 

adversarial examples. 

6.1.3.2.1 Generating adversarial examples is the first step in the process. We 

generate our adversarial examples using FGSM and CW using the binary neural networks 

created in Chapter V as the targets. We use the binary neural networks as it makes 

creating samples for the multi-labeled programs significantly easier. We begin by 

applying multiple passes of FGSM to the code image. This is done as FGSM is not a 

computationally intensive process. This allows us to quickly generate an AE in order to 

significantly drop accuracy. 

After FGSM has been applied, we use the L2-attack of CW to achieve the desired 

evasion rate for the AE. The CW attack can make more subtle and impactful changes to 

the image, but it is much slower and more computationally heavy. This is why it is done 

after multiple rounds of the. FGSM This gives us our final non-functioning AE. 

This AE is then compared to our original binary using the binary distance metric. 

With both transformed to binary vectors, we begin traversing through the original binary. 

Making use of a list of insertion points, locations where a semantic nop can be inserted 

without changing the original semantics, at each point the algorithm compares the change 

in distance caused by inserting the various semantic nops. Distance is measured from the 
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current insertion point to the end of the binaries. The nop that has the greatest reduction 

in distance is inserted and the algorithm continues. If no nop reduces distance, then 

nothing is inserted. As nops our inserted, our original binary will be longer than our 

adversarial example. The binary will be padded at the front with zeros, as padding the 

end would impact the distance measure. 

At the end of this process, the modified binary is put through the original 

classifier. If the sample is misclassified, then the algorithm is a success. In the event that 

the sample is still not misclassified or a desired probability value from the model is not 

achieved, the modified exampled can be used to create a new AE using Carlini-Wagner 

and the process will begin again. We call the process Adversarial Obfuscation (AO) and 

introduce it as a variant of Adversarial Malware Alignment Obfuscation (AMAO) [106]. 

 

 

  
 

Figure 31. Waterfall version of Adversarial Obfuscation. n = the number of obfuscations 

or target obfuscations. 

 

 

 

In the event that the binary possesses multiple obfuscations, or a targeted attack is 

desired (making the binary appear to have a transformation it does not), the waterfall 

variant of AO is used. This a lengthier process that sees the sample going through the 

traditional AO process with each label, being fed back into the previous classifiers after 

each successful completion. By the end of the process, it will achieve the desired labels 

as an adversarial example. 
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6.1.3.2.2 Semantic nops, also called dummy or dead code, are code sequences 

that do not affect the program logic. These sequences are named after the nop opcode. 

These nops can be inserted into a program to modify the makeup of the program in a 

semantic preserving fashion. Nops can vary in length but in this work, we deal mainly 

with nops consisting mainly of 1 – 2 instructions. Our list of nops can be seen in Table 16 

[107]. 

 

 

Table 16. Semantic NOPs. 

 
mov edi, edi mov bx, bx xchg ecx, ecx add 0, rax 

xchg ebx, ebx xchg bx, bx xchg edx, edx and eax, eax 

xchg cx, cx sub 0, eax mov bl, bl and edi, edi 

push rax; pop rax mov esi, esi nop nop DWORD PTR [eax] 

push rbx; pop rbx mov al, al xchg ax, ax nop DWORD PTR 

[eax+eax*1+0x0] 

mov ax, ax push rcx; pop rcx mov cx, cx nop DWORD PTR 

[eax+0x0] 

 

 

 

6.1.3.3 Using on Each Classifier. To test the effectiveness of our generated samples, we 

attempt to classify them with a variety of models. We evaluate in both a white-box and 

black-box setting. In our white box attack, we use a new CNN capable of classifying the 

samples as the means to generate the AE. This CNN is shown in Figure 32. After going 

through AO the samples are fed back into the same model. 

In our black-box attack, we attempt to classify the samples with new CNNs. This 

would constitute a substitution attack. Our CNNs for this attack consist of one new CNN, 

the CNN from the previous chapter, and the InceptionV3 neural network [108]. 

InceptionV3 is included to test against a large and robust network. 
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Figure 32. Architecture of CNN used to generate AEs. 



 

 87 

We also classify the samples with the opcode n-gram and gadget classifiers from 

the last section as well. We do not expect the samples to be very effective against these 

models, but they are included to examine the overall effectiveness of our approach. For 

these models, we choose to test against only the 1,2-gram multi-layer models. 

6.1.4 Results 

 The following tables showcase the results of the experiments performed in this 

section. For this test, we randomly selected obfuscated samples, both single and multi-

layered, to be used in the creation of our adversarial examples. We begin by generating 

these samples for a nontargeted attack. Table 17 shows the classification results against 

our models, with the score for random insertion being presented as range, due to the 

attack being carried out multiple times. For multilayer samples, we make use of the 

waterfall model to evade all relevant classifiers. For the CNN score, this is an average 

obtained from all of the layered models. Only the model labeled CNN1 is a white box 

attack as this model was used to generate the samples. 

Table 18 shows the results of applying our waterfall model to produce targeted 

attacks. We perform these attacks on both single and multi-layer samples. We generate 

samples to have up to 5 targets. We carried out this attack against CNN 2 and CNN 3. 

6.1.5 Discussion 

 Our results show that adversarial examples created from our Adversarial 

Obfuscation approach are capable of successfully evading obfuscation detection systems 

based on image analysis. Our generated samples reduced the f1-scores of three 

Convolutional neural networks with different architectures to 0 and impacted the score of 

the InceptionV3 model. Our approach was also effective at creating examples for targeted 
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attacks. The same level of impact was achieved and was maintained even when a sample 

was made to target multiple classifiers. 

 

Table 17. Classification results for Adversarial Obfuscation. 

 

 Original Adversarial 
Obfuscation 

Random 
Insertion 

CNN 1 90.8% 0% 25-35% 

CNN 2 89.4% 0% 25-35% 

CNN 3 89.7 0% 25-35% 

InceptionV3 90.3% 31.5% 55-65% 

Decision Tree (1,2-
gram) 

99.4% 61.5% 70-90% 

Naïve Bayes (1,2-
gram) 

70.1% 53.7% 40-60% 

SVM (1,2-gram) 99.2% 74% 70-90% 

Decision Tree 
(gadget) 

99% 99% 99% 

Naïve Bayes 
(gadget) 

98% 98% 98% 

Naïve Bayes 
(gadget) 

99% 99% 99% 

 

 

 

Table 18. Results for Targeted attacks. 

 

 1-layer 2-layer 3-layer 4-layer 5-layer 

Flatten 0 0 0 0 0 

Virtualize 0 0 0 0 0 

Encode L. 0 0 0 0 0 

Encode A. 0 0 0 0 0 

Opaque 0 0 0 0 0 

 

 

 

 Outside of the CNNs, the generated samples were shown to have an effect on the 

opcode-based models but not to the same degree. We can assume the reason for this is 
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that these samples were created from our CNNs which, while they do take into account 

opcodes through the pixel values, are also concerned with the spatial aspects of the image 

itself. Our opcode classifiers would most likely be more effected by methods that focus 

on increasing counts or other derived metrics.  

 Our adversarial examples had the least effect on the gadget-based classifiers. This 

is due to the inserted code being semantic nops. Since the code is functionally “dead” it 

was unable to make any changes to the gadget list of a sample. While this means that the 

accuracy of these classifiers is unaffected, we do not view this as a failure as increasing 

the gadgets present in a program is by no means an improvement to a program’s security. 

6.1.6 Future Work 

The future work for this research, involves broadening the scope of the attack 

outside of classifiers that rely on image analysis. As seen in our results, models that do 

not take any information specific to image analysis will only have minor impacts and 

even then, only after large changes. We believe that this attack can be expanded to 

include means of attacking those types of models as well, either through larger, more 

involved code insertion or by adding additional methods of modification to the process. 

6.1.7 Conclusion 

In this section, we have proposed and evaluated an extension to existed methods 

for creating functional adversarial examples for from software binaries. This modified 

algorithm, which we call Adversarial Obfuscation, was capable of using distance 

measurements and semantic nop insertion in order to construct adversarial examples from 

obfuscated programs. These adversarial examples were shown to be effective at reducing 

the classification accuracy of CNN that rely of code image analysis. We showcased the 



 

 90 

effectiveness of this algorithm in both a white and black box setting, with our samples 

able to reduce the accuracy of our models under attack to as low as 0%. Even the more 

robust InceptionV3 model was brought below 50% in a black box setting.  

We further showed that our approach is effective on layered obfuscations as well, 

with our models misclassifying samples with 2 or more transformations present. This 

approach was extended to successfully perform targeted attacks as well, both for single 

and layered transformations. 

  

6.2 Opcode Expansion 

 This section introduces and analyzes our opcode expansion approach to defeating 

automated code analysis. This approach involves algorithmically adding opcodes to a 

program in order to modify the feature set of the program. This can be viewed as a 

specific variant of adversarial example crafting. 

 

6.2.1 Introduction 

This research introduces and explores the process of opcode expansion. A method 

of modifying the opcode composition of an executable in order to deter metadata 

recovery attacks using machine learning. As shown in the previous section, traditional 

adversarial example creation methods based on image analysis, may not be as effective 

when transferred to other supervised learners that make use of different feature sets, such 

a pure opcode n-gram. Much like the methods shown in the previous section, the goal of 

this approach is to modify the samples via guided dead code insertion, to produce a 

semantically equivalent program that has improved stealth against machine learning. 
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The core of opcode expansion is to selectively add segments of dummy code into 

a program in order shift the feature sets derived from opcodes, either in a given direction 

for a targeted attack or just away from the original in an untargeted attack. We explore 

three approaches for expansion: Uniform, Profile, and Target. We evaluate the 

effectiveness of this method by attempting to classify the generated samples with our 

suite of supervised learning classifiers. Two of our methods are black box attacks, while 

one is white box but can performed in the same style as a substitution attack. As before, 

we test this method on both single and multi-layered obfuscations. 

We make the following contributions: 

• We evaluate the approach of Opcode Expansion, a method for generating 

adversarial obfuscated binaries and for algorithmic dead code insertion. 

• We show that our expanded binaries are effective in black box attacks via 

adversarial transference. 

• We explore the effectiveness our method against classifiers that make use of 

image analysis. 

• We compare samples generated using our method against the approaches of 

instruction substitution and random dead code insertion. 

6.2.2 Methodology 

The methodology for this research was introduced in Chapter IV, and we 

elaborate on it further in this section. The goal of our expansions is to alter the count, or 

other derived statistic, of opcodes within a program to predetermined levels to decrease 

the effectiveness of automated metadata recovery. To expand the code, we insert dead 

code segments of varying lengths. We first obtain the assembly of our obfuscated c 
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source files in the same manner as Chapter V. For our uniform expansion, we insert code 

to ensure that the metric in question for all opcodes are equal. For profile expansion, we 

must first profile the various obfuscating transformations and then use the profiles to alter 

the opcodes of our files. Our last expansion type is guided expansion, and it will be 

detailed in a later section. 

For our expansion, we expand both specific opcodes and opcode groups. Opcodes 

in x86 are divided into four groups: 

• Arithmetic: the mathematic instructions such as add, sub, and multi. 

• Data: the instructions that deal with processing of data such as mov, load, pop, 

and push. 

• Control: instructions that handle the control flow of a program such as jmp, call, 

and ret. The nop instruction is considered a control instruction. 

• Logic: instructions that act as checks/gates such as and, or, and test. These are 

often paired with control instructions. 

Instead of modifying specific opcodes, we can make use of these groups for our 

expansions. This can give us the ability to modify the statistics of opcodes that are rarely 

used in dead code samples and allow for more variety in expansion.  An outline of our 

methodology can be seen in Figure 33. 

6.2.3.1 Code Segments. Before performing counts, we first determine the number of 

segments we wish to divide the code into. Code can be divided into a number of 

segments 1>= s <= total length, with s being the number of segments and total length 

being the total number of instructions within the assembly. The purpose of these 

segments is to localize and better target the effects of our expansions. Instruction counts 
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and code insertion will be on the divided sections. We segment our samples by the 

powers of 2 but any number or system could be used so long as it falls within the 

parameters.  Code could also be segmented via program structures such as functions, 

logic, or basic blocks. 

 

 

 
 

Figure 33. Outline of expansion process. Metric targets are based on the expansion type. 

 

 

 

6.2.3.2 Uniform Expansion. For uniform expansion, the goal is to ensure that, for a 

given metric, every opcode or group is equal within the program segments. For this work, 

we choose to expand based on counts. This can be done in one of three ways, equaling 

every count to the highest single count across the segments, finding the highest counts 

per instruction/group and equaling those, or setting a target higher than any given count. 

For example: 

• Per option 1: If a sample is dived into 16 segments and the count for control is 42 

in one segment, then all groups would be expanded to 42 in each segment. 

• Per option 2: If within the same sample the highest counts for the groups across 

all segments is 42, 27, 18, and 12, then every segment will be expanded to 42, 27, 

18, and 12. 
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• Per option 3: Based on the highest count found, 42, a target would be chosen 

above that, such as 64. All counts would be increased to this number. For our 

purposes, we use again use powers of 2. 

Regardless of the option chosen, after identifying our target counts, we limit 

increases to this count to avoid unnecessary expansions. The code is then processed 

segment by segment, inserting varying lengths of dead code to reach the target count. We 

insert longer code segments first to have a greater impact on the counts, then switch to 

progressively smaller segments as more precise changes are needed. 

6.2.3.3 Profile Expansion. For profile expansion, instead of expanding to achieve 

uniformity within the program, we expand the opcodes to match a profile, a 

predetermined set of opcode metrics taken from another program. For this research, we 

are expanding to obfuscation profiles. We first form these profiles before beginning 

expansions. Similar to uniform expansion, we continue to work with opcode count. 

Creating obfuscation profiles is the first step. We create two different types of 

obfuscation profiles, average and instance. To form our average profiles, we first take our 

obfuscated dataset and perform our opcode counts on all samples containing the a given 

transformation. These counts are then averaged together to form a general profile for the 

given obfuscation. In addition to the counts, we also take the average counts for our clean 

samples and measure the percentage change between the clean and obfuscated profile. 

These counts are also taken at different segmentation levels as well. It is important to 

note, an average profile is only formed from samples that contain only the given 

transformation. Samples with layered transformations are not included in the averages but 

could be used to form averages for various combinations. We do not explore this. 
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For our instance profiles, we first take the sample to be expanded and obfuscate 

this sample with one or more new transformations. This new variant is then segmented 

and counted to form a profile. We measure the percentage change between this new 

variant and the original as well. The profile now represents a given transformation 

specific to one instance.  

After profiles are formed, we expand the target in much the same way as with 

uniform expansion. The key differences are that segments are now expanded to the 

matching segment from the profile. In addition, segments can also be expanded to the 

percentage targets, rather than just to the raw counts. 

6.2.3.4 Guided Expansion. The last expansion approach we explore is targeted 

expansion. This expansion can be viewed as an adversarial machine learning attack as it 

relies on exploiting information gained from a machine learning model. For our 

approach, we rely on the decision tree model created in previous chapters. Decision trees 

are unique as it is considerably easy to view and understand why the model makes the 

decisions that it does. We can exploit this to expand a sample in certain ways to force a 

different decision.  

This attack can happen in one of two ways, the first relies specifically on decision 

trees and the second just relies on understanding the feature importance of the model. For 

the method, we analyze the generated decision to tree to understand the decisions that 

lead to the file being classified correctly (or incorrectly in a target attack). We can then 

modify the opcode metrics of the sample to push it down a different branch of the tree. 

Since this attack is dependent on the type of features the tree is using, this process may be 

more involved than simply matching counts. In our work, the decision tree uses TF-IDF 



 

 96 

as its feature value, so the TF-IDF of opcodes must be calculated and used to guide the 

opcode insertion.  

The second approach can be used both with a decision tree and also for other 

models. First a model is created to accurately classify samples. This model can then be 

analyzed to find the features that are considered most impactful to the decision-making 

process. These features can be compared to another sample that is classified differently or 

modified at random in order to push the classification in a different direction. We explore 

both of these approaches. Table 19 shows the total number of features for each 

transformation, as well as the top 50 features. These are the features that would be 

targeted during guided expansion. 

6.2.3 Results 

The following showcase the results from the various tests performed using opcode 

expansion. These results will be discussed in the next section. 

6.2.3.1 Opcode Profiles. Table 20 shows the average opcode group counts and 

percentage increases from the various transformations that we considered. For this 

purpose the flatten and bogus control-flow transformation from OLLVM are considered 

under the Flat and Opaque groups together with the equivalent Tigress transforms. 

6.2.3.2 Uniform. For our uniform expansion test, we selected 1,000 files at random and 

expanded the files to uniformity based on the three metrics for uniformity presented 

above. After expansion, these files were presented to our classifier suite. Table 21 shows 

the results of options 1,2, and 3 with our classifiers at being trained on multi-layer 

sample. 
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Table 19. Feature amount and top 50 features. 

 
Encode A: 

Selected features: 213 

addl addl,addl andl,addl orl,addq,addq movb,andl,andl addl,andl leal,andl movl,andl sarl,andl 

subl,cmpb,cmpb jne,cmpl movzbl,cmpq,cmpq jne,jg leaq,jmp,jmp cmpb,jne,jne movq,jns,jns 

leaq,jns movl,js,js leaq,js movl,leal,leal movl,leal movzbl,leal movzwl,movabsq addq,movb 

addl,movl,movl addl,movl movl,movl movslq,movl orl,movl subl,movl subq,movl testl,movl 

xorl,movq,movq addq,movq cmpq,movq jmp,movq movq,movq orq,movslq,movslq movq 

  

Encode L: 

Selected features: 295 

addl,addl jmp,addl movl,addl nop,addq,addq movb,addq movq,andl,call,call call,cmpb,cmpb 

jne,cmpl movzbl,cmpq,cmpq je,cmpq jne,je cmpl,jg cmpl,jmp,jmp cmpb,jmp movq,jne,jne 

movq,leaq,leaq addq,movb,movb addl,movl movl,movl movq,movl movslq,movl 

subl,movq,movq addq,movq cmpq,movq jmp,movq movq,movq subq,movslq,movslq 

movq,movzbl,movzbl andl,movzwl,nop nop,subl,subl cmpl,subl movl,subq,jmp cmpl,movq 

leaq,movq movl 

  

# Flat: 

Selected features: 229 

addl movl,addl movq,addq movb,addq notrack,call leaq,call movq,cmpb jne,cmpl jg,cmpl 

movzbl,cmpq ja,ja,ja movq,je jmp,jg,jg movq,jmp,jmp call,jmp cmpb,jmp cmpl,jmp jmp,jmp 

movl,jmp movq,leaq,movb addl,movl movq,movl movslq,movl subl,movq addq,movq 

jmp,movslq,movslq movq,notrack,notrack jmp,subl,subl cmpl,cmpb,cmpq je,cmpl jle,jle,addq 

movq,subl movl,addl cmpl,movq movq,cmpq jne,jne,andl sarl,leaq leaq,movl jmp,jmp 

movzbl,leaq movl 

  

Opaque: 

Selected features: 204 

addl,addl movl,addq,addq movb,addq movq,call jmp,call movq,cmpb,cmpb jne,cmpl 

movzbl,cmpq,cmpq je,cmpq jne,je movq,jle movq,jmp cmpb,jmp jmp,jne,jne cmpl,jne jmp,jne 

movl,leaq subq,movb,movb addl,movl movslq,movl subl,movq,movq addq,movq cmpq,movq 

jmp,movq movq,movslq,movslq movq,movzbl andl,subl,subl cmpl,subl movl,subq leaq,jmp 

cmpl,movl call,movq movl,jne movq,andl,je,sarl,movq leaq,movzbl,jne leaq,andl sarl,movl xorl 

  

Virtualize: 

Selected features: 300 

addl,addl movl,addq,addq movb,addq movl,addq movq,addq popq,andl,call,call addq,call jmp,call 

movl,cmpb,cmpb jne,cmpl ja,cmpl movq,cmpl movzbl,cmpq,cmpq je,cmpq jne,ja movl,jg 

testl,jmp cmpb,jmp movl,jne,jne movq,leaq movl,movb,movb addl,movb cmpb,movl,movl 

call,movl cmpl,movl movl,movl movslq,movl subl,movq,movq addq,movq cmpq,movq jmp,movq 

leaq,movq movq,movq movslq,movq pushq,movq subq,movslq,movzbl,movzbl andl,movzbl 

movzbl,movzwl 
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Table 20. Average instruction group counts and percentage increase. 

 

 Average Counts Average Percentage Increase 

 Arith. Logic Data Control Arith. Logic Data Control 

Virtualize 124.67 43.96 316.33 87.60 79.17 69.67 79.87 76.79 

Flatten 33.6057 16.21 102.77 42.11 11.88 6.21 29.32 44.93 

Encode A 46.94 32.02 101.87 25.57 44.70 58.36 37.49 20.50 

Encode L 117.59 16.80 269.01 43.85 77.92 20.64 76.33 53.64 

Opaque 29.49 27.47 164.75 55.49 12.00 51.47 61.35 63.37 

 

 

 

6.2.3.3. Profile. Our profile-based expansion test utilizes another 1,000 files chosen once 

again at random. To perform this test, the profile counts and averages were used to move 

the samples into an obfuscation not currently present in the sample. This means that no 5-

layers samples were able to be used. Table 22 shows the results of profiles formed with 

counts created from instance profiles, as well as the accuracies formed from average 

percentage profiles. 

 

 

Table 21. Classification results for uniform expansion. 

 

 Original Option1 Option 2 Option 3 

CNN 1 90% 76% 84% 53% 

CNN 2 89% 72% 87% 54% 

CNN 3 89% 71% 85% 53% 

InceptionV3 90% 83% 89% 64% 

Decision Tree (1,2-gram) 99% 88% 78% 46% 

Naïve Bayes (1,2-gram) 70% 62% 52% 14% 

SVM (1,2-gram) 99% 87% 81% 38% 

Decision Tree (gadget) 99% 95% 91% 94% 

Naïve Bayes (gadget) 98% 93% 92% 83% 

SVM (gadget) 99% 94% 94% 92% 

 



 

 99 

 

Table 22. Classification results for profile expansion. 

 

 Original Instance Average 

CNN 1 91% 89% 84% 

CNN 2 88% 87% 87% 

CNN 3 90% 87% 88% 

InceptionV3 92% 89% 90% 

Decision Tree (1,2-gram) 98% 95% 94% 

Naïve Bayes (1,2-gram) 65% 61% 63% 

SVM (1,2-gram) 97% 93% 92% 

Decision Tree (gadget) 99% 98% 97% 

Naïve Bayes (gadget) 98% 96% 96% 

SVM (gadget) 99% 98% 97% 

 

 

 

6.2.3.4 Guided. Guided expansion was tested using a smaller sample set for the decision 

tree-based expansion. This is due to parts of this process not yet being fully automated. 

Table 23 showcases the accuracies of our tree models for files expanded both targeted 

and non-targeted. All models used in this test were trained on multi-layer samples. 

 

 

Table 23. Classification results for guided expansion. 

 

 Untargeted Targeted 

Trees 1-gram 1,2-gram 1,3-gram 1-gram 1,2-gram 1,3-

gram 

Encode A 5% 0% 15% 10% 0% 15% 

Encode L 10% 0% 5% 5% 0% 10% 

Virtualize 5% 0% 0% 10% 0% 20% 

Flatten 0% 0% 5% 5% 0% 15% 

Opaque 10% 0% 10% 15% 0% 0% 
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Table 24. Guided expansion classification results. 

 

 Original Guided Expansion 

CNN 1 90.8% 22.5% 

CNN 2 89.4% 21.7% 

CNN 3 89.7% 22.8% 

InceptionV3 92.1% 43.2% 

Decision Tree (1,2-
gram) 

99.7% 14% 

Naïve Bayes (1,2-
gram) 

71.2% 0% 

SVM (1,2-gram) 99.4% 27% 

Decision Tree 
(gadget) 

99% 92% 

Naïve Bayes 
(gadget) 

98% 88% 

SVM (gadget) 99% 91% 

 

 

 

The next test for Guided Expansion utilized the highest performing features for 

our 2-gram decision tree. For the untargeted attack, we inserted to dead code with the 

intention of lowering or raising the frequency of opcodes that were identified as valuable 

features. For the targeted attack, we compared samples of the target transformation to our 

samples and adjusted the frequency of the features accordingly. Table 24 showcases the 

results of our models attempting to classify samples that were expanded based on this 

extracted feature importance. 

6.2.4 Discussion 

 Looking over the results, there are few key takeaways and points worth exploring, 

starting with profile expansion. The opcode group profiles provide a good look at the 

impact of the obfuscating transformations on the opcode makeup of a binary. This 

information can be useful to heuristic approaches to code analysis both inside and out of 
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our work. Unfortunately, expanding a programs opcode profile based on these did not 

have the desired result. Neither instance nor average based expansion were able to 

achieve significant impact to the performance of our supervised learners. We believe that 

this method still holds promise and that it can be further refined. 

  Our next tests, had to deal with uniform based expansion. We explored all three 

of the presented options and found all to be effective and obscuring a programs metadata. 

Option 3 is clearly the best performance, reducing the decision tree and svm classifiers to 

a score below 50%. While this method was successful, it will need to be further analyzed 

to compare the achieved results with the impact on program cost. Especially if applied to 

larger programs. 

 Guided was the last type of expansion tested and, unlike the other methods, is at 

its core closer to an adversarial machine learning attack. Our first result showed that 

decision trees can be exploited by directly analyzing the tree structure and inserting code 

sequences base on the tree structure. This was even shown to work on similar trees, 

which would fall into the principle of adversarial transference. Our second result showed 

that expanding based on features extracted from a ML model can greatly enhance the 

impact of the expansion. 

6.2.5 Future Work 

Our future work for Opcode Expansion will be to continue to streamline the 

process and more easily automate the Guided Expansion approach. We wish to explore 

performing the expansions based on metrics beyond counts and for feature outside of n-

gram analysis. 
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6.2.6 Conclusion 

In this section, we have proposed and evaluated a method of algorithmic dead 

code insertion and a means of adversarial example generation. This approach, which we 

call Opcode Expansion, was capable of using opcode metrics such as counts and 

extracted TF-IDF values to guide dead code insertion in order to modify and improve the 

stealth of obfuscated programs. These expanded examples were shown to be effective at 

reducing the classification accuracy of supervised learners that real on opcode features. 

We showcased the effectiveness of this algorithm in both a white and black box setting, 

with our samples able to reduce the accuracy of our models under attack to as low as 0%. 

Our model was also shown to be effective at reducing the accuracy of image based 

CNNs. 

We further showed that our approach is effective on layered obfuscations as well, 

with our models misclassifying samples with 2 or more transformations present. This 

approach was extended to successfully perform targeted attacks as well, both for single 

and layered transformations. 
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CHAPTER VII 

IMPLEMENTATION AND EVALUATION 

 

This chapter details our proposal of an obfuscation framework that takes 

advantage of methods discussed in previous chapters to improve the overall stealth of 

obfuscations. We measure the metrics of code produced by the proposed framework to 

show that it has no negative impacts to obfuscating transformations. 

 

7.1 Introduction 

In recent chapters, we detailed the capabilities of supervised machine learning to 

analyze and detail both obfuscating transformations using different feature sets, as well as 

some fine-grained components of the transformation. We then described two methods of 

that can be used to modify obfuscate binaries in order to improve the stealth of those 

binaries against automated analysis. As both of these methods has successes and 

shortcomings, we propose the creation of a unified method that combines the best of both 

algorithms. We dub this approach Adversarial Expansion. At the simplest, it is the 

previous two methods applied at the same time to a sample, ensuring that both maintain 

the full stealth benefit. We propose and showcase a way to truly combine the two 

approaches, that allows the expansions from Opcode Expansion to be guided by the 

distance analysis of Adversarial Obfuscation. 
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To accomplish this, we propose the LOKI Obfuscation framework. Loki will be a 

collection of scripts and processes that will rely on other tools to enhance the obfuscation 

of files from beginning to end. For this research, we only showcase LOKI’s ability to 

improve the stealth of a file via Adversarial Expansion and leave further showcases to 

future work. We evaluate the Adversarial Expansion process against the same suite of 

classifiers to examine the stealth impacts. We also use cyclomatic complexity and 

analysis with GCC to test that LOKI’s changes have not negatively impacted potency or 

resilience. 

• A unified approach to improving the stealth of obfuscation via Adversarial 

Expansion. 

• The proposal of the LOKI framework in order to fully automate the process and guide 

the obfuscation process 

• We examine the metric impact of Adversarial Obfuscation to ensure that potency and 

resilience are maintained. 

 

7.2 LOKI Obfuscator Framework 

We believe that machine learning can assist in the obfuscation of programs in 

many ways. To that end and to make full use of the information gained in this research, 

we propose the creation of the LOKI framework. LOKI exists as a collection of scripts 

and modules created in Python that will link to various tools in order to guide the 

obfuscation process. LOKI will make use of various machine learning obfuscation 

research outside of the adversarial research shown in this work. LOKI will be open -
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source and available of Github once it more pieces of the framework are complete. A 

brief overview of LOKI’s proposed capabilities is described in the following sections. 

7.2.1 Capabilities 

As is currently planned, LOKI will consist of modules, which themselves are 

collections of scripts. LOKI will have modules for each of the capabilities described in 

the following sections.  

7.2.1.1 Guided Obfuscation. The guided obfuscation module will be the module used to 

begin the obfuscation process. The capabilities of this module will be to modify the initial 

obfuscation process in order to achieve high results in potency and resilience for the 

source code and chosen obfuscations. Examples of this include proposing the strongest 

ordering of layered obfuscations, the depth of arithmetic encoding, and the choice of 

options for a variety of other transformations. Some machine learning research will 

benefit his module, such as neural networks that can predict potency and resilience. 

7.2.1.2 Adversarial. The Adversarial module will be how LOKI implements the three 

adversarial processes described in this work. There will be script collections for 

Adversarial Obfuscation, Opcode Expansion, and Adversarial Expansion. The 

obfuscation and expansion scripts will drive the processes detailed in Chapter VI. These 

scripts will support the implementation of the two basic types of expansion (uniform and 

profile). Guided expansion will be added to the framework once the process becomes 

more easily automated. 

Adversarial Expansion is detailed further in this chapter will be implemented 

shortly after the initial deployment of LOKI. 
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7.2.1.3 Obfuscation Analysis. Analysis will be where scripts relating to the analysis of 

obfuscations will be kept. This analysis will primarily consist of using machine learning 

and other tools to analyze metrics and features present in obfuscated files. 

 

7.3 Methodology 

This section describes the methodology used in this chapter. We describe the 

process of Adversarial Expansion, which is a combination of the previous two algorithms 

described in this work. We will perform adversarial expansion and then test the impact on 

the four obfuscation metrics. The goal of this algorithm is only to improve stealth and 

avoid damaging any of the other metrics. For testing the metrics: 

• Stealth will be analyzed using the misclassification rate of classifiers, 

• Potency will be measured using the cyclomatic complexity of the samples, 

• Resilience will be measured by compiling the code with various optimization 

levels and seeing the impact to code size, 

• Cost will be measured by examining code size and runtime. 

 

7.3.1 Adversarial Expansion 

Adversarial expansion is the combination of adversarial obfuscation and opcode 

expansion. This will be implemented in two ways. The first will be to simply apply the 

two algorithms on top of each other. Both algorithms will be in a closed loop to ensure 

that the goals of both algorithms are met, without one damaging the other.  

The second method involves having the methods feed into each other. First, 

guided obfuscation will form of a list of dead code snippets, L, that must be inserted to 
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evade the n-gram feature analysis. After this list is given, it will replace the list of 

semantic nops typically used by adversarial obfuscation. An image will be generated 

using FGSM and CW. The binary distance metric will be used to reduce the distance 

between the code binary and the non-functioning AE. Insertion will proceed as normal, 

except with the standard list being replaced by the list from expansion. Some of the 

semantic nops may be present in the new list but it will also contain the longer samples 

used in expansion. The overall process can be seen in Figure 34. This method will 

implement the waterfall method as well for multiple labels and targeted attacks.  

If Adversarial Obfuscation is unable to achieve the desired misclassification rate, 

nop instructions can be inserted throughout the program. The locations of these 

instructions will replace the traditional insertion points and the algorithm will resort to 

using the standard semantic nop list, similar to [109]. 

 

 

 
 

Figure 34. Adversarial Expansion Process. 
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7.3.2 Metrics 

After adversarial expansion has completed, the samples will be analyzed to 

determine the impact that adversarial expansion has on the obfuscation metrics. The 

metrics themselves are defined in Chapter II. The goal is to decrease stealth, while having 

no negative impact on potency and resilience. For cost, the goal is to minimize the impact 

as it is unavoidable. 

7.3.2.1 Stealth. Stealth is a measure of how well obfuscation blends in with the 

surrounding code. As there is no accepted measurement for stealth, we choose to define 

stealth as the classification accuracy of machine learning algorithms. Our samples will be 

fed through our suite of supervised learning to determine the classification accuracy of 

the models. Both the original and expanded samples will be given to the models to 

compare the results. 

7.3.2.2 Potency. Potency is a measure of how dissimilar and complicated obfuscation has 

made the original code. For this metric, we will measure the cyclomatic complexity (CC) 

of the code. CC is used to measure the stability and level of confidence in a program 

[110]. Programs with lower CC are considered easier to understand and modify. As such, 

higher CC can be used to determine the impact of an obfuscation. CC uses the control 

flow graph and can be calculated with the following formula: M = E – N + 2P. Where E 

is the number of edges in the graph, N is the number of nodes, and P is the number of 

connected components. 

7.3.2.3 Resilience. Resilience is described as the difficulty in removing the obfuscations 

on a program. We are using GCC compiler optimization options (0, 1, 2, 3, s, fast) to 

measure the amount of time or resources taken to deobfuscate the transformations with 
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and without Adversarial Expansion. We will use file size as the primary metric for 

determining the resilience. Higher size after the optimizations implies more resilient 

changes. 

7.3.2.4 Cost. Cost will be measured as the file size in bytes of the samples at optimization 

level 0 with GCC.  

 

7.4 Results 

The following sections detail the results of our methodology. 

 

7.4.1 Impact on Stealth 

 We continue to define stealth as the classification rate of our machine learning 

algorithms. We run our samples and the originals through the multi-layer variants trained 

in Chapter V. For the CNN the presented score is the average of the individual layered 

networks. We do not make use of the FCNN shown in Chapter V. Table 25 shows the 

classification scores. 

7.4.2 Impact on Potency 

Table 26 shows the results of using the CC measurement on the original 

obfuscated binaries and on the same binaries modified via Adversarial Expansion. As we 

can see by examining the table, the dummy code inserted into the file has increased the 

cyclomatic complexity of the samples. No sample was negatively impacted, and we can 

observe that the impact of the dummy code is dependent on the type of transformation. 
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Table 25. Classification scores for our generated samples. 

 
 ORIGINAL ADVERSARIAL EXPANSION 

CNN 1 90.8% 0% 
CNN 2 89.4% 0% 
INCEPTIONV3 90.3% 20.7% 
DECISION TREE (1-GRAM) 98.15 22.7% 
DECISION TREE (1,2-GRAM) 99.4% 23.4% 
DECISION TREE (1,2,3-GRAM) 97.2% 22.6% 
NAÏVE BAYES (1-GRAM) 65.3% 0% 
NAÏVE BAYES (1,2-GRAM) 70.1% 0% 
NAÏVE BAYES (1,2,3-GRAM) 72.% 0% 
SVM (1-GRAM) 99.5% 24.1% 
SVM (1,2-GRAM) 99.2% 27.7% 
SVM (1,2,3-GRAM) 99.4% 21.6% 

 

 

 

Table 26. Cyclomatic complexity measures for transformation combinations. 

 

 Original Adversarial Expansion 

A 1.7 6 

ALO 5.4 10.1 

AO 8.0 14.7 

F 3.7 5.2 

FAL 2.8 6.7 

FO 9.0 16.9 

FOAL 6.2 20.3 

L 1.6 5 

O 7.3 11.5 

OA 7.3 12.3 

OAL  5.0 12.1 

OF 22.3 24.9 

OL 4.9 8.2 

V 12.3 16.0 

VAL 9.5 13.3 

VF 34.7 41.2 

VFOAL 57.0 71.3 

VO 22.7 29.1 

VOAL 62.0 78.1 

VOLAF 80.5 93.4 
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7.4.3 Impact on Resilience 

 Table 27 shows the results of our evaluation of the samples resilience. As stated 

previously, we made use of the gcc compiler to compile the code with varying levels of 

optimizations. As optimization is the inverse of obfuscation, the serves as a stand in for 

an attacker performing deobfuscation. We can observe that for each sample, our 

expanded variants were able to maintain more of their code through the optimization 

process. Our samples were even shown to have varying degrees of resistance against 

differing obfuscation levels, unlike the base samples. 

 

 

Table 27. Sample Size Comparison. 

 

 

 

 

 ORIGINAL ADVERSARIAL EXPANSION 

 0 1 2 3 s 0 1 2 3 s 
A 55033 54521 54629 54629 54629 57024 56000 56620 56795 56108 
ALO 57016 55992 56100 56100 56100 62034 58898 59021 59102 58921 
AO 56412 55388 55496 55496 55496 59904 57423 57598 57609 57481 
F 55545 54521 54629 54629 54629 57541 56953 57014 57134 56988 
FAL 55673 55125 55745 55745 55233 58300 57372 57598 57629 57419 
FO 56412 55900 55496 55496 55496 60849 58492 59837 59975 58637 
FOAL 57564 56028 56100 56100 56100 65007 61734 62938 62987 62029 
L 55637 55125 55233 55233 55233 57403 55394 55419 55498 55419 
O 56412 55388 55496 55496 55496 59513 57852 57902 57937 57871 
OA 56924 55388 55496 55496 55496 59637 58879 58930 58965 58903 
OAL  58730 56170 56278 56278 56278 62348 59748 59948 60027 59839 
OF 57436 56412 57032 57032 56520 60594 57858 58963 59074 58756 
OL 58218 56170 56278 56278 56278 61120 58642 58673 59003 58679 
V 56645 56133 56241 56241 55729 61123 60178 60258 60097 60204 
VAL 58220 56172 56792 56792 56280 62637 58938 59103 59340 58985 
VF 58693 57157 57777 57777 56753 63902 60386 60847 61084 60743 
VFOAL 73423 62671 62267 62267 63291 82672 67891 68122 68496 68038 
VO 59048 56488 57108 57108 56596 65657 59645 60464 60931 60004 
VOAL 85711 57551 57659 57659 57659 93976 78348 79436 79614 78509 
VOLAF 90319 64719 64827 64827 64315 101,661 68286 69334 69579 68589 
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7.4.4 Impact on Cost 

 Referring again to Table 27, we can see that the size of the samples did increase 

by an amount roughly >= 10,000 bytes for each sample. While this is unfortunate, we 

believe that this can be mitigated with a more efficient and varied dead code database. 

We can also observe that the increase in size due not appear to scale at a large rate with 

file size. 

 

7.5 Discussion 

Reviewing the results for the metric testing of adversarial expansion, we are 

confident in saying that the algorithm achieves its desired results. In the stealth test, the 

samples were able to achieve a misclassification rate of below 50% for all classifiers with 

the exception of the gadget-based classifiers. InceptionV3 is the only CNN model to be 

above 0% with a score of 20.7%, and the n-gram based decision trees and SVMs have 

been reduced to scores in range of 20% - 35%. This is a vast improvement over the two 

individual methods, which were unable to seriously impact the type of classifier that they 

were not constructed for. This makes Adversarial Expansion as our strongest algorithm 

for generating adversarial examples. 

  

7.6 Future Work & Conclusion 

In this section, we proposed and showcased the combined version of our two prior 

adversarial creation methods (adversarial obfuscation and opcode expansion) Adversarial 

Expansion. This method uses the dead code segment selected as part of guided expansion 

to form the insertion list for a round of adversarial obfuscation. Our samples generated 
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with Adversarial Expansion, were shown to have the benefits of both methods and are 

capable of evading both the image based neural networks and the N-gram based opcode 

classifiers. With this method, several of the limitations encountered previously are 

overcome.  

After testing the metric impacts of Adversarial Expansion on our obfuscated 

samples, we found that all goals were achieved across the four metrics. For stealth, the 

classification accuracy was reduced to as low as 0%, with both categories of classifiers 

being affected. This was done without requiring the heavy-handed approach of uniform 

expansion.  Potency was not only maintained across the range samples, but it was also as 

much as doubled for the weaker transformation. A similar situation was observed with 

resilience. As the initial goal was simply to avoid a negative impact, this means the 

method performed above expectation. The final metric of cost was impacted negatively; 

however, the impact was not extreme and could be mitigated with a larger dead code base 

to pull from and a more mature version of the algorithm. 

For future work, the first and main goal is to further automate the adversarial 

expansion process. Much of the work is done by hand with automation only assisting in 

certain parts of the process. A fully automated process will allow for further 

improvements to be made and for the process to be broadened more easily to other 

feature sets and applications. In addition, once the process has been hard coded and 

automated, the scripts can be compiled into modules and the LOKI framework can be 

made live.  
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