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Body of Abstract 
 
Stroke continues to be a leading cause of disability. Many individuals who suffer 
a stroke will receive specialized rehabilitation designed to maximize recovery and 
restore independence with daily activities. Yet, recovery is still highly variable 
with heterogeneity in treatment response that is still poorly understood. In recent 
years, the growing burden of stroke has pushed for moving away from a “one 
size fits all” approach with the concept of precision or personalized rehabilitation 
to generate evidence for clinicians to provide the right care, to the right patient, at 
the right time. The collection of research in this dissertation addresses key areas 
of personalized rehabilitation related to standardized outcome measurement, 
identification of biomarkers, and individualized response to treatment parameters 
in three parts. Part I illustrates how principals of item response theory can be 
used to inform a personalized measurement approach through clinical 
applications of Rasch analysis. Part II demonstrates how muscle coordination is 
linked with biomechanical variables of walking performance that can be used as 
potential biomarkers of recovery. Lastly, Part III shows how interindividual 
differences in treatment response could inform individualized prescription for 
transcranial direct stimulation for recovery of walking post-stroke as an example 
of how to approach personalized rehabilitation.   
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CHAPTER 1 

INTRODUCTION 

 

1.1 INTRODUCTION TO THE PROBLEM 

 Unfortunately, over two thirds of individuals who suffer a stroke will not 

make a full recovery (Wade, Langton-Hewer, Wood, Skilbeck, & Ismail, 1983). 

Stroke continues to be a leading cause of disability with 80% of stroke survivors 

have lasting sensorimotor deficits (Wade et al., 1983) and 50% not returning to 

community levels of ambulation (Perry, Garrett, Gronley, & Mulroy, 1995) in the 

United States. In the United States approximately 610,000 individuals will suffer a 

stroke for the first time next year (Benjamin et al., 2018) and many of them will 

receive specialized rehabilitation services designed to restore home and 

community independence (Winstein et al., 2016).  

 Yet, despite advances in stroke rehabilitation care, recovery is highly 

heterogeneous and interindividual variability in treatment response remains 

poorly understood (Bernhardt et al., 2017). Stroke is unique in this problem 

because of innate heterogeneity in the pathological presentation of the disease. 

Stroke rehabilitation research and clinical practice have often used a “one size 

fits all” approach because there is a lack of evidence that addresses 

interindividual variability (Cramer et al., 2017). Addressing interindividual 

variability should provide researchers and clinicians with evidence 
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for administering individuals the right treatment at the right time to improve 

outcomes, otherwise known as precision or personalized rehabilitation.   

The emphasis on personalized rehabilitation has increased in response to 

the growing burden stroke has placed on the United States. In 2016, the National 

Institute of Neurological Disorders and Stroke (NINDS) formed the National 

Institutes of Health (NIH) StrokeNet to develop a strategic plan for advancing 

personalization of stroke rehabilitation. The group presented the need for 

characterizing interindividual differences with respect to treatment response as 

one of the key specific issues to address. They list potential sources of 

interindividual differences including variation in (1) neural injury and clinical 

presentation, (2) treatment response, and (3) time since initial injury in regard to 

natural recovery and neural plasticity. In response to these sources of variation, 

the group stressed the need for research to (1) advance the use of standardized 

outcome measures, (2) identify of biomarkers or phenotypes to best inform 

subgrouping individuals, and (3) evaluate individual or subgroup response to 

treatments (Cramer et al., 2017).  

 The overarching goal of this dissertation is to address each of these three 

needs to generate evidence for personalized stroke rehabilitation in research and 

clinical practice. The dissertation is broken into three parts, with each part 

addressing an identified research area and subsequent specific aims. 

Part I addresses standardized outcome measurement. Part I examines 

how item-level psychometrics and clinical applications of item response theory 

can allow standardized outcome measures in stroke rehabilitation to be used to 
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inform personalized clinical decision making. Part II addresses the need to 

identify biomarkers. Part II will examine whether biomechanical variables of 

walking performance can serve as a biomarker for impairments to walking-

specific motor control which is directly linked to neural damage.  Part III will 

address individual treatment response and examining whether there is 

interindividual response to different prescriptions of non-invasive brain 

stimulation. 

 

 

1.2 RESEARCH AIMS 

Part I: Item Response Theory and Clinical Measurement  

The primary goal for Part I of the dissertation is to analyze two common 

standardized measures in stroke rehabilitation using item response theory and 

present the benefits of individual-level measurement data. Specifically, Part I will 

use the Rasch model to derive item-level psychometrics and item difficulty 

hierarchies for the Activities-specific Balance Confidence Scale (ABC) and the 

Functional Gait Assessment (FGA). Part I will demonstrate the benefit of using 

item-level psychometrics for personalization of treatment planning (FGA ability 

map demonstration) and deriving patient specific change scores (ABC scale 

conditional minimal detectable change demonstration).  

 

Aim 1: Evaluate item-level psychometrics for a patient-reported (the 

Activities-specific Balance Confidence Scale) and clinician-observed (the 
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Functional Gait Assessment) outcome measure commonly used in stroke 

rehabilitation. 

 

Aim 2: Demonstrate how item-level psychometrics can be used to inform 

personalized treatment planning using an ability map with the Functional 

Gait Assessment. 

 

Aim 3: Demonstrate how item-level psychometrics can be used to derive 

change scores using individual-level patient data with the Activities-

specific Balance Confidence Scale. 

 

Part II: Searching for Biomarkers to Inform Patient Subgroups 

The primary goal for Part II of the dissertation is to evaluate the potential for 

biomechanical variables to serve as a biomarker for stroke rehabilitation of 

walking-specific motor control impairments. Part II will quantify the association 

between walking-specific motor control and biomechanical variables of walking 

performance in healthy individuals. Understanding the association in healthy 

individuals will help inform data reduction techniques to identify which 

biomechanical variables have the strongest ability to serve as a biomarker. This 

information can then be used to inform personalized treatments to address 

biomechanical deficits that impact underlying deficits to motor control caused by 

the stroke.    
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Aim 1: Quantify the association between walking-specific motor control 

and quantifiable biomechanical variables during steady-state self-selected 

walking for healthy individuals. 

 

Part III: Evaluating Treatment Prescription 

The primary goal for Part III of the dissertation is to demonstrate a framework for 

examining the effects of manipulating available parameters for an intervention on 

patient specific impairments. Part III will specifically examine the effects of 

manipulating tDCS electrode montage on walking-specific motor control during 

post-stroke walking.  

 

Aim 1: Determine whether electrode montage type acutely influences 

walking performance. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 BACKGROUND 

 This chapter will review the scientific literature relative to each part of the 

dissertation including topics related to measurement theory, measurement of 

walking-specific motor control and mechanics, and transcranial direct current 

stimulation (tDCS) prescription and treatment effects. Knowledge gaps and 

research needs are identified throughout this chapter. 

 

2.2 MEASUREMENT THEORY:  

Classical Test Theory and Item Response Theory 

 Standardized outcome measures in rehabilitation are primarily patient-

reported or clinician-observed tools. Traditionally, these types of measurement 

tools have been informed by classical test theory. Classical test theory is used to 

derive a model for test score into (1) the true score and (2) error (Albano, 2016). 

The relative simplicity of this model supports why it has been the primary choice 

for examining a tool’s measurement properties and deriving psychometrics. 

However, the relative simplicity of the model is also its primary limitation; 

psychometrics are sample and test dependent (Albano, 2016). Sample and test 

dependency lack an overall ability estimate (a measure of the underlying 
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construct of interest) and score interpretations are not always generalizable 

across samples. Another limitation of classical test theory is the reliance on 

group-level data for generating error estimates. Group-level data assumes that 

error is the same across a measurement scale and limits the interpretability of 

individual-level data. The limitations of classical test theory have some distinct 

implications in research and clinical practice. The first, is that individual scores 

are difficult to interpret and often lack meaning for informing decision making 

(Haley & Fragala-Pinkham, 2006; Velozo & Woodbury, 2011). The second, is 

that group-level data error estimates may cause misinterpretation of individual-

level measures, especially when assessing for change (Haley & Fragala-

Pinkham, 2006; Kozlowski, Cella, Nitsch, Heinemann, & Rehabilitation, 2016; 

Paul W. Stratford et al., 1996). These implications are likely the reason that 

implementation of standardized outcome measures in physical therapy have 

been met with several barriers. For example, physical therapists have cited 

concerns about time (administration time is lengthy, requires more time than 

information is worth), lack of clinically relevant information (information is too 

subjective, items are not relevant to the patient), and limited interpretability 

(difficult to interpret, does not contribute to the plan of care) as barriers to 

measurement use (Jette, Halbert, Iverson, Miceli, & Shah, 2009; J. G. Stevens & 

Beurskens, 2010). These barriers may be addressed by another approach to 

examining test psychometrics, item response theory.  

 Item response theory places a focus on individual items in contrast to the 

overall score (Velozo & Woodbury, 2011). Item response theory fits statistical 
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models to response data for estimating parameters that represent the relative 

locations of persons and items on the continuum of a latent ability (Thissen & 

Wainer, 2001). These statistical models generate an item difficulty hierarchy that 

can be used to assess the clinical and theoretical validity of the instrument. 

Compared to classical test theory, item response theory attempts to measure the 

person’s ability level relative to item difficulty. This approach generates an ability 

estimate that is sample and test independent (Velozo, Kielhofner, & Lai, 1999). 

Item response theory models also generate item level psychometrics and 

measure-level error estimates (Kozlowski et al., 2016). These two benefits of 

item response theory may be useful for providing meaning to individual-level 

scores and allow individual-level data to be the primary source of decision 

making. These benefits may also address many of the barriers listed by physical 

therapists preventing standardized measurement use by addressing the 

limitations of classical test theory. 

 

The Rasch Model 

 The Rasch model is a one parameter logistic model and the simplest of 

item response theory models (Bond & Fox, 2015). The model is based on a 

probabilistic relationship between item difficulty and person ability. Persons 

should have a higher probability of passing items that are easier than their ability 

level and a lower probability of passing items that are harder. Persons should 

also have about a 50/50 chance of passing items that are at their difficulty level. 

The Rasch model examines the fit of individual’s response data to generate an 
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item difficulty hierarchy against the distribution of individual’s ability level on an 

interval logit scale. Fit statistics are used to understand how well items and 

persons fit the Rasch model and whether items overlap in their difficulty.  

 The Rasch model has two key assumptions that need to be evaluated. 

The first is that the scale is unidimensional, meaning that the scale is only 

measuring one construct. The second, is that the scale uses an ordered rating 

scale. Factor analysis methods can be used to test and explore for additional 

constructs (Reeve et al., 2007) and fit statistics from the Rasch analysis can be 

used to evaluate the rating scale structure (J.M. Linacre, 2003), as well as test 

the implications for misfitting persons or items (Wright & Linacre, 1994).  

 

Applications of the Rasch Model and Connections with Personalized 

Rehabilitation 

 The ability of the Rasch model to generate an item difficulty hierarchy, 

interval measure scale, and measure-level error estimates has broad implications 

for how to approach standardized measurement in research and clinical use. We 

explore two applications, keyforms and conditional minimal detectable change, 

that have direct implications for personalized rehabilitation and may address 

many barriers limiting standardize measurement use. 

 

Keyforms 

Item difficulty hierarchies have provided a means for examining the validity 

of a scale against theoretical and clinical expectations, but they also give 
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understanding for how individuals may move along a construct’s continuum 

(Haley & Fragala-Pinkham, 2006). Measures from the Rasch model correspond 

with this continuum and can give meaning to an individual’s score. Typically, the 

relationship of item difficulty to ability level is visually presented using an item-

person map, also called a Wright Map. Item-person maps have different varieties 

but generally present the distribution of person ability against item difficulty on 

the measure scale. These maps are ideal for examining how well the item 

difficulty hierarchy matches the underlying construct and understanding how 

much of the ability is captured by the overall scale. However, these maps do not 

provide information with respect to a specific individual. Linacre et. al. introduced 

the keyform to address this need (J. M. Linacre, 1997). 

Initially, the keyform was developed to provide a way for clinicians or 

researchers to generate instantaneous measure values using the Rasch 

informed scale (Kielhofner, Dobria, Forsyth, & Basu, 2005; J. M. Linacre, 1997). 

Keyforms are generated from the Rasch analysis and show the item hierarchy on 

the left vertical axis with items progressing from easiest to hardest with the 

easiest item on the bottom. Items are clustered together by difficulty level and 

these clusters are separated by a blank horizontal space. Each row extending 

horizontally from an item contains each of the available categories on the rating 

scale. The x-axis shows the interval measurement scale. Raters can use 

keyforms by circling the persons score on each item and then drawing a vertical 

line “through” the bulk of the circles (J. M. Linacre, 1997). The point where the 

line intersects the x-axis is an estimate of the person’s measure. Hence the idea 
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of spontaneous measurement. However, keyforms can also provide an ability 

map for understanding a person’s measure with respect to their ability along the 

latent construct (Grattan, Velozo, Skidmore, Page, & Woodbury, 2019; Velozo & 

Woodbury, 2011; Woodbury et al., 2016).   

 The concept of an ability map was presented by Haley et. al. in 2006 

(Haley & Fragala-Pinkham, 2006) and built upon by others (Grattan et al., 2019; 

Velozo & Woodbury, 2011; Woodbury et al., 2016). Keyforms show two key 

pieces of information about an individual: their measure, and their response 

pattern to items. A rater can look at a keyform and instantly see how an 

individual’s measure corresponds to their ability (i.e., response pattern) with 

respect to the items’ difficulties. This representation can be thought of as the 

ability map. In rehabilitation, this type of map is important for personalization 

because the ability map can show how someone should progress along the 

construct of interest’s continuum with respect to their current ability. Thus, 

individual measure values have meaning with respect to a person’s ability level 

and with respect to how they should progress over time. Items at the person’s 

ability level reflect tasks that are representative of their current place on the 

continuum and could be thought of as the “just right challenge” for an individual. 

Similarly, items that are harder for an individual can be used to set goals for 

rehabilitation and recovery (Grattan et al., 2019; Velozo & Woodbury, 2011; 

Woodbury et al., 2016). This approach to measurement informs how to interpret 

measured values for personalizing rehabilitation decision making, treatment 

design, and care plans.       
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Conditional Minimal Detectable Change 

 Error estimates are important for understanding the amount of error 

associated with a person’s score, but they also are critical for identifying change. 

Historically, error estimates from classical test theory were used to calculate a 

minimal detectable change (MDC) threshold. MDCs are often presented with a 

confidence interval and represent the amount of change necessary to exceed the 

measurement error of the scale (Riddle & Stratford, 2013; Paul W. Stratford et 

al., 1996; P. W. Stratford & Binkley, 1999). MDCs are used by researchers and 

clinicians for classifying individuals as having a detectable change for pre- and 

post-tests. However, there are some key limitations to the MDC approach. 

 One limitation is that MDCs rely on a single error estimates derived from 

classical test theory which is problematic because of the concerns presented 

earlier regarding classical test theory. First, MDCs are derived using a single 

error estimate that is assumed to be stable across all measures on a scale. 

However, statistically, we know that this isn’t the case and that error changes 

across a measurement scale with more error being associated with extreme ends 

and less error at the midrange of a scale (J. M. Linacre, 2007). The idea that 

different measures have different amounts of error was recognized by Stratford 

et. al. when introducing the MDC concept for physical therapists but the single 

error estimate was preferred because it was less computationally intensive under 

classical test theory (Paul W. Stratford et al., 1996). Second, MDC’s are sample 

and test dependent. Thus, MDC’s have limited generalizability to persons with 
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characteristics that do not match the sample characteristics from which the MDC 

value was generated.  

 The next limitation is the violation of mathematical principles used to 

calculate MDC’s when scales are ordinal. There has been criticism of the MDC 

approach because ordinal data summarized with mean and standard deviation 

statistics is not ideal from a pure mathematical standpoint (Anselmi, Vidotto, 

Bettinardi, & Bertolotti, 2015; Caronni, Picardi, Gilardone, & Corbo, 2021; Kahler, 

Rogausch, Brunner, & Himmel, 2008; S. S. Stevens, 1946). Since many 

rehabilitation standardized outcome measures that are patient-reported or 

clinician-observed often rely on ordinal scales many would argue that MDCs 

should not be used for these tools. 

 The Rasch model is able to generate measure-level error estimates that 

can be used to generate MDCs that are conditional to an individual’s pre- and 

post-score (Kozlowski et al., 2016). The conditional minimal detectable change 

(cMDC) approach directly addresses all of the key limitations described for the 

MDC approach. First, cMDC thresholds are based on measure values from the 

Rasch informed interval scaling. This aspect of the cMDC approach addresse 

criticisms related to using ordinal data. Second, the cMDC approach accounts for 

error associated with the pre- and post-score. This accounts for differences in 

error that are present at different points on the scale. Accounting for error 

differences could prevent instances where people may have been misclassified 

as either having or not having changed. As a result, cMDCs provide the means 

for using individual-level data to understand error and identify change. Clinicians 
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and researchers alike can use cMDCs and individual-level data for a 

personalized approach to evaluating change.  

 

 

2.3 MEASUREMENT OF WALKING-SPECIFIC MOTOR CONTROL AND 

MECHANICS 

Walking is a complex activity requiring successful execution of 

biomechanical tasks that are controlled by well-coordinated muscle activity 

(Gottlieb, 1998). Normal walking is a cyclical movement pattern where one gait 

cycle is defined as the period when the reference limb moves from heel strike to 

the next heel strike. A normal gait cycle consists of three observable phases: (1) 

double limb support, (2) swing phase, and (3) single-leg stance phase. These 

phases can be further divided into the following 6 phases or bins of the gait cycle: 

(1) initial contact/loading response (initial double support), (2) first half of single-

leg stance, (3) second half of single-leg stance (4) second double support, (5) 

first half of swing, (6) second half of swing (D. J. Clark, Ting, Zajac, Neptune, & 

Kautz, 2010). During each phase of the gait cycle, there are kinematic and kinetic 

changes to reflect the accomplishment of key biomechanical tasks; body support, 

forward propulsion and leg swing (Zajac, Neptune, & Kautz, 2003). Appropriate 

kinematic and kinetic changes and successful biomechanical task completion are 

all the result of appropriately activated and timed muscle activity.  

 

Measuring Walking-Specific Motor Control 
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 There have been several approaches used to measure motor control 

during walking. One prominent approach is to quantify the coordination of spatial 

and temporal components of measurable gait mechanics (Krasovsky & Levin, 

2010; Plotnik, Giladi, & Hausdorff, 2008). However, these approaches do have 

some limitations including how to determine an acceptable level of variability 

(e.g., cyclograms)  (Field-Fote & Tepavac, 2002; Krasovsky & Levin, 2010), 

distinguishing between spatial and temporal consistency (e.g., Discrete Relative 

Phase Index) (Krasovsky & Levin, 2010), and differentiating symmetry and 

variability when accounting for interlimb similarities (e.g., Phase Coordination 

Index) (Plotnik et al., 2008).  

 Another approach to measuring motor control is to use surface EMG. 

Surface EMG signals provide a non-invasive means of observing gross 

interactions between the nervous system and motor output because EMG is 

reflective of the common neural drive a muscle receives. Since walking requires 

the contributions of many muscles, it is difficult to quantify comprehensive 

measures of the multi-channel EMG and studies examining motor control during 

walking were largely qualitative (Knutsson & Richards, 1979). Recently, the use 

of statistical factorization methods have provided a way to reduce EMG data from 

multiple muscles into a small set of modules, also referred to as modes or 

synergies, for quantifying walking-specific motor control (D. J. Clark et al., 2010; 

Ivanenko, Cappellini, Dominici, Poppele, & Lacquaniti, 2005; Ivanenko, Poppele, 

& Lacquaniti, 2004). Factorization provides a composition of muscle activity 

(relative muscle patterns) and temporal representation (pattern activation and 
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timing) for each module. Thus, modules are a representation of coordinated 

muscle activity during walking that have a link with underlying neural activity 

(Bryant A. Seamon, Richard R. Neptune, & Steven A. Kautz, 2018). What is 

currently missing from module-based analysis when measuring coordination is 

their association with biomechanical task success. Simulation and observational 

studies have begun to establish these associations, alleviating some of this 

concern (Allen, Kautz, & Neptune, 2013; Bowden, Clark, & Kautz, 2010; D. J. 

Clark et al., 2010; Bryant A. Seamon et al., 2018)   

 

Modules  

Modules have been used to measure coordination by quantifying the 

complexity of coordination (low, medium, high/normal) (D. J. Clark et al., 2010) 

and individual muscle pattern weightings and activation curves have been used 

to evaluate the quality of coordination when accomplishing biomechanical tasks 

of walking (Routson, Clark, Bowden, Kautz, & Neptune, 2013). Initially, there 

were concerns that statistical factorization methods (e.x. principal component 

analysis, non-negative matrix factorization) may produce findings that are not 

physiologically relevant because they are simply mathematical formulas. 

However, modules have been relatively consistent across studies that examine 

healthy walking (Cappellini, Ivanenko, Poppele, & Lacquaniti, 2006; D. J. Clark et 

al., 2010; d’Avella, 2016; Ivanenko et al., 2005; Ivanenko et al., 2004; Tresch, 

Cheung, & d'Avella, 2006). Findings from these studies have supported that non-

negative matrix factorization and a common set of eight muscles can produce 4 

modules that can account for over 90% of the variation in observed EMG data. 
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The composition of muscle activity and activation of each module during the gait 

cycle theoretically aligns with biomechanical tasks required for walking and 

computer simulations have supported this association (D. J. Clark et al., 2010; 

McGowan, Neptune, Clark, & Kautz, 2010; Neptune, Clark, & Kautz, 2009). 

 

The Early Stance module (Module 1) is primarily made up of muscle 

activity from knee extensors (rectus femoris and vastus medialis) and gluteus 

medius. This module contributes to the biomechanical functions of body support 

and backward propulsion (braking). The Late Stance module (Module 2) is 

primarily gastrocnemius and soleus activity and contributes to body support and 

forward propulsion (acceleration). The Double Burst module (Module 3) contains 

two peaks of muscle activity primarily in rectus femoris and tibialis anterior. One 

peak contributes to foot clearance during early swing and the second to control of 

the foot at heel strike. The Swing to Stance module (Module 4), primarily 

composed of medial and lateral hamstring activity, contributes to leg declaration 

at the end of swing phase before accelerating the leg in early stance to 

accomplish forward progression. Figure 1 below shows the relative muscle 

contributions to each module and their relative activation profile over the gait 

cycle.  

 



18 
 

 

Figure 1: Modules During Healthy Walking 

Figure 1: Muscle compositions (A) and activation-timing profiles (B) for the 4 

modules seen in healthy walking at self-selected speeds (n=20). A. Group 

averages for muscle weightings are presented with black boxes and standard error 

bars. If a muscle was fully represented in a module across all individuals then the 

box would be completely gray. B. Individual (thin gray) and group (black) curves 

are pictured for each module. The activation timing profiles show the magnitude of 

the module’s activation over the gait cycle (averaged to 100 points). Modified from 

Clark et. al., 2010 (D. J. Clark et al., 2010). 

 

Muscle Abbreviations: TA, tibialis anterior; SO, soleus; MG, medial 

gastrocnemius; VM, vastus medialis; RF, rectus femoris; LH and MH, lateral and 

medial hamstring; GM, gluteus medius. 
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Modules have also been useful for understanding changes in walking-

specific motor control for persons post-stroke (B. A. Seamon, R. R. Neptune, & 

S. A. Kautz, 2018). Persons post-stroke typically walk with fewer modules on the 

paretic leg. These modules appear to be merged versions of the healthy modules 

described above and correlate with poorer walking performance (Allen et al., 

2013; Barroso et al., 2017; Bowden et al., 2010; D. J. Clark et al., 2010; Coscia 

et al., 2015; Gizzi, Nielsen, Felici, Ivanenko, & Farina, 2011; Hashiguchi et al., 

2016; Kautz, Bowden, Clark, & Neptune, 2011; Routson et al., 2013; Routson, 

Kautz, & Neptune, 2014). This finding supports the conventional theory of motor 

recovery post-stroke that proposes stroke severity is associated with how well an 

individual can move out of mass flexion and extension muscle coordination 

patterns often seen with merged or fewer modules. As individuals recover, they 

progressively gain the ability to move away from these mass activation patterns 

and gain more independent control of their movements (D. J. Clark et al., 2010). 

Under this framework, more modules equate to more independent control of 

muscle coordination patterns (Ferrante et al., 2016; Hashiguchi et al., 2016). This 

link between modules and theory is important because clinicians and researchers 

have used this theory of motor recovery to hypothesize that an individual’s motor 

control level is the cause of altered walking mechanics or biomechanical deficits 

commonly seeing in post-stroke walking (Knutsson & Richards, 1979; Ting et al., 

2015). Modules appear to provide a way to quantify coordination that is 

representative of the underlying neuropathology caused from a stroke and may 
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serve as a biomarker to identify interindividual differences from a mechanistic 

viewpoint.  

 

The benefit of a mechanistic biomarker in stroke rehabilitation for walking-

specific motor control recovery 

 A biomarker for walking-specific motor control recovery would have 

several explicit benefits for stroke rehabilitation. Stroke rehabilitation has been 

plagued by a reliance on measures that lack a singular mechanistic link with 

underlying pathology making it difficult for clinicians and researchers to identify 

interindividual differences and impairments for treatment targets (Cramer et al., 

2017). This is particularly true for walking where persons can improve 

performance on activity measures (e.x., gait speed) by addressing a variety of 

impairments such as strength, balance, and walking-specific motor control 

(Bowden, Embry, & Gregory, 2011). A biomarker for walking-specific motor 

control recovery could alleviate these problems and provide clinicians with a 

framework for providing personalized rehabilitation that targets patient specific 

impairments (L. Awad, Reisman, & Binder-Macleod, 2019; L. N. Awad, Lewek, 

Kesar, Franz, & Bowden, 2020; Bowden et al., 2012; Bowden, Hannold, Nair, 

Fuller, & Behrman, 2008). 

The primary challenge for using modules as a biomarker in stroke 

rehabilitation is the measure’s limited potential for clinical use. Module analyses 

require a sophisticated lab-based gait-analysis, time, and expertise to conduct. 

All these factors make it highly unlikely that modules would regularly be 
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measured in the clinic. One alternative is to further explore the association 

between modules and biomechanics to identify variables that could serve as a 

surrogate measure.  

Biomechanical variables have been explored as potential biomarkers in 

stroke rehabilitation for walking because of their ability to differentiate individuals 

post-stroke (L. N. Awad et al., 2020; Louis N. Awad, Reisman, Pohlig, & Binder-

Macleod, 2016; Balasubramanian, Bowden, Neptune, & Kautz, 2007; Bowden, 

Balasubramanian, Neptune, & Kautz, 2006; Mulroy, Gronley, Weiss, Newsam, & 

Perry, 2003) and their relative potential for clinical translation given technological 

advancements in wearable sensors and movement analysis. Modules provide a 

unique way to approach biomechanical variable selection and testing because of 

the potential to link biomechanical variables to underlying neural pathology. 

Simulation studies support that there is causality between modules and 

biomechanical functions in health adults (Neptune et al., 2009). But this still 

needs to be explored in in vivo gait studies for both healthy individuals and stroke 

survivors to determine the suitability of potential surrogate measures. More 

research is needed to understand which biomechanical variables specifically link 

with each module observed in healthy persons to inform baseline biomarker 

expression. Furthermore, testing is needed to understand how these biomarkers 

present in person’s post stroke relative to their individual nervous system 

damage and walking ability. 
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2.4 PRESCRIPTION AND TREATMENT EFFECTS OF TRANSCRANIAL 

DIRECT CURRENT STIMULATION 

Transcranial Direct Current Stimulation and Stroke Rehabilitation 

 Transcranial direct current stimulation (tDCS) is a type of non-invasive 

brain stimulation that is a relatively easy to administer, low cost, and safe way to 

modulate cortical activity (Schlaug, Renga, & Nair, 2008; Woods et al., 2016). 

The potential for modulating the amount of excitability in the cortex has prompted 

tDCS to be investigated as a potential adjunct therapeutic in stroke rehabilitation 

where interhemispheric imbalances are commonly present (Hummel & Cohen, 

2005; Nowak, Grefkes, Ameli, & Fink, 2009). Several studies have already found 

positive effects of tDCS on stroke rehabilitation including areas of aphasia 

(Fridriksson et al., 2019; Fridriksson et al., 2018), upper (Boggio et al., 2007; 

Fregni et al., 2005; Hummel & Cohen, 2005; Kim et al., 2010) and lower 

extremity (Nowak et al., 2009; Reis & Fritsch, 2011) function, and walking 

(Madhavan & Stinear, 2010; Madhavan, Weber, & Stinear, 2011). However, 

these promising findings primarily consist of small effects and bring into question 

the realistic therapeutic utility of tDCS, especially with respect to walking 

(Lefaucheur et al., 2017; Li, Fan, Yang, He, & Li, 2018; Vaz et al., 2019).  

 

Addressing tDCS Limitations in Stroke Rehabilitation 

 The high degree of heterogeneity and interindividual differences that is 

typical of stroke pathology has become a leading proposed mechanism for the 

limited effects of tDCS (Vaz et al., 2019). Understanding what the interindividual 
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differences are and their impact on treatment effects of tDCS will be important for 

moving this body of work forward. One way to approach this need is by placing a 

greater emphasis on study designs that test the effect of varying tDCS 

parameters for informing prescription (Fridriksson et al., 2019; Lefaucheur et al., 

2017; Lefebvre & Liew, 2017; Vaz et al., 2019). There are several parameters 

that can be investigated. These include parameters related to treatment 

frequency, duration, and length, and parameters related to tDCS deliver including 

current strength and electrode montage.  

 

The Case for Examining Electrode Montage 

 A strong case can be made for examining the effects of different electrode 

montages with respect to prescription because various pad placements can 

induce different modulatory effects. In general, an increase in cortical excitability 

can be achieved by placing an anode pad over the target brain region (i.e., 

excitatory stimulus) and a decrease in cortical excitability (i.e., inhibitory stimulus) 

can be achieved with a cathode pad placed over the target region. The ability to 

target specific brain locations with excitatory or inhibitory stimuli indicates the 

potential for addressing interindividual variations within stroke because 

prescription of electrode montage can be informed by neuropathology. For 

example, pad placement could be targeted to excite the lesioned hemisphere, 

inhibit the contralesional hemisphere, or both. Using neuropathology to inform 

electrode montage has shown positive effects in studies examining tDCS effects 
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on upper extremity and hand function (Boggio et al., 2007; Fregni et al., 2005; 

Hummel & Cohen, 2005; Kim et al., 2010). 

 

Current Evidence on Electrode Montage Prescription and Walking 

 Walking is a unique activity because it is a bilateral, cyclical movement 

that engages both cortical hemispheres. Unilateral stroke lesions can be 

disruptive to coordination between hemispheres and an underlying impairment 

for poor walking performance (Li et al., 2018). Prescribing electrode montage to 

correct this imbalance could, in theory, improve walking performance. Studies 

examining the effects of tDCS prescribed to treat interhemispheric imbalances 

have shown improvements in bilateral upper extremity tasks, but this has not 

been explored for walking. It is known that tDCS has shown potential for 

augmenting rehabilitation treatment for walking ability in persons post-stroke 

(Lefaucheur et al., 2017; Li et al., 2018; Madhavan & Stinear, 2010; Madhavan et 

al., 2011; Vaz et al., 2019). Studies specifically examining the effects of electrode 

montage have only tested a dual electrode (Ojardias et al., 2019; Tahtis, Kaski, & 

Seemungal, 2014; van Asseldonk & Boonstra, 2016). These studies found acute 

improvements in walking function (Timed Up and Go (Tahtis et al., 2014) and 6-

minute walk distance (Ojardias et al., 2019)) and paretic power (van Asseldonk & 

Boonstra, 2016). However, to date there are no studies that compare the 

differences between an excitatory (anode over target M1 – usually ipsilesional), 

inhibitory (cathode over target M1 – usually contralesional), and dual montage 

(usually anode over ipsilesional M1 and cathode over contralesional M1). Studies 
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are needed that test the immediate effects of each montage compared to sham 

stimulation to inform the best prescription for improving walking performance. 

Additionally, there are also no studies to date that examine the acute effects of 

tDCS with respect to montage on a comprehensive assessment of walking 

performance including functional ability, biomechanics, and walking-specific 

motor control. Studies evaluating treatment prescription need to take 

comprehensive assessments to understand the effects of tDCS on contributors of 

walking performance such as biomechanical or neuromotor impairments. This 

approach is necessary for understanding interindividual differences that underpin 

variations in treatment response which is critical for personalization of 

prescription in stroke rehabilitation.   
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CHAPTER 3 

METHODOLOGY 

 

3.1 INTRODUCTION 
 
 This chapter is divided into three parts. Each part presents methodology 

specific to one of the three research areas. 

 

 

3.2 RESEARCH AREA 1: Item Response Theory and Clinical Measurement 
 

Aim 1: Evaluate item-level psychometrics for a patient-reported (the Activities-

specific Balance Confidence Scale) and clinician-observed (the Functional Gait 

Assessment) outcome measure commonly used in stroke rehabilitation. 

 

Aim 2: Demonstrate how item-level psychometrics can be used to inform 

personalized treatment planning using an ability map with the Functional Gait 

Assessment. 

 

Aim 3: Demonstrate how item-level psychometrics can be used to derive change 

scores using individual-level patient data with the Activities-specific Balance 

Confidence Scale. 
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3.2.1 Study Design 
 
 We used a cross-sectional research design to perform tests of 

unidimensionality and a Rasch analysis for the Activities-specific Balance 

Confidence (ABC) scale and the Functional Gait Assessment (FGA) to answer 

Aim 1. Item-level psychometrics generated from the FGA were used to construct 

an ability map for informing personalized treatment planning to address Aim 2. 

Item-level psychometrics from the ABC scale were used to generate change 

scores based on individual-level data to address Aim 3.  

 All methodology for Part I was considered secondary research. All data 

was free of individual identifying information and did not require Institutional 

Review Board approval under the revised Federal Policy for the Protection of 

Human Subjects (Revised Common Rule)(HHS.gov, 2017) 

 

 

3.2.2 Dataset Descriptions 

 Data for analyses with the ABC scale were obtained from the NIH’s 

National Institute of Neurologic Disease and Stroke’s Archived Clinical Research 

Dataset. The dataset included ABC scale response data for 406 individuals 

approximately 2-months post-stroke who were participants in the Locomotor-

Experience Applied Post-Stroke (LEAPS) trial (P. Duncan, 2012; Pamela W. 

Duncan et al., 2011). Individuals who participated in the LEAPS trial were over 

the age of 18, could walk at least 10-feet with maximum assistance of one 

person, walk slower than 0.8 m/s, and were living in the community at the time of 
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enrollment (P. W. Duncan et al., 2007). The LEAPS trial was a phase 3, multisite, 

randomized control trial and the full inclusion and exclusion criteria can be found 

in Duncan et. al., 2007 (P. W. Duncan et al., 2007). All response data for the 

ABC scale were from the LEAPS baseline assessment and there were no 

missing data points. 

 Data for the analyses with the FGA were provided by a shared database 

maintained by the NIH Center for Biomedical Research Excellence (COBRE) in 

Stroke Recovery at the Medical University of South Carolina. The database 

includes data for research participants who participated in studies held at the 

COBRE in Stroke Recovery and consented to having their information archived 

for future research studies. The shared database is approved by the Institutional 

Review Board at the Medical University of South Carolina. The database 

provided a dataset with FGA response data for 101 individuals post-stroke. The 

date for FGA data collection was used to link demographic variables and 

calculate participant’s ages and time since stroke. The FGA data collection date 

was also used to link to lower-extremity Fugl-Meyer scores and overground self-

selected walking speed. Trained physical therapy staff conducted and scored the 

FGA for all individuals. Individuals completed the FGA without an assistive 

device or orthotics. However, an aircast was allowed when individuals had 

severe paretic ankle instability to prevent injury. 

 

  

3.2.3 Rasch Analysis and Tests of Unidimensionality 



29 
 

 

 Rasch analysis for both scales was completed in Winsteps [version 

3.93.1; John Lincare/Winsteps.com, Beaverton, OR, USA]. Tests for 

unidimensionality and local dependence were completed with Mplus [version 7.4; 

Muthén & Muthén, Los Angeles, CA, USA] for the ABC scale and in R [version 

3.6.1; R Foundation for Statistical Computing; Vienna, Austria] (Team, 2019) with 

the following packages: ‘lavaan’ (Rosseel, 2012), ‘psyc’ (Revelle, 2020), and 

‘polycor’ (Fox, 2019) for the FGA. 

 

Rating-Scale Structure 

 Rating-scale structure was evaluated with Linacre’s 3 category rating-

scale criteria: (1) a minimum of 10 observations per rating-scale category, (2) 

rating-scale category average measures advance monotonically (i.e., 

demonstrate increasing item difficulty with increasing category value) and (3) 

outfit mean-squares are less than 2 (J.M. Linacre, 2003).   

 Category probability curves were visually inspected to confirm distinct 

peaks for each category of the rating-scale. Distinct peaks for category 

probability curves indicate each rating-scale category is the most probable 

response for a specific portion of the measurement scale (Bond & Fox, 2015). 

 If the rating-scale structure did not meet the designated criteria or 

demonstrate distinct peaks for category probability curves, then we applied 

modifications to the rating-scale to best fit the established criteria for the Rasch 

model.  
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Unidimensionality 

 We tested the ABC scale and FGA for unidimensionality after making 

modifications to the rating-scale structure if they were required. A one-factor 

confirmatory factor analysis was used to evaluate unidimensionality. 

Recommendations from Reeve et. al., 2007 were used to evaluate the model fit: 

(1) comparative fit index >0.95, (2) root mean square error approximation <0.06, 

(3) Tucker-Lewis Index >0.95, and (4) standardized root mean residuals <0.08 

(Reeve et al., 2007). If the one-factor model did not meet the recommendations, 

we performed an exploratory factor analysis to test for additional factors. We 

compared model fit from the exploratory factor analysis to the same 

recommendations used in the confirmatory factor analysis. In addition, we 

weighed accepting additional factors using: (1) the eigenvalue ratio between the 

first and second factors (greater than 4 indicates sufficient unidimensionality), (2) 

scree plot visualization, and clinical interpretation. 

 

Local Dependence 

 The Rasch model assumes that items have local independence. Local 

independence of items means that there are no significant associations among 

item responses when controlling for the measure’s dominant factor.(Reeve et al., 

2007) We evaluated for local independence of items using a residual correlation 

matrix from the one-factor confirmatory factor analysis. If residual correlations 

were >0.2 or <-0.2 between two items we considered them to be locally 

dependent. (Reeve et al., 2007)  
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Item and Person Fit 

The fit of items and persons to the Rasch model were evaluated with fit 

statistics. Items or individuals were considered misfitting when outfit statistics had 

mean-square standardized residuals greater than or equal to 1.4 and standardized 

z-scores greater than or equal to 2 (J.M. Linacre, 2003; Wright & Linacre, 1994). 

 

Item Difficulty Hierarchy 

We evaluated the FGA’s theoretical construct validity with the item 

difficulty hierarchy generated by the Rasch model. We also used the item 

difficulty hierarchy to evaluate the extent that items overlapped. Items were 

considered to overlap if the measure estimates for any two items were within 2 

standard errors. 

 

Person-Item Match 

We evaluated for floor and ceiling effects. We considered the scale to 

have a floor and/or ceiling effect if more than 15% of individuals scored the worst 

or best possible measure value (Lim et al., 2015). 

 

Separation Index 

The person separation index was used to quantify how well each scale 

differentiated people into statistically distinct strata. The following formula was 



32 
 

 

used to calculate the number of strata from the person separation index (Wright 

& Masters, 2002):  

Strata = [4*(person separation index)+1]/3 

 

 

3.2.4 Ability Map Development 

 We developed an ability map for the FGA from a keyform that is generated 

by Winsteps during the Rasch analysis to address Aim 2. A keyform is a tool that 

can be used to score persons on individual items and then quickly generate the 

person’s measure value. The keyform presents the items in difficulty hierarchy on 

the right vertical axis and the measure values on the horizontal axis. The items 

are clustered with items of similar difficulty and clusters are separated by a 

horizontal blank space. Each row for the items contains the available rating-scale 

categories. The rating-scale categories for each FGA item correspond to the 

original score system: 0=severe impairment, 1=moderate impairment, 2=mild 

impairment, and 3 = normal. 

 A rater can use a keyform by circling the score for each item and then 

drawing a vertical line through the “bulk” of the circles to x-axis. The line 

intersects with the x-axis to provide an approximation of the person’s measure 

value on the Rasch model. Measure values are typically generated on the logit 

scale. The logit scale anchors the mean to 0 and standard deviation to 1. Logit 

scales can be transformed by selecting a new anchor for the mean and rescaling 

the measures. We chose to convert the logit scale to a scale from 0-30 to mimic 



33 
 

 

the traditional FGA scale and enhance the clinical interpretability of measure 

values. 

 We presented three patient scenarios to demonstrate how a keyform can 

be used as an ability map to generate personalized treatment planning from 

individual patient responses to items on the FGA. We separated our sample into 

tertials based on their measure values to represent high, moderate, and low 

ability levels. We randomly selected an individual from each tertial and evaluated 

their fit statistics to ensure they did not misfit the Rasch model. Each individual’s 

response data was used to complete a keyform score sheet and generate an 

estimate of their measure value. We discuss how the keyform can be interpreted 

as an ability map by clinicians for personalized treatment planning.  

 

 

3.2.5 Change Threshold Determinations 

 We calculated conditional change thresholds, also known as conditional 

minimal detectable change (cMDC), using item-level psychometrics generated 

from our Rasch analysis of the ABC scale to address Aim 3. We also calculated 

a traditional change threshold, also known as minimal detectable change (MDC), 

using group-level data for the ABC scale from our dataset. We used theoretical 

patient examples to demonstrate the differences between cMDCs and an MDC 

for classifying patients as having a detectable change.  

 

Calculating cMDC Thresholds  
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Rasch analysis generates an interval scale with measure values in logits. 

Each logit has an associated standard of error (SE). We converted the logit scale 

back to a 100-point scale (0-100) by anchoring the mean and scaling measure 

values with the same approach described for the FGA analysis. We applied this 

transformation to help improve the clinical interpretability of measure values on 

the interval scale. The transformation also helps improve the interpretability of 

comparisons between the cMDC and MDC, which relies on the traditional ABC 

scale scoring system.  

We used the SE generated with each measure value to calculate a cMDC 

threshold with a 95% confidence interval (cMDC95) for every possible pair of pre- 

and post-score combinations using the following formula (Kozlowski et al., 2016): 

 

cMDC95 = ([SEpre-score-SEpost-score]/2)*1.96*√(2) 

 

Calculating MDC Thresholds 

We calculated the standard error of measurement (SEM) which represents 

group-level error data for the ABC scale with original scores (i.e., prior to Rasch 

analysis) in the following formula (Wyrwich, 2004): 

 

Standard Error of Measurement (SEM) = Standard Deviation *√(1-Cronbach Alpha) 

 

Next, we calculated one MDC threshold with a 95% confidence interval 

(MDC95) with the following formula (P. W. Stratford, Binkley, Riddle, & Guyatt, 

1998): 
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MDC95 = 1.96*√(2)*(SEM) 

 

Comparing cMDC and MDC Thresholds 

 We plotted all possible cMDC95 thresholds associated with each person 

measure on the cMDC scale to visualize the effect of individual-level standard 

error on the threshold for detecting change across the ABC scale. We also 

plotted the MDC95 as a horizontal line across the scale to illustrate differences in 

the approach for detecting change. Finally, we extracted three of the cMDC95 

curves to show three theoretical patient scenarios to examine if there are 

differences in how change is detected between approaches. We selected a low 

(25), moderate (50), and high (75) initial score for the patient scenarios to 

capture the differences between a cMDC95 and MDC95 approach across three 

representative ability levels.  

 

 

3.3 RESEARCH AREA 2: Searching for Biomarkers to Inform Patient 

Subgroups 

 

Aim 1: Quantify the association between walking-specific motor control and 

quantifiable biomechanical variables during steady-state self-selected walking for 

healthy individuals. 
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3.3.1 Study Design 

 We used a cross-sectional research design with health, community-

dwelling individuals. Participants completed a laboratory gait analysis consisting 

of walking on an instrumented treadmill for three, 30-second bouts of self-

selected treadmill walking. Study procedures were approved by the Institutional 

Review Board at the Medical University of South Carolina and conformed to the 

Declaration of Helsinki. All participants signed a written informed consent form 

prior to enrollment.  

 

 

3.3.2 Participants 

 We enrolled 20 healthy adults between 40 to 85 years of age. Participants 

were excluded if they had any neurologic diseases or significant orthopedic 

impairments in their legs (e.g., pain, amputation, severe osteoarthritis, etc.) that 

would limit walking ability or alter motor control. 

 

 

3.3.3 Experimental Procedures 

 All participants walked for three, 30-second bouts of self-selected walking 

on an instrumented treadmill (Bertec; Columbus, OH). Kinetic, kinematic, and 

electromyographic (EMG) data were collected during each trial. We sampled 

ground reaction forces at 2000 Hz to derive kinetic variables. Ground reaction 
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force data was filtered with a 4th order Savitzky-Golay filter and resampled at 

100 Hz. We collected whole-body 3D kinematic measures using a 16-camera 

motion capture system (PhaseSpace, Inc.; San Leandro, CA). Motion capture 

data was sampled at 120 Hz, filtered with a 4th order Savitzky-Golay filter, and 

resampled at 100 Hz. EMG data were collected from surface bipolar pre-

amplified electrodes (Motion Lab Systems; Baton Rouge, LN, USA) and sampled 

at 2000 Hz. We collected EMG data from eight muscles bilaterally: tibialis 

anterior, soleus, medial gastrocnemius, vastus medialis, rectus femoris, medial 

hamstrings, lateral hamstrings, and gluteus medius. EMG data was high-pass 

filtered at 40 Hz, demeaned, rectified, low-pass filtered at 4 Hz using a zero-lag 

forth order Butterworth filter, and resampled to 100 Hz. EMG amplitude for each 

muscle was averaged within each region of the gait cycle (or bin): (1) initial 

contact/loading response (initial double support), (2) first half of single-leg stance, 

(3) second half of single-leg stance (4) second double support, (5) first half of 

swing, (6) second half of swing) for each step. The bin with the highest average 

was used to normalize EMG amplitude across all trials for an individual. Lastly, 

data for each step was time normalized to the gait cycle (0-100%). 

 

Data Analysis 

BIOMECHANICAL VARIABLES: We derived biomechanical variables from 

kinetic and kinematic data using custom MATLAB software (Mathworks, Natick, 

MA) to represent the biomechanical subtasks of walking. Each biomechanical 
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variable was calculated per bin per step for each leg. Variables of interest 

included: 

 

(1) Changes in ground reaction force or impulse (the time integral of the ground 

reaction force) in the anterior-posterior (AP) and vertical directions. We 

calculated net impulse (area under the curve; AUC) from the ground reaction 

force components. 

 

(2) Changes in anterior-posterior leg angle (sagittal plane of motion). Leg angle 

was calculated by taking the angle between a vertical line from the center of 

mass of the pelvis to the ground and a line from the center of mass of the pelvis 

to the center of mass of the foot. The change in anterior-posterior leg angle was 

represented by the net AUC of the leg angle measurement over each bin of the 

gait cycle.  

 

(3) Changes in leg length. Leg length was calculated as the distance from the 

center of mass of the pelvis to the center of mass of the foot. Leg length was 

normalized for each participant to the distance between their pelvis center of 

mass and foot center of mass during static standing. The change in leg length 

was represented by the positive AUC of the leg length over each bin of the gait 

cycle. 
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EMG VARIABLES: We quantified muscle coordination using a module analysis 

of EMG data with Non-negative Matrix Factorization (NNMF). EMG from each 

muscle for per leg was combined into an m x t matrix (EMGO), where m is the 

number of muscles (8) and t is the time base (t = number of gait cycles x 101). 

We then applied an NNMF algorithm to the m x t matrix for each participant. 

NNMF creates two matrices that define a pre-selected number of modules (n). 

We pre-selected the number of modules to be 4 based on previous research in 

healthy individuals from our lab (D. J. Clark et al., 2010). One matrix from NNMF 

is an m x n matrix with the relative weighting of each muscle within each module 

(W matrix). The second is an n x t matrix indicating the activation timing profile of 

each module for each step in the trial (H matrix). A key assumption of NNMF is 

that muscle weightings are fixed across all steps and muscles can belong to 

more than one module. NNMF runs an iterative optimization procedure to 

minimize the error between EMGO and a reconstructed EMG signal (EMGR) 

created by the m x n and n x t matrices. We quantified module activation by 

taking the AUC under each module’s H matrix curve within each bin of the gait 

cycle per step.  

 

Statistical Analysis 

 We fit linear mixed models with random coefficients (PROC GLIMMIX) to 

quantify the association between module and biomechanical variables at the 

group-level while controlling for variability at the individual-level. We identified the 

participant variable, participant by leg (i.e., right and left) interaction, and 
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participant by step interaction as random effects. We examined the following 

comparisons: Module 1 with anterior-posterior and vertical ground reaction forces 

in bins 1 and 2; Module 2 with anterior-posterior and vertical ground reaction 

forces, and trailing leg angle during bins 3 and 4; Module 3 with anterior-posterior 

ground reaction forces during bin 4, and leg angle and leg length during bins 5 

and 6; and Module 4 with anterior-posterior and vertical ground reaction forces 

during bin 1, and leg angle in bin 6. We quantified the magnitude of association 

with parameter estimates and we used a Bonferroni correction for the number of 

tests (tests = 18) for an alpha level of 0.003. All analyses were done in SAS 

version 9.4 (SAS Inc., Cary, NC). 

 

 

3.4 RESEARCH AREA 3: Evaluating Treatment Prescription 

 

Aim 1: Determine whether electrode montage type acutely influences walking 

performance. 

 

 

3.4.1 Study Design 

 We used a double-blind, randomized, cross-over experimental design. 

Participants completed a clinical battery of assessments including the lower-

extremity Fugl-Meyer, Berg Balance Test, and Dynamic Gait Index at enrollment. 

Participants then completed three single session tDCS experimental conditions 
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where electrode montage was varied and one session of sham simulation. We 

block randomized sessions to control for order effects and separated sessions by 

a minimum 48-hour period for washout. Primary gait outcome measures were 

collected pre- and post-stimulation at each experimental session. EMG outcome 

measures were collected pre-stimulation on the participants first session and 

post-stimulation for all experimental sessions. 

 All study procedures were conducted by a team of licensed physical 

therapists and associated study staff. This study was approved by the 

Institutional Review Board at the Medical University of South Carolina and 

conformed to the Declaration of Helsinki. All participants signed written informed 

consent. 

 

3.4.2 Participants 

We enrolled 18 individuals with chronic stroke. One individual dropped out 

and one did not meet inclusion criteria. The remaining 16 individuals completed 

all study procedures and were included in the analysis. Inclusion criteria for the 

study were: 1) age 18 to 85 years old; 2) at least six-months post-stroke; 3) 

residual lower extremity paresis (Fugl-Meyer Lower Extremity motor score <34); 

4) ability to walk independently at least 10 feet; 5) self-selected 10-meter gait 

speed < 0.8 m/s (at time of consent); and 6) provision of informed consent. 

Individuals were excluded if they met any of the following criteria: 1) significant 

musculoskeletal problems limiting hip and knee extension or ankle plantarflexion 
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to neutral joint positions; 2) self-reported history of unstable cardiovascular 

disease or severe osteoporosis, or 3) pregnancy.   

 

3.4.3 Experimental Procedures 

 Participants received tDCS from an EMPI unit (Chattanooga; Hixson, TN). 

Sponges were cut to a 1.75 cm2 size and prepped with a 0.9% saline solution to 

deliver a current density of 0.1 mA/cm2 (Thair, Holloway, Newport, & Smith, 

2017). Stimulation was ramped up to 2 mA and continued for 20 minutes to 

generate a dose rate of 40 mA/min. Participants were informed that they would 

feel a slight tingling sensation at the onset of stimulation that would resolve in 

approximately 60 seconds. Participants completed 3 single session tDCS 

experimental conditions where electrode montage was manipulated: 1) 

excitatory, 2) inhibitory, and 3) dual and one session of sham stimulation. In the 

excitatory condition the anode pad was placed over the target ipsilesional leg M1 

area with the reference pad on the ipsilateral shoulder. In the inhibitory condition 

the cathode pad was placed over the target contralesional leg M1 area with the 

reference pad on the ipsilateral shoulder. In the dual condition we used two EMPI 

units to deliver simultaneous anodal stimulation over the ipsilesional M1 and 

cathodal stimulation over the contralesional M1. The reference pads for each 

EMPI unit were placed on the respective ipsilateral shoulder. The dual condition 

allowed for the excitatory and inhibitory montages to be applied simultaneously to 

target both leg M1 areas. This type of pad placement (active pads with a cortical 

placement, and reference pads on the ipsilateral shoulder) has been shown to 
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have a deeper current penetration depth in modeling studies (Noetscher, 

Yanamadala, Makarov, & Pascual-Leone, 2014). This pad placement also was 

shown to have a greater effect on excitability (Tatemoto, Yamaguchi, Otaka, 

Kondo, & Tanaka, 2013) and neuromotor output (Angius, Pageaux, Hopker, 

Marcora, & Mauger, 2016) in lower extremity areas of M1 compared to other 

types of pad placement. In addition to the experimental conditions, participants 

completed one session with sham stimulation. Sham stimulation was achieved by 

turning on the EMPI unit to apply 30 seconds of stimulation before an unblinded 

investigator turned the units off (Tanaka et al., 2011). During the sham 

stimulation, participants would feel the initial tingling sensation that would resolve 

in about 60 seconds like the experimental conditions and be unable to distinguish 

if the unit had been turned off or not. Blinding for participants and staff was 

maintained by using the same set up as described in the dual condition across all 

sessions. We estimated the location of M1 in each hemisphere by placing the 

pad 1cm lateral to the vertex and 1cm posterior to a hypothetical line between 

the tragi of each ear while the participant was in a forward seated position. This 

created a 2 cm gap between cephalic pad placements.  

 Each session (3 experimental conditions and sham) began with 

participants receiving the first 5 minutes of stimulation seated before walking the 

remaining 15 minutes on a treadmill while stimulation continued. Participants 

walked at their fastest-comfortable speed on the treadmill to mimic an adequate 

training stimulus used for rehabilitation (Lamontagne & Fung, 2004; Sullivan, 

Knowlton, & Dobkin, 2002). Several measures were taken to maintain patient 
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safety during testing. Participants were attached to a ceiling harness system to 

prevent falls and walking was paused every 5 minutes to assess vital signs. 

Walking was immediately discontinued if required for participant safety. Minimal 

physical assistance or verbal cues were provided to help participants avoid 

tripping during the 15-minute walking period with stimulation. No physical 

assistance or verbal cues were provided during pre- and post-stimulation data 

collections. 

  

Data Analysis 

 Data collection for outcome measures were completed pre- and 

immediately post-stimulation for each experimental session. Participants walked 

over a 24-foot GaitRite (CIR Systems, Inc.; Franklin, NJ) for one trial at their self-

selected walking speed and three trials at their fastest-comfortable walking speed 

during pre- and post-testing to determine overground walking speeds. Next, 

participants walked for three, 30-second trials at self-selected and again at 

fastest-comfortable walking speeds on a split belt instrumented treadmill (Bertec; 

Columbus, OH). Treadmill speeds were selected by participants independent 

from overground speeds and the two conditions did not have to match. Paretic 

step ratio and paretic propulsion were calculated from ground reaction force data 

sampled at 1000 Hz during treadmill walking using methods previously described 

by our lab (Bowden et al., 2006). We calculated paretic propulsion by dividing the 

positive anterior impulse of the paretic leg by the anterior impulse of both legs 

combined (Bowden et al., 2006). We calculated paretic step ratio from the 
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percentage of stride length performed by the paretic step (Balasubramanian et 

al., 2007). We expressed paretic step ratio and paretic propulsion as the absolute 

value of deviation from symmetry. 

We collected EMG data during self-selected treadmill walking to examine 

muscle coordination changes in response to tDCS stimulation. We quantified 

muscle coordination by extracting modules from EMG data using a non-negative 

matrix factorization (NNMF) algorithm (Lee & Seung, 1999; Ting & Macpherson, 

2005). We recorded surface EMG at 2000 Hz with bipolar pre-amplified 

electrodes (Motion Lab Systems; Baton Rouge, LN, USA) from eight leg muscles 

bilaterally: tibialis anterior, soleus, medial gastrocnemius, vastus medialis, rectus 

femoris, medial hamstrings, lateral hamstrings and gluteus medius (Hermens, 

Freriks, Disselhorst-Klug, & Rau, 2000). EMG signals were pre-processed before 

using the NNMF algorithm to select the number of modules for the paretic leg. 

EMG signal processing and module selection criteria can be found in Clark et. 

al., 2010 (D.J. Clark, Subramanian, Neptune, & SA, 2008). Pre-stimulation 

number of modules was determined for each individual at their initial session. 

Post-stimulation number of modules was determined immediately following tDCS 

or sham stimulation during self-selected treadmill walking trials.  

 

Statistical Analysis 

All statistical analyses were conducted using SAS version 9.4 (SAS 

Institute Inc. Cary, NC). We ran all analyses using change scores for gait speed, 

paretic step ratio and paretic propulsion at self-selected and fastest comfortable 
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speeds. We used a one-way ANOVA (or Kruskal-Wallis Test for non-parametric 

data) to examine the main effect of active stimulation across all three montages 

compared to sham for each variable of walking performance. Post-hoc testing 

with multiple t-tests (or Wilcoxon Rank-Sum tests) were performed to compare 

the effects of each electrode montage when indicated. We conducted a 

secondary, exploratory analysis to examine the effect of tDCS to sham 

accounting for an individual’s best response to the three electrode montages. We 

identified everyone’s best response for each variable with respect to electrode 

montage. We pooled these values to generate a group average response to 

stimulation and compared it to sham stimulation using t-tests (or Wilcoxon Rank-

Sum tests). We accepted a higher alpha-value of 0.1 for this analysis to inform 

hypothesis generation. Changes in module number are reported observationally 

to generate hypotheses for future studies. We performed Spearman’s correlation 

between changes in module number and other self-selected walking outcome 

variables to explore associations between muscle coordination and walking 

performance. 
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CHAPTER 4  

MANUSCRIPTS 

 

4.1 INTRODUCTION 

 Chapter 4 is divided into three parts. Each part addresses one of the 

research questions and contains manuscripts that were written to present the 

findings. 

 

PART 1 

 Part 1 contains the following manuscripts: 

1. Rasch Analysis of the Activities-Specific Balance Confidence Scale in 

Individuals Post-Stroke 

2.  Item-level Psychometrics for the Functional Gait Assessment in 

Persons with Stroke 

3.  Revisiting the concept of minimal detectable change for patient-

reported outcome measures 

 

 

PART 2 

 Part 2 contains the following manuscript: 
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1. Associations between biomechanical variables of walking performance 

and muscle coordination during self-selected steady-state walking  

 

PART 3 

 Part 3 contains the following manuscript: 

1.  tDCS electrode montages may differentially impact variables of walking 

performance in individuals post-stroke: a preliminary study 
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4.2 PART I MANUSCRIPTS 

 

Rasch Analysis of the Activities-Specific Balance Confidence Scale in Individuals 

Post-Stroke 

 

 

Functional Gait Assessment Item-level Psychometrics for Measurement of 

Walking Balance Ability in Persons with Chronic Stroke 

 

 

Revisiting the concept of minimal detectable change for patient-reported outcome 

measures 
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Abstract 

Objective: To examine the psychometric properties of the Activities-specific 

Balance Confidence (ABC) scale using Rasch analysis for individuals post-

stroke.   

 

Design: Retrospective cohort. 

 

Setting: Data was extracted from the Locomotor Experience Applied Post-Stroke 

(LEAPS) phase three, multisite, randomized controlled clinical trial. 

 

Participants: 406 community-dwelling, ambulatory, older-adults (mean age 

61.97 years SD12.76; 45.07% female) approximately 2-months post-stroke. 

 

Intervention: None. 

 

Main Outcome Measures: We examined unidimensionality, local dependence, 

rating-scale structure, item and person fit, person-item match, and separation 

index of the ABC scale. 

 

Results: Confirmatory and exploratory factor analysis showed the ABC scale 

was adequately unidimensional and three item pairs had local dependence. A 

collapsed 5-category rating-scale was superior to the 101-category scale. The 

hardest item was “walking outside on an icy sidewalk”, the easiest item was 
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“getting into or out of a car”, and no items misfit. The ABC scale had high person 

reliability (0.93), despite 10.5% of individuals misfitting the expected response 

pattern. Mean ability level of the sample was slightly lower (-0.56 logits) than the 

mean item difficulty indicating that the ABC scale adequately matched our 

sample’s balance confidence. The ABC scale did not have a floor or ceiling effect 

and separated individuals into 5 statistically distinct strata (separation 

index=3.71).  

 

Conclusions: The Rasch model supports the use of the ABC scale to measure 

balance confidence in individuals’ post-stroke. The consistency of our results with 

previous Rasch analyses on the ABC scale demonstrates the instrument 

responds similarly across multiple populations; community-dwelling older-adults, 

outpatient orthopaedic physical therapy, stroke, Parkinson’s disease, and lower-

limb amputation. Recommendations include collapsing the rating scale and 

developing a computerized-adaptive test version of the scale to enhance clinical 

utility. 

 

Key Words: Stroke, Psychometrics, Outcome Assessment, Postural Balance 

 

Abbreviations: ABC scale; Activities-specific Balance Confidence scale, ANPT; 

Academy of Neurologic Physical Therapy, CFA; confirmatory factor analysis, 

EFA; exploratory factor analysis  
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INTRODUCTION 

Individuals post-stroke are at high risk for devastating consequences from 

falls including increased health care utilization and fracture rate1, 2 with 

approximately 3 of 4 individuals falling during the first 6 months back at home 

and up to one quarter experiencing recurrent falls.3, 4 Since falls are associated 

with fear of falling and balance confidence5, measurement of an individual’s 

confidence in their balance is an important component of clinical practice for 

physical therapists in stroke rehabilitation. The Activities-specific Balance 

Confidence (ABC) scale was designed to measure balance confidence and takes 

approximately 20 minutes to complete.6 Individuals rate their confidence that they 

“will not lose their balance or become unsteady” when performing each daily task 

(item) on the scale from 0% (low confidence) to 100% (high confidence). A total 

score is calculated by averaging scores from all 16 items.  

The ABC scale is widely used in stroke rehabilitation7 and has 

psychometric evidence to support its use for quantifying balance confidence in 

stroke survivors.8-13 Total scores on the ABC scale have concurrent validity with 

measures used to assess activity and participation domains of the International 

Classification of Functioning, Disability and Health including the Berg Balance 

Scale9-11, walking speed9, 10, 12, 13, Timed-up and Go10, 12, 13, six-minute walk test10, 

12, Barthel Index10, Lower Extremity Fugl-Meyer Assessment11, five-time sit-to-

stand test11, modified Rivermead Mobility Index13 and physical function scale of 

the SF-3610, 12. The ABC scale also has strong internal consistency13, strong test-

retest reliability for the scale’s total score (intraclass correlation coefficient 
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[ICC]=0.859, 0.8212) and moderate to strong test-retest reliability at the item level 

(ICC range 0.53-0.93)9. The majority of individuals post-stroke score between 20-

80% suggesting there is not a floor or ceiling effect and standard error of 

measurement has been reported between 6.819 and 5.0510. Cut-off values for 

distinguishing between individuals with a history of multiple falls and no falls after 

suffering a stroke has been reported as 81.18 and 63.7514, where lower 

confidence is associated with more falls.  

However, no studies have examined measurement characteristics of the 

ABC scale for stoke survivors using item response theory psychometric methods, 

like Rasch analysis. Rasch analysis takes advantage of probabilistic 

mathematical modeling to examine a measurement tool’s ability to quantify 

abstract constructs in a meaningful way. This is accomplished by assuming the 

probability of successfully passing an item is dependent on the relationship 

between a person’s ability and item difficulty. Results from a Rasch model orders 

a measure so scores can be interpreted linearly with set interval distances.15 

Often, Rasch analysis identifies items that overlap in measurement properties 

and can be used to develop short forms or computerized-adaptive tests to reduce 

the time required to administer an instrument.16 

Previous studies examined the ABC scale with Rasch analysis in different 

populations; Arnadottir et. al. (community-dwelling older adults)17, Sakakibara et. 

al. (lower-limb amputees)18, Franchignoni et. al. (Parkinson’s disease)19, and 

Wang et. al. (outpatient physical therapy)20. These studies found similar 

psychometrics for the ABC scale indicating that Rasch methods may support the 
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comparison and use of the scale across patient populations, which is 

recommended for physical therapists in neurologic physical therapy practice by 

the Academy of Neurologic Physical Therapy (ANPT).21  

Therefore, the purpose of this study is to examine the ABC scale using 

Rasch analysis for individuals post-stroke. We hypothesize the ABC scale will fit 

the Rasch model for these individuals similarly to other populations. Results from 

this analysis will provide support for comparison and use of the ABC scale across 

populations as recommended by the ANPT.  

 

METHODS 

Data Source 

This study is a secondary analysis of data from 406 individuals post-stroke 

who participated in the Locomotor Experience Applied Post-Stroke (LEAPS) 

phase three, multisite, randomized controlled clinical trial.22 Institutional Review 

Board approval of this secondary analysis was not required because data was 

free of identifiers. Included individuals had a stroke and (1) were greater than 18 

years old, (2) were able to ambulate a minimum of 10 feet with maximum 1-

person assist, (3) had a self-selected walking speed less than 0.8 m/s, and (4) 

were living in the community.23 Individuals were excluded who had (1) additional 

neurologic pathology and co-morbidities, (2) severe pain, amputation or 

orthopaedic conditions limiting ambulation, or (3) severe cardiovascular 

comorbidities that would prevent participation in high intensity exercise.23 

Demographic data for the trial was collected during an enrollment window (within 
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30 days of diagnosis).23 We analyzed ABC scale data collected at approximately 

2 months post-stroke (Baseline Assessment). Summary demographic data was 

analyzed with SAS version 9.4a and presented in Table 1. 

 

(Insert Table 1) 

 

Rasch Analysis 

Rasch analysis of the ABC scale was done with Winsteps version 3.93.1b. 

Tests of unidimensionality and local dependence were performed in Mplus 

version 7.4c. 

 

Rating-Scale Structure 

Appropriateness of the rating scale structure was determined based on 

Linacre’s 3 rating-scale criteria24; (1) each rating-scale category has a minimum 

of 10 observations, (2) average measures within each category advance 

monotonically (i.e., demonstrate increasing observed item difficulty with 

increasing category value) and (3) outfit mean-squares are less than 2. Category 

probability curves were examined to see if categories of the rating-scale had 

distinct peaks (indicating each category of the rating-scale is the most probable 

response for a given portion of the measure).15 The rating-scale was collapsed 

for further analysis if it did not meet designated criteria. 

 

Unidimensionality 
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An assumption of the Rasch model is that the measure is unidimensional. 

A confirmatory factor analysis (CFA) with one factor was performed on a random 

sample from our data (n=203) to assess unidimensionality. Model fit from the 

CFA was evaluated against recommendations from Reeve et. al., 2007:25 (1) 

comparative fit index >0.95, (2) root mean square error approximation <0.06, (3) 

Tucker-Lewis Index >0.95, and (4) standardized root mean residuals <0.08. If 

model fit was poor, an exploratory factor analysis (EFA) was done on another 

random sample (n=203) to determine additional factors. Additional factors from 

EFA were evaluated on model fit (Reeve’s recommendations25), eigenvalue ratio 

(greater than 4 indicates sufficient unidimensionality), visualization of the scree 

plot, and clinical interpretation. 

 

Local Dependence 

 Local independence assumes no significant associations among items 

responses when controlling for the dominant factor of the measure.25 A residual 

correlation matrix from the CFA was used to identify dependent item pairs. 

Residual item correlations >0.2 or <-0.2 were considered locally dependent.25  

 

Item and Person Fit 

Items or individuals were classified as misfitting if fit statistics had mean-

square standardized residuals greater than or equal to 1.4 and standardized z-

scores greater than or equal to 2.24, 26  
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Item Difficulty Hierarchy 

Item difficulty was used to evaluate theoretical construct validity of the 

ABC scale. The Rasch model assigns item difficulty and person ability measures 

to a logit scale. Items that are easier or persons with lower ability are assigned 

lower values and items with higher difficulty or persons with high ability are 

assigned higher values. Item measure estimates were used to determine if items 

overlapped. Items were considered overlapping if the item’s measure estimate 

was within 2 standard errors of another item.  

 

Person-Item Match 

Observation of the person-item map was used to evaluate for floor (within 

error of worst possible outcome [raw score 0/100]) and ceiling effects (within 

error of best possible outcome [raw score 100/100]). We considered the ABC 

scale to have a floor or ceiling effect if greater than 15% of individuals scored the 

worst or best possible outcomes.27 

 

Separation Index 

The person separation index was used to evaluate the ABC scale’s ability 

to differentiate people into statistically distinct strata. The number of strata were 

determined from the following formula28:  

Strata = [4*(person separation index)+1]/3 

 

RESULTS 
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Rating-Scale Structure 

We initially analyzed the data using a 101-category (0-100%) rating-scale. 

Only a few rating-scale categories had more than 10 observations. No outfit 

mean-squares values exceeded 2.0, however, there were disordered rating-scale 

estimates. Collectively, this demonstrates that rating-scale categories were 

under-used, and the ABC scale was not adequately fitting the Rasch model. 

Therefore, we tested a collapsed 5-category rating-scale based on previous 

publications (0-9%, 10-30%, 31-60%, 61-90%, 91-100%).18, 20 The new rating-

scale had more than 10 observations per category, demonstrated appropriate 

rating-scale estimates of increasing ability level (rating-scale categories 

advanced monotonically), and no category exceeded the outfit mean square 

threshold of 2. The rating-scale structure results are presented in Table 2.  

 

(Insert Table 2) 

 

Unidimensionality 

CFA using the collapsed rating-scale returned the following fit statistics; 

(1) comparative fit index 0.95 (>0.95 indicates good fit), (2) root mean square 

error approximation 0.15 (<0.06 indicates good fit), (3) Tucker-Lewis Index 0.95 

(>0.95 indicates good fit), and (4) standardized root mean residuals 0.09 (<0.08 

indicates good fit).  

EFA returned two factors with eigenvalues >1.0 and the following fit 

statistics for a two factor model; (1) comparative fit index 0.96 (>0.95 indicates 
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good fit), (2) root mean square error approximation 0.14 (<0.06 indicates good 

fit), (3) Tucker-Lewis Index 0.95 (>0.95 indicates good fit), and (4) standardized 

root mean residuals 0.05 (<0.08 indicates good fit). Eigenvalues for the first two 

factors were 10.17 and 1.41, respectfully. The second factor included the 

following items; “stand on your tiptoes and reach for something above your 

head”, “stand on a chair and reach for something”, “sweep the floor”, “walk in a 

crowded mall where people rapidly walk past you”, “are bumped into by people 

as you walk through the mall”, “step onto or off an escalator while you are holding 

onto a railing”, “step onto or off an escalator while holding onto parcels such that 

you cannot hold onto the railing”, “walk outside on icy sidewalks”. The ratio of 

eigenvalues for the first and second factor is 7.21 and visual interpretation of the 

scree plot favors accepting only one factor. Although all criteria were not met, the 

results of the factor analysis support that the ABC scale adequately meets the 

assumption of unidimensionality.  

 

Local Dependence 

 Three item pairs were found to have local dependence; (1) “walk outside 

on icy sidewalks”–“walk outside the house to a car parked in the driveway” (r=-

0.23), (2) “walk outside the house to a car parked in the driveway”–“step onto or 

off an escalator while holding onto parcels such that you cannot hold onto the 

railing” (r=-0.25), and (3) “walk outside on icy sidewalks”–“reach for a small can 

off a shelf at eye level” (r=-0.21). 

 



63 
 

 

Item and Person Fit  

No items misfit the Rasch model. The findings related to item fit are 

reported in Table 3. Forty-three individuals (10.6%) responses did not fit with the 

Rasch model (mean-square standardized residuals greater than or equal to 1.4 

and standardized z-scores greater than or equal to 2 of fit statistics.24, 26). We 

found nearly identical results from the Rasch analysis when misfitting persons 

were removed. Therefore, we are reporting findings for the whole sample 

because (1) individuals included in the sample are largely representative of 

community-dwelling stroke survivors and (2) the ABC scale is designed and 

advocated to be broadly applicable for this patient population. The ABC had high 

person reliability (0.93) and Cronbach’s alpha (0.95). 

 

Item Difficulty and Person-Item Match 

The results of the item difficulty analysis are presented in Table 3 and 

visually displayed using a Person-Item map in Figure 1. The hardest item was 

“walking outside on icy sidewalks” while the easiest item was “getting into or out 

of a car”. 

 

(Insert Table 3) 

 

The Person-Item map in Figure 1 shows the distribution of (1) people 

based on ability (left: low ability, bottom; high ability, top) and (2) item difficulty 

(right: easy, bottom; hard, top). The range of the distribution was 11 logits with 
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the mean ability of our sample (-0.58 SE 0.38) below the mean difficulty of the 

items (anchored at 0) indicating the model adequately matched our participants’ 

confidence. We did not have a ceiling effect (no individuals had a maximum 

score) and observed negligible floor effects (4 individuals had a minimum score 

[0.9%]). In addition to the overlapping items in Figure 1, we found occurrences 

where item measures were within 2 standard errors of another item indicating 

several items have overlapping difficulty. Item measures and standard errors are 

presented in Table 3.  

 

(Insert Figure 1) 

 

Separation Index 

The ABC scale differentiated individuals in our sample into 5.28 

statistically distinct strata (separation index= 3.71).  

 

DISCUSSION 

This is the first study to examine ABC scale psychometrics using Rasch 

analysis for individuals post-stroke. We found the Rasch model strongly supports 

the use of the ABC scale to measure balance confidence in these individuals. 

Like previous studies18, 20, we found the scale fit the Rasch model better using a 

collapsed 5-category rating-scale. Collapsing the rating-scale corrected its 

disorder and prevented items misfit. We found the ABC scale was adequately 

unidimensional to meet the necessary assumption for Rasch analysis. Although 
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EFA suggested a second factor, we do not feel that it is warranted provided (1) 

the improvement in model fit is minimal, (2) the eigenvalue ratio for the first and 

second factors greatly exceeds the recommended value of 4, and (3) 

visualization of the scree plot confirms one dominant factor. Also, there is no 

clinical rationale to support items grouped in the second factor except for the fact 

they are the more difficult items on the scale. Therefore, there is not enough 

evidence that unidimensionality is violated, which is consistent with previous 

publications.17-20 Our analysis of local dependence identified three item pairs with 

residual correlations greater than 0.2 magnitude. One recommendation is to 

remove items with high dependence when performing Rasch analysis because 

item dependence can be a threat to unidimensionality.25 However, there is a 

discrepancy as to what magnitude of association constitutes removing items.19, 25 

Therefore, we reported results with all items under the caveat that effects of local 

dependence should be closely evaluated when translating the ABC scale into a 

computerized-adaptive test because item pairs with local dependence may need 

to be identified as “enemies”.25  

We found other similarities and only minor differences in the ABC scale’s 

psychometrics for individuals post-stroke compared to other populations. We 

report a separation index (3.71) for the ABC scale indicating that the scale 

separated our sample into 5.28 statistically distinct strata based on balance 

confidence, similar to previous publications (5.220, 417). Other congruent 

psychometrics include high Cronbach’s alphas  (0.9418, 0.9519, 0.9320, 0.95 in our 

study) and no floor or ceiling effects.17, 18, 20 The range of the scale in our model 
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was 11 logits (-6 to 5), which was comparable to other publications.17-20 The three 

items; “walk outside on an icy sidewalk”, “standing on a chair and reaching for 

something”, and “step onto or off an escalator while holding onto parcels such 

that you cannot hold onto the railing” are consistently (with the exception of 

order) the three most difficult items.17-20. However, there is more variability in item 

difficulty for easy items. We found the item “getting into or out of a car” to be the 

easiest item, which is comparable with two publications where this item was the 

second easiest18, 20. Yet, in other publications this item was considered 

moderately difficult and fell close to the center of the scale.17, 19  

A component of validating measurement scales derived from Rasch 

analysis is to determine whether the item hierarchy is consistent with clinical and 

theoretical expectations.19 The item hierarchy in Table 3 and Figure 1 show item 

difficulty progress from discrete stable tasks (i.e, reaching and transferring) to 

stable walking to walking tasks in conditions of increasing instability. Thus, item 

hierarchy is consistent with clinical and theoretical expectations for individuals 

post-stroke and more broadly, individuals with balance impairments.  

Therefore, we can conclude that the ABC scale responds similarly for 

individuals post-stroke and other populations including; community-dwelling 

older-adults, outpatient orthopaedic physical therapy participants, individuals with 

lower-limb amputation and individuals with Parkinson’s disease. As a result, 

clinicians or researchers interested in measuring balance confidence for these 

clinical populations do not need to develop diagnosis specific versions of the 

instrument and can compare scores between patient groups. The ABC scale’s 
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ability to respond similarly across a variety of patient populations supports recent 

recommendations by the ANPT for the scale to be included in a core set of 

outcome measures in the rehabilitation of adults with neurologic diagnoses21 and 

allows one to hypothesize that the instrument may be “diagnosis free”. 

 

IMPLICATIONS FOR FUTURE RESEARCH AND PRACTICE 

We present two recommendations for future research and practice to 

facilitate the clinical adoption of the ABC scale. First, we recommend 

implementing a 5-category rating scale (“no confidence” [0], “low confidence” [1], 

“moderate confidence” [2], “high confidence” [3], “complete confidence” [4])18. 

Second, we recommend reducing the number of items by creating short-forms 

and computerized-adaptive tests of the ABC scale based on the Rasch model. 

Although, three short-forms exist for the ABC scale,29-31 they were not developed 

from a Rasch model and should be approached with caution as they may have 

diminished measurement characteristics relative to the full scale.19, 32  

In general, these recommendations should facilitate clinical adoption of the ABC 

scale by reducing test administration time, a commonly cited barrier to outcome 

measurement use by practitioners.33, 34  

 

STUDY LIMITATIONS 

 There are some limitations with this research. One limitation is that the 

authors were not in control of the data-collection procedure, which is typical of 

archival data secondary analyses. Selection bias associated with selection of 
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acute care facilities for urgent stroke care may exist potentially limiting our 

findings’ generalizability. Generalizability of our findings may also be limited by 

the inclusion criteria required for individuals to participate in the LEAPS trial. 

Specifically, participants in the trial were community dwelling and able to 

ambulate indicating that our findings may not extend to more functionally limited 

individuals.  

 

CONCLUSIONS 

Consistent with calls to use the ABC scale across neurologic diseases in 

adult populations,21 Rasch analysis supports the use of the ABC scale for 

measuring balance confidence in individuals post-stroke. The ABC scale’s 

psychometrics are largely enhanced with a 5-category rating scale. We 

recommend using the ABC scale to quantify balance confidence in these 

individuals based on absent floor and ceiling effects and the scale’s ability to 

distinguish 5 strata of individuals. Collapsing the ABC’s rating scale and 

developing a computerized-adaptive test will enhance measurement capability 

and efficiency for clinicians and researchers working in stroke rehabilitation. 
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Table 1: Participant Demographics 
 

n=406 
Demographic Characteristics Totals 
ABC Score  
(2 months 
post-stroke) 

 
45.06% (23.88%) 

Age  61.97 (12.76) 
Sex   
 Male 54.93% 
 Female 45.07% 
Race   
 American Indian 1.23% 
 Asian 13.3% 
 Black or African 

American 22.17% 

 White 57.64% 
 Native Hawaiian 4.68% 
 More than 1 race 0.74% 
 Unknown 0.25% 
   
 Hispanic or Latino 15.52% 
Stroke Type   
 Ischemic 80.05% 
 Hemorrhagic 18.72% 
 Uncertain 1.23% 
Stroke 
Location 

  

 Right Hemisphere 48.03% 
 Left Hemisphere 35.22% 
 Brainstem 62% 
 Bilateral Hemispheres 6% 

Continuous variables are presented in mean (standard deviation) 
Categorical variables are presented as a percentage 
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Table 2. Rating-Scale Structure 
 
Score Observed 

Average 
Infit 
Mean-
square 

Outfit  
Mean-
square 

Frequency Counts 
(%) 

0 (no confidence) -2.72 1.06 1.07 1521  (23%) 
1 (low confidence) -1.32 0.90 0.84 1352  (21%) 
2 (moderate 

confidence) 
-0.20 0.85 0.78 1594  (25%) 

3 (high confidence)  0.95 0.91 0.92 1400  (22%) 
4 (complete 

confidence) 
 2.25 1.40 1.33 629    (10%) 
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Table 3. Item Measure Order 
 

Item Item 
Number 

Measure Model 
Standard 
Error 

Infit 
Mean-
square 

Infit  
z-score 

Outfit 
Mean-
square 

Outfit  
z-score 

Point 
Measure 
Correlation 

“walk outside on icy 
sidewalks” 

16 1.98 0.08 0.96 -0.4 0.94 -0.4 0.67 

“stand on chair and 
reach for 
something” 

6 1.79 0.08 1.29 3.4 1.10  0.8 0.65 

“step onto or off an 
escalator while 
holding onto 
parcels such that 
you cannot hold 
onto the railing” 

15 1.45 0.07 1.00 0.0 0.93  -0.6 0.71 

“are bumped into 
by people as you 
walk through the 
mall” 

13 0.49 0.07 0.73 -4.2 0.69  -4.1 0.80 

“stand on your tip 
toes and reach for 
something above 
your head” 

5 0.43 0.07 1.04 0.6 1.02  0.3 0.74 

“sweep the floor” 7 0.36 0.07 1.35 4.5 1.31   3.4 0.71 

“step onto or off an 
escalator while you 
are holding onto a 
railing” 

14 0.11 0.07 1.05 0.7 0.98   -0.2 0.76 

“walk in a crowded 
mall where people 
rapidly walk past 
you” 

12 -0.04 0.07 0.65 -5.7 0.62  -5.6 0.82 

“walk up or down 
stairs” 

2 -0.11 0.07 1.03  0.5 1.02  0.2 0.75 

“bend over and 
pick up a slipper 
from the front of a 
closet floor” 

3 -0.27 0.07 1.01   0.1 0.97  -0.4 0.76 

“walk up or down a 
ramp” 

11 -0.44 0.07 0.81 -2.9 0.76  -3.4 0.80 

“walk across a 
parking lot to the 
mall” 

10 -0.51 0.07 0.88 -1.8 0.82  -2.4 0.80 

“walk outside the 
house to a car 
parked in the 
driveway” 

8 -1.11 0.07 0.88 -1.7 
 

0.84  -2.1 0.80 

“walk around the 
house” 

1 -1.22 0.07 1.03 0.4 1.02  0.3 0.73 

“reach for a small 
can off a shelf at 
eye level” 

4 -1.35 0.07 1.23 3.0 1.26  3.0 0.73 

“get into or out of a 
car” 

9 -1.56 0.07 1.21 2.8 1.14 1.7 0.71 
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Figure 1. Person-Item Map 
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Item abbreviations: Bumped while walking (Are bumped into as you walk in a 

mall), Stand tip toes/reach overhead (Stand on tip toes and reach overhead), 

Pick up a slipper (Pick up a slipper from the floor), Walk to car outside (Walk 

outside to a car in the driveway)  
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a. Winsteps version 3.93; John Lincare, Beaverton, OR: Winsteps.com 

b. SAS version 9.4; SAS Institute Inc. 100 SAS Campus Drive Cary, NC 27513 

c. Mplus version 7.4; Muthén & Muthén 3463 Stoner Avenue Los Angeles, CA 

90066 
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Abstract 

Objective: Item-level psychometrics of the Functional Gait Assessment (FGA), a 

measure of walking balance ability, have not been determined for persons with 

chronic stroke and made available for clinical use. The objective of this study was 

to evaluate the FGA’s unidimensionality, report item-level psychometrics and the 

item hierarchy, and present an FGA ability map for clinical use to identify a 

person’s measure and inform clinical decision-making. 

 

Methods: We used retrospective response data from an NIH-funded center’s 

shared research database containing 101 ambulatory persons with chronic 

stroke. Factor analysis was used to evaluate unidimensionality and item local 

dependence. Rasch analysis was used to examine rating-scale structure, item 

and person fit, item hierarchy and separation index of the FGA.  

 

Results: Confirmatory and exploratory factor analyses confirmed the FGA’s 

unidimensionality and showed that none of the items had local dependence. The 

category rating-scale advanced monotonically and met published criterion. The 

item hierarchy was like that for community-dwelling older adults with mean ability 

level of the sample slightly above the mean item difficulty (0.28 logits, 0.63 

standard error). The FGA had high patient reliability (0.90) despite 3 items and 

9.9% of the sample misfitting. The FGA did not have a floor or ceiling effect and 

was able to separate people into 4 strata.  
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Conclusions: Factor and Rasch analyses support the use of the FGA for 

measuring walking balance ability in ambulatory persons with chronic stroke. An 

FGA ability map can provide an instantaneous interval measure score for 

patients while informing personalized treatment design and goal setting. Results 

from this paper support clinical practice recommendations to use the FGA in 

outpatient stroke rehabilitation and should address barriers to clinical 

implementation. 

 

Impact Statement: Item-level psychometrics and an FGA ability map provide 

clinicians with an understanding of the item hierarchy and a way to inform 

personalized treatment planning and goal setting. This should enhance clinical 

utility by improving patient specific interpretation and facilitate adoption of clinical 

practice guidelines in stroke rehabilitation. 

 

Keywords: stroke, gait, balance, measurement – applied  
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Introduction 

 Measurement of walking ability is a necessary component of stroke 

rehabilitation. The Functional Gait Assessment (FGA) is a standardized clinical 

scale that was developed to measure a person’s ability to maintain balance while 

walking.1 The FGA consists of 10 items that measure an individuals’ performance 

across a span of daily walking tasks that vary in difficulty. Items are scored using 

a 4-category rating-scale by a clinician observing an individual perform the tasks. 

An overall FGA score is calculated by summing the items’ scores.   

 Conventional psychometric properties of the FGA have been reported for 

persons with chronic stroke.2, 3 The FGA has excellent test/retest (ICC=0.95)3, 

interrater (ICC=0.94)2 and intrarater (ICC=0.97)2 reliability and has strong 

correlations (r>0.7) with measures of mobility (i.e., Barthel Index, Rivermead 

Mobility Index), walking (ie. gait speed, Functional Ambulatory Category), and 

balance ability (i.e., Berg Balance Scale).2 Similar psychometrics have also been 

reported for other patient populations including community-dwelling older adults4, 

persons with vestibular disorders1, and Parkinson’s disease5, 6. This similarity 

across a clinical diagnoses commonly seen in outpatient neurologic rehabilitation 

resulted in the American Physical Therapy and Academy of Neurologic Physical 

Therapy’s joint Clinical Practice Guideline recommendation for the FGA to be 

used as part of a core set of outcome measures.7 Yet, there are still several 

barriers cited by clinicians for not using standardized measures. Several barriers 

reference clinical utility of measures including time (administration time is 

lengthy, requires more time than information is worth), lack of clinical relevancy 
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(information is too subjective, items are not relevant to the patient), and limited 

interpretability (difficult to interpret, does not contribute to the plan of care).8, 9 

 However, rather than disparage physical therapists for not using 

standardized measures, efforts should be focused on improving the usefulness of 

standardized measures for practicing clinicians, especially since individual test 

scores appear to have little value to the clinical reasoning process.10, 11 Rasch 

analysis is one way to approach this problem since it generates item-level 

psychometrics and item difficulty hierarchies that can inform clinicians about an 

individual patient’s ability level and how they will perform across items of various 

challenges on the assessment. The Rasch model uses a probabilistic 

relationship between a person’s ability level and the item difficulty, with persons 

having a high probability of successfully completing items that are easier than 

their ability level and low probability of success on items that are harder than 

their ability.12 A persons’ ability level is determined when person ability matches 

item difficulty (when the patient has 50 percent probability of passing an item at a 

particular rating). This offers several benefits for clinicians including improved 

measurement efficiency and score interpretability by identifying where a patient’s 

ability falls along a continuum.  

 Clinicians can take advantage of this improved clinical utility by using a 

keyform. Keyforms were first introduced by Linacre13 as a Rasch informed score 

sheet for generating “instantaneous” measurement values on an interval scale 

from a person’s performance or response to items. In addition, keyforms visually 

depicts a patient’s response pattern in relation to the item difficulty hierarchy. 
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This allows a keyform to be used as an ”ability map” for physical therapists to 

identify ideal tasks for treatment targets in both short- and long-term care 

plans.10, 14-17 Physical therapists will be able to quickly glance at a completed 

ability map to see what tasks the patient has mastery over, what tasks the patient 

is making progress towards mastery, and what tasks the patient demonstrates a 

poor ability to accomplish. Over time as a patient progresses through 

rehabilitation, the ability map should show that the patient is gaining mastery over 

more difficult items on the hierarchy.  

 A previous Rasch analysis of the FGA reported item-level psychometrics 

for community-dwelling older adults.18 They showed the FGA was 

unidimensional, had an ordered rating-scale structure, and had a clinically valid 

item difficulty hierarchy. However, the primary findings were intended to 

demonstrate the FGA removed previous DGI ceiling effects. Since there is 

professional organizational support for the use of the FGA in adult neurological 

populations there is need to examine the item-level psychometrics in common 

neuropathology, such as stroke. This is needed because the performance-based 

rating-scale used in the FGA could result in a different item hierarchy for 

individuals with stroke due to lasting gait and balance impairments that are not 

commonly found community dwelling older-adults. Additionally, development of 

an FGA ability map may support the scale’s ability to inform clinical decision 

making with respect to treatment design. Thus, the purpose of this study was to 

examine the item-level psychometrics and item difficulty hierarchy of the FGA 

and to create an ability map for clinical use. We provide an illustration for how 
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ability maps can be used for informing clinical decision making with regards to 

treatment planning and lend interpretability to FGA scores.   

 

Methods 

Data Source 

We used a database that included research participants who participated 

in studies at the NIH Center for Biomedical Research Excellence in Stroke 

Recovery at the Medical University of South Carolina. The shared collective 

database contains demographic information and research records for individuals 

who consent to having their information archived for future use and is approved 

by the Medical University of South Carolina’s Institutional Review Board. 

Data for 101 individuals post-stroke was available for analysis. The date of 

FGA data collection was used to calculate age and time since stroke (months), 

and to link  lower extremity Fugl-Meyer scores and overgound self-selected 

walking speed. Participants completed the FGA without an assistive device or 

orthotics. An aircast was permitted for severe ankle instability on the paretic leg 

to prevent injury. Trained physical therapists and research staff oversaw and 

scored all participants. Demographic data was analyzed with SAS [version 9.4; 

SAS Institute, Cary, NC, USA].  

 

Rasch Analysis 

Rasch analysis of the FGA was completed using Winsteps [version 3.93.1; 

John Lincare/Winsteps.com, Beaverton, OR, USA]. Tests of unidimensionality 
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and local dependence were performed in R [version 3.6.1; R Foundation for 

Statistical Computing; Vienna, Austria]19 with the following packages: ‘lavaan’20, 

‘psyc’21, and ‘polycor’22. 

 

Rating-Scale Structure 

The rating scale structure was evaluated against Linacre’s three essential 

rating-scale criteria23; (1) a minimum of 10 observations per rating-scale 

category, (2) rating-scale category average measures advance monotonically 

(i.e., demonstrate increasing item difficulty with increasing category value) and 

(3) outfit mean-squares are less than 2. If the rating-scale did not meet 

designated criteria we would apply modifications to best fit the criteria before 

continuing the analysis.  

 

Unidimensionality 

The Rasch model assumes that the measure is unidimensional. We 

performed a one-factor confirmatory factor analysis to test unidimensionality. 

Model fits was assessed against recommendations from Reeve et. al., 2007:24 

(1) comparative fit index >0.95, (2) root mean square error approximation <0.06, 

(3) Tucker-Lewis Index >0.95, and (4) standardized root mean residuals <0.08. If 

a one-factor model did not meet all the recommendations, we performed an 

exploratory factor analysis to determine if additional factors could be identified. 

We evaluated results from the exploratory factor analysis using Reeve’s 

recommendations24 for model fit, eigenvalue ratio between the first and second 
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factors (greater than 4 indicates sufficient unidimensionality), and clinical 

interpretation. 

 

Local Dependence 

 Local independence of items assumes that there are no significant 

associations among item responses when controlling for the measure’s dominant 

factor.24 We used a residual correlation matrix from a one-factor confirmatory 

factor analysis to test for local independence and identify dependent item pairs. If 

residual item correlations were >0.2 or <-0.2 we considered those items to be 

locally dependent.24  

 

Item and Person Fit 

We evaluated the fit of items and persons to the Rasch model. Items or 

individuals were labeled as misfitting when fit statistics for outfit had mean-square 

standardized residuals greater than or equal to 1.4 and standardized z-scores 

greater than or equal to 2.23, 25  

 

Item Difficulty Hierarchy 

We used the item difficulty hierarchy evaluate the FGA’s theoretical 

construct validity and to test the extend that item’s overlapped. We considered 

items to be overlapping if measure estimates for any two items were within 2 

standard errors. 
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Person-Item Match 

The person-item map was used to evaluate for floor and ceiling effects. 

We required that greater than 15% of individuals scored the worst or best 

possible outcomes to consider the FGA to have a floor and/or ceiling effect.26 

 

Separation Index 

We used the person separation index to quantify how well the FGA can 

differentiate people into statistically distinct strata. The following formula was 

used to calculate the number of strata27:  

 

Strata = [4*(person separation index)+1]/3 

 

Ability Map Development 

 A keyform score sheet was generated using the results from the Rasch 

analysis and is presented in Figure 1. The keyform shows the item hierarchy on 

the right vertical axis. Items progress from hardest to easiest with the hardest 

item at the top of the list. Items that are clustered together to show that these 

items have overlapping or similar difficulty. The clusters are separated by a blank 

line. The x-axis shows the interval-level measurement scale. The scale has been 

converted from logits to the original scoring to enhance clinical interpretation. The 

row for each item contains the possible category-rating scores: 0=severe 

impairment, 1=moderate impairment, 2=mild impairment, and 3 = normal. 

Clinicians can print the keyform score sheet and circle the rating for each item. 
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The clinicians can then draw a vertical line through the bulk of the circles to 

identify the patient’s score on an interval scale.13  We separated our sample into 

tertials to represent high, moderate, and low ability. We used a randomly 

selected individual from each tertial to demonstrate how the ability maps can be 

used in the clinic. Each representative individual’s fit statistics were evaluated to 

ensure that they fit the Rasch model.  

 

(INSERT FIGURE 1) 

 

Role of the Funding Source 

The funding sources for this research played no role in the design, conduct or 

reporting of this study and findings. 

 

Results 

 The average age for our cohort was 58.6 years old (SD 12.6). We had 44 

females (43.6%) and 42 individuals with left hemiparesis (58.4%). Mean lower 

extremity Fugl-Meyer score was 25.2 (SD 0.29) and mean overground walking 

speed was 0.76 m/s (SD 0.29). The average raw score for the FGA was 15.7 (SD 

6.1). Descriptive statistics for our sample are presented in Table 1. 

 

(INSERT TABLE 1 HERE) 

 

Rating-Scale Structure 
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The FGA’s current 4 category rating-scale fit the Rasch model well and 

satisfied each of Linacre’s criteria23. Each category on the rating-scale had more 

than 10 observations with outfit mean square values less than 2.0 and average 

category measures advanced monotonically. Rating-scale structure results are 

presented in Table 2.  

 

(INSERT TABLE 2) 

 

Unidimensionality 

A one-factor confirmatory factor analysis had the following fit statistics; (1) 

comparative fit index 0.98 (>0.95 indicates good fit), (2) root mean square error 

approximation 0.11 (<0.06 indicates good fit), (3) Tucker-Lewis Index 0.98 (>0.95 

indicates good fit), and (4) standardized root mean residuals 0.07 (<0.08 

indicates good fit). Since our sample is below 250 participants, the root mean 

square error approximation may not be an appropriate criterion for assessing 

model fit since it is sensitive to sample size.28 To verify our findings, we ran an 

exploratory factor analysis to assess for other potential factors. The exploratory 

factor analysis recommended one factor and returned only one eigenvalue above 

1. The eigenvalue ratio between the first and second factors was 8.9 

(eigenvalues: factor 1 = 6.85, factor 2 = 0.77) with values greater than 4 

supporting unidimensionality. Overall, the results from the exploratory factor 

analysis did not support exploring a second factor and we concluded that the 

FGA meets the unidimensionality assumption for Rasch analysis. 
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Local Dependence 

 No item pairs were found to have local dependence.  

 

Item and Person Fit  

The FGA has high person reliability (0.90) and a Chronbach’s alpha value 

of 0.92). Three items; 1) gait with narrow base of support, 2) gait with eyes 

closed, and 3) gait and pivot turn and ten individuals (9.9%) responses met the 

criteria for misfitting the Rasch model (outfit mean-square standardized residuals 

greater than or equal to 1.4 and standardized z-scores greater than or equal to 

2.23, 25). We removed missing fitting persons in serial order (most misfitting to 

least misfitting) reanalyzing the data to test the effect of the unexpected 

individual responses on overall fit of the items. Removing misfitting persons did 

not improve the fit of the 3 misfitting items against our criteria. Item fit statistics 

are presented in Table 3.  

 

Item Difficulty and Person-Item Match 

The item difficulty analysis is presented alongside item fit statistics in 

Table 3. The FGA’s hardest item was “gait with narrow base of support” while the 

easiest item was “gait and pivot turn”. The full hierarchy is presented in Figure 2 

(Person-Item map). 

 

(INSERT TABLE 3) 
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The Person-Item map shows the distribution of (1) people based on ability 

(left: low ability, bottom; high ability, top) against item difficulty (right: easy, 

bottom; hard, top) for each item rating-scale score (0, 1, 2, and 3). The range of 

ability levels on the FGA was 20 logits. The FGA did not have a ceiling or floor 

effect because no individuals had a minimum score and only 2 (2%) had a 

maximum score. Our sample’s mean ability level was 0.28 logits (0.63 standard 

error) which is slightly above the mean difficulty level of the items (anchored at 0 

logits). This indicates that the Rasch model adequately matched the walking 

balance ability of our participants.  

Table 3 presents item measures and standard errors. Several items 

overlap in their coverage of the FGA’s scale. This can be seen on the keyform 

score sheet (Figure 1) by relatively comparing the coverage of an item (i.e., 

range of categories on the rating scale) along the measurement scale to other 

items. This effect is also visible on the Person-Item Map (Figure 2) when 

determining the expanse of coverage for an item. For example, the item Gait 

Level Surface covers the expanse of -4 to 5 logits depending on the rating score.  

 

(INSERT FIGURE 2) 

 

Separation Index 

The FGA differentiated our sample into 4.31 distinct strata with a 

separation index of 3.01. 
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Ability Maps 

Figure 3 shows the completed FGA ability maps for our three 

representative individuals with low (3a), moderate (3b), and high (3c) walking 

balance ability. Actual scores for each item are circled. The solid vertical line 

traveling through the “bulk” of the items represents the patients score on an 

interval scale and the dashed vertical lines show two standard errors around this 

score.13 Visualizing the response pattern to the item difficulty hierarchy provides 

an additional understanding of the persons score relative to their ability. In Figure 

3a., which represents a person of low ability (score of 10; SE 1.17), this person 

shows mild impairment (i.e., 2) with the easiest item followed by moderate 

impairment (i.e., 1) on the next several items and eventually receiving severe 

impairment (i.e., 0) ratings for the hardest items. In Figure 3b., which represents 

a person of moderate ability (score of 15; SE 1.12), this person had a normal 

(i.e., 3) rating for the easiest item, primarily mild impairment (i.e., 2) ratings for 

the next cluster of items, moderate impairment (i.e., 1) for the next 4 items, 

followed by severe impairment (i.e., 0) for the most difficult item. In Figure 3b., 

which represents a person of high ability (score of 22; SE 1.30), this person 

obtains a normal (i.e., 3) rating for the first 5 items, begins to fluctuate between 

mild impairment (i.e., 2) and normal (i.e., 3) on the next three more difficult items, 

and then receives mild (i.e., 2) and moderate (i.e., 1) impairment for the two most 

difficult items. A dashed box around items presents “treatment targets”. These 

items reflect challenges that are near the patient’s ability level, identified as 
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ratings to the left of the black vertical line. These items reflect the next set of 

tasks the patient should gain mastery over as their ability level improves and the 

black line shifts to the right.  

 

(INSERT FIGURE 3) 

 

Discussion 

 This study evaluated the unidimensionality and measurement properties of 

the FGA using factor and Rasch analyses in persons post-stroke. Our results 

from this study provide support for the use of FGA in outpatient settings for 

assessing ambulatory individuals with chronic stroke as recommended by clinical 

practice guidelines. Factor  analyses supported the unidimensionality of the FGA, 

implying the FGA is only measuring one construct, in this case, walking balance 

ability. Rasch analysis findings demonstrate that the FGA’s rating scale structure, 

item difficulty hierarchy, and no floor or ceiling effect was sufficient for measuring 

a wide degree of walking balance ability on an interval scale in our sample, 

ambulatory persons with chronic stroke representative of individuals receiving 

outpatient physical therapy for walking balance related deficits. To our 

knowledge, this is the first study examining the measurement properties of the 

FGA for this patient population and the first to present an ability map for clinical 

use.  

 

Item hierarchy, rating-scale structure, model fit  



97 
 

 

 Ideally a measurement scale has sufficient items to assess the breath of 

difficulty for a specific construct and those items follow a difficulty hierarchy 

consistent with clinical and theoretical expectations.29 The FGA’s item difficulty 

hierarchy was previously analyzed using Rasch analysis in a sample of 

community-dwelling older adults18 and had the benefit of being compared against 

the Dynamic Gait Index (DGI),30-32 the FGA’s predecessor.1 Historically, the DGI 

had a logical order to the item hierarchy with easier items requiring less postural 

adjustments to perform the tasks and increasing item difficulty by adding 

additional task demands. The FGA’s hierarchy is similar to the DGI, however, 

there is an exception with the item Gait Level Surface appearing at the middle of 

the hierarchy.18 This may appear surprising because walking on a level surface 

without perturbations should theoretically be the easiest item. Possibilities for this 

finding could be related to the rating-scale structure or performance criteria. 

Beninato et. al. hypothesized that the reordering of item difficulty observed 

between the FGA and DGI was linked with the performance criterion used to 

assign a person a category on the rating-scale rather than poor rating-scale 

structure.18 When we examine the category descriptions used as criterion for 

scoring there are several instances across items where individuals may have 

more difficulty reaching higher scores because of lasting sensorimotor deficits 

that are present with stroke pathology. Persons post-stroke are likely to have a 

difficult time obtaining higher than a 2 on the item Gait Level Surface because a 

3 requires that the patient walk faster than 0.85 m/s without gait deviations or an 

assistive device. This contrasts with the item Gait and Pivot Turn, the easiest 
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item on our hierarchy, where ratings are not dependent on speed or gait 

deviations. This could explain some variation in item difficulty order between the 

community-dwelling older adult cohort previously studied, however, except for 

the easiest item difficulty was not starkly different. This may suggest the potential 

for the FGA to be “diagnosis free” and measurements could be interpreted 

similarly across diagnostic groups.  

 We found three items and approximately 10% of our sample misfit the 

Rasch model. It is expected data will depart from the model to an extent, with the 

question becoming ‘How much is tolerable?’.25 A few misfitting people are 

unlikely to have a concerning impact on item-level psychometrics while a 

misfitting item may point to more important problems with unidimensionality, test 

administration, scoring, or definition of an item.24, 25 Unfortunately, there is not a 

standardized approach to address misfit.24 We report the fit statistics using the 

whole sample, rather than remove misfitting persons since; 1) removing misfitting 

persons did not improve the model fit and subsequent interpretation of 

measurement information from the FGA and 2) 10% or less individuals misfitting 

the model reflects the high degree of heterogeneity in this patient group. We left 

the misfitting items in our analysis for three reasons: 1) the FGA is 

unidimensional and there was no local dependence among items, 2) it has been 

suggested that mean-square values for items based on clinical observation can 

be higher than patient-reported scales (up to 1.7; meaning no FGA items 

misfit)25, and 3) further evaluation of the items and their scoring criteria does not 

suggest they are measuring a different construct.24  
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Ability maps and their implications for clinical practice 

 The Rasch methodology provides an innovative way to approach clinical 

use of standardized measures with ability maps. Ability maps provides a way for 

clinicians to use Rasch informed interval scaling while visualizing the relationship 

between the patient’s measure and ability.10, 11, 13 Visualizing this relationship 

gives meaning and interpretability to an individual patient’s score because 

clinicians can see items the patient has mastery over, are gaining mastery, and 

have no mastery. We identified items where the patient was rated just below their 

ability level to represent treatment targets. These items can be thought of as a 

“just right challenge” because should not be too easy or too difficult for the 

patient to complete while still challenging their ability level. These items can 

inform personalized short-term goals because they represent the next attainable 

ability level the patient should gain mastery over in rehabilitation (i.e., when their 

score shifts right with improvement).10, 14-16 Ability maps can also be used over 

time to track progress and demonstrate a patient is gaining mastery over new 

functional tasks with increasing FGA scores.  

 

Implications for future research  

The degree of overlap between items (Figure 2) demonstrates the 

potential for the FGA to become a performance-based computerized adaptive 

test (CAT). An FGA CAT would have two key benefits for clinicians; 1) it would 

reduce test burden by requiring fewer items for measurement and 2) reduce 



100 
 

 

administration time by providing clinicians with immediate knowledge of the 

patient’s walking balance ability level.33-36  

Another important consideration that is identified by our results is the 

ability of the FGA to separate people into 4 distinct strata. Future work should 

explore the characteristics of the strata and test the ability of the FGA  to 

separate persons into readily identifiable phenotypes using functional staging37, 38 

that can be used to inform personalized care.39  

Finally, pragmatic clinical studies are needed to determine if the added 

information provided by the FGA ability map contributes to clinician goal setting 

and treatment planning compared to scores generated from the traditional FGA. 

These studies should also attempt to understand whether ability map help 

address many of the clinician-reported barriers to using standardized measures 

in practice.16 

 

Limitations 

 There are several limitations to this study. First, we relied on retrospective 

data of higher functioning individuals with chronic stroke associated with one 

research site which can limit the generalizability of research findings. Second, 

measures and treatment target zones derived from an ability map are estimates 

and have sources of uncertainty. First, ratings are probabilistic in nature, not 

absolute, so they can fluctuate due to rater, patient, and environment factors. 

Next, the difficulty hierarchy of the items suggest that items are of increasing 

challenge but do not reflect the “measurement” distance between the items. 10, 13 
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Lastly, there is added error in measuring ability levels at the extremes of the 

scale. Rasch measures corresponding to zero and perfect raw scores have 

infinite standard errors.40 Infinite error is impractical to deal with in clinical 

practice so scales are slightly adjusted on the ability map when converting from 

the logit scale back to raw scoring. This is why the scale on the ability map is 

from 2 to 2941 Despite these limitations, the ability map is able to provide a rapid 

estimation of a patient’s ability and provides more interpretability to scores. (e.g., 

the participants in Figure 3 a-b show clear differences in their scoring patterns).10  

 

Conclusions 

 In conclusion, Rasch analysis supports the use of the FGA for measuring 

walking balance ability in persons with chronic stroke. The FGA ability map 

provides clinicians with a new way to use and interpret patient responses on the 

FGA for clinical reasoning related to treatment design and goal setting that was 

not previously available. The FGA ability map should aid in addressing barriers to 

clinical use and promote the implementation of clinical practice guidelines for 

stroke rehabilitation. 
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Figure 1. FGA Keyform Score Sheet 

 

A keyform score sheet can be used to create an FGA ability map to determine a 

patient’s measurement value and informing clinical decision-making based on 

that patient’s performance on each item of the FGA. The FGA keyform score 

sheet is informed by the Rasch model and uses the interval scale scoring and 

item difficulty hierarchy. The top and bottom axes represent the interval score 

scale for the FGA. The logit scale produced by the Rasch model was converted 

back to the raw scores for ease of interpretation. The rows of the FGA keyform 

score sheet contains individual items with their category-rating scores. The items 

go from easiest to hardest with the easiest item at the bottom. Items are 

clustered by similar difficulty and each cluster is separated by a gray space. The 

rating-scale categories remain the same from the original FGA instructions  (ie. 

0=severe impairment, 1=moderate impairment, 2=mild impairment, 3=normal). A 

clinician can complete an ability map by circling the rating corresponding to a 
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patient’s performance for each item. The interval measure can be determined by 

drawing a vertical line through the “bulk” of the circles to the scale on the x-axis.  
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Table 1. Participant Demographic Information 

Total Number of Participants = 101 

Age (years) 58.6 (12.6) [23-85] 

Male (n=57) 56.4% 

Female (n=44) 43.6% 

Right Hemiparesis (n=59) 41.6% 

Left Hemiparesis (n=42) 58.4% 

Lower Extremity Fugl-Meyer 25.2 (5.5) [14-34] 

Overground Self-Selected  
Walking Speed (m/s) 0.76 (0.29) [0.11-1.4] 

 
 
Functional Gait Assessment 
 

 
15.7 (6.1) [6-30] 

 Rating-scale Categories 

Item-Level Information 0 1 2 3 

(1)   Gait Level Surface 1 62 27 11 

(2)   Change in Gait Speed 3 34 41 23 

(3)   Gait with Horizontal Head Turns 2 30 50 19 

(4)   Gait with Vertical Head Turns 1 30 48 22 

(5)   Gait and Pivot Turn 0 18 52 31 

(6)   Step Over Obstacle 23 34 24 20 

(7)   Gait with Narrow Base of Support 60 19 14 8 

(8)   Gait with Eyes Closed 38 41 19 3 

(9)   Ambulating Backwards 3 44 38 16 

(10) Steps 0 29 57 15 
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Continuous variables are presented as mean (standard deviation) [range] 

Categorical variables are presented as a percentage 

Overground walking speeds were collected without use of an assistive device or 

orthotic unless an aircast was used to prevent ankle injury. 

Frequency counts are provided for each category of the rating-scale per 

individual item on the FGA 
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Table 2. FGA Rating-Scale Structure 

Rating-
Scale Score 

Observed 
Measure 
Average 

Infit 
Mean-
square 

Outfit 
Mean-square 

Frequency 
Count (%) 

0 -3.53 .98 .98 131  (13%) 

1 -1.17 .84 .81 341  (34%) 

2 1.32 .95 1.18 370  (37%) 

3 3.30 1.21 1.19 168  (17%) 
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Table 3. Item Measure Order 

Item Item 
Number 

Measure 
Estimate 

Standard 
Error 

Infit 
Mean-
square 
(z-score) 

Outfit 
Mean-
square 
(z-score) 

Point 
Measure 
Correlation 

Gait with Narrow 
Base of Support* 7 3.17 0.21 1.78   

(4.4) 
1.52   
(2.4) 0.75 

Gait with Eyes 
Closed* 8 2.48 0.20 1.60   

(3.8) 
1.54   
(3.1) 0.64 

Step Over 
Obstacle† 6 0.55 0.18 1.10    

(0.7) 
1.10    
(0.8) 0.86 

Gait Level Surface† 1 0.31 0.18 0.63 
(-3.1) 

0.64 
(-2.9) 0.80 

Ambulating 
Backwards 9 -0.34 0.19 0.73 

(-2.1) 
0.74 
(-2.0) 0.79 

Change in Gait 
Speed† 2 -0.93 0.19 0.83 

(-1.3) 
0.82 
(-1.3) 0.78 

Gait with Horizontal 
Head Turns† 3 -1.00 0.19 0.83 

(-1.3) 
0.82 
(-1.3) 0.74 

Steps† 10 -1.03 0.19 0.78 
(-1.7) 

0.92 
(-.5) 0.71 

Gait with Vertical 
Head Turns† 4 -1.18 0.19 0.75 

(-1.9) 
0.74 
(-2.0) 0.77 

Gait and Pivot Turn* 5 -2.04 0.20 0.98 
(-0.1) 

1.52   
(2.7) 0.65 

 

* Indicates a misfitting item 

† Indicates an overlapping item 

Items are presented in difficulty order to show their hierarchy with the hardest 

item first followed by items in decreasing level of difficulty 
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Figure 2. Person-Item Map 

 

Figure 2 presents the distribution of ability levels (ie. walking balance ability) for 

our sample to the left of the black line. To the right of the black line, the items are 

presented in a hierarchy from most difficult (top) to least difficult (bottom). The 

hierarchy is repeated based on the highest probability of person receiving a 
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specified score for an item (0, 1, 2, or 3) corresponding to their ability level. This 

part of the figure can be used to predict a person’s score for each item based on 

their ability level by extending a horizontal line across the figure at a given ability 

level. Persons will be most likely to receive the highest available score for an 

item that is at or below their ability level. 

 

For example, a person with an ability level of 0 logits (approximately the mean 

ability level) would have the highest probability of scoring a 0 on the items Gait 

with Narrow Base of Support and Gait with Eyes Closed, a 2 on the item Gait 

Pivot and Turn, a 1 on all remaining items. Similarly, a person with an ability level 

of 4 would be most likely to score a 1 on the item Gait with Narrow Base of 

Support, 2 on Gait with Eyes Closed, Step Over Obstacle, Gait Level Surface 

and 3 on Ambulating Backwards and all remaining items.   
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Figure 3. Examples of FGA ability maps for clinical measurement and decision-

making  

3a. Person with Low Ability [Person Measure = 10; standard error = 1.17] 
 

 

3b. Person with Moderate Ability [Person measure = 15 ; standard error = 1.12] 
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3c. Person with High Ability [Person measure = 22; standard error = 1.30] 
 

 

Completed FGA ability maps are presented for a representative individual with 

low (3a.), moderate (3b), and high (3c) walking balance ability. The persons true 

ability level (determined by the Rasch model) is presented by a solid vertical line. 

The standard error associated with the person’s ability level is presented as two 

dashed vertical lines. Circles are placed around the individual’s rating-scale 

score for each item. The rating-scale from 0-3 matches the original rating-scale 

used with the FGA. Clinicians can obtain the person’s measure by drawing the 

vertical lines through the “bulk” of the circles. Items that represent treatment 

targets are represented by a short-term goal planning box. These items are 

reflective of challenges to walking balance ability that are not too easy or difficult 

for the patient and are ideal treatment targets. The treatment target range should 

shift up as patient’s progress in rehabilitation and gain mastery over skills below 

their ability level (i.e., left of the black line).  
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Abstract 

Interpreting change is a requisite component of clinical decision making for 

physical therapists. Physical therapists often interpret change using Minimal 

Detectable Change (MDC) threshold values. Current MDC threshold formulas 

are informed by Classical Test Theory and calculated with group-level error data. 

A Classical Test Theory approach assumes measurement error is the same 

across the entirety of the measure’s scale and confines the MDC to the sample 

characteristics of the study. An item response theory informed approach 

accounts for variability in error  by converting ordinal scales into interval 

measures based on latent trait ability that have their own associated error 

estimates. Error estimates at the measure-level can be used to determine a 

conditional minimal detectable change (cMDC) threshold for individual patients 

based on their unique pre- and post-score combination. cMDC thresholds can 

provide clinicians with a means for using individual score data to interpret change 

scores. cMDCs provide a personalized approach that should lower the threshold 

for change compared to the MDC and enhance precision of care decisions by 

preventing misclassification of patients. The purpose of this perspective paper is 

to present how principles of item response theory and findings from a Rasch 

analysis can address MDC thresholds limitations for informing clinical practice. 

We demonstrate how a conditional minimal detectable change (cMDC) threshold 

can be generated from item-level psychometrics derived from the Rasch model 

using the patient-reported Activities-specific Balance Scale (ABC) commonly 

used in stroke rehabilitation. We also illustrate how the cMDC compares to the 
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MDC when accounting for changes in measurement error across a scale. With 

theoretical patient examples, we highlight how reliance on the MDC can result in 

misclassification of patient change and cMDCs can help prevent this from 

occurring. This personalized approach for interpreting change can be used by 

physical therapists to enhance precision of care decisions.  

 

Keywords: stroke, balance, measurement – applied  
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Introduction 

 Precision rehabilitation requires that physical therapists accurately 

interpret a patient’s change over time to make appropriate clinical decisions such 

as whether an intervention is efficacious. Standardized measurement tools can 

be used to quantify a patient’s change by calculating the difference between a 

pre-intervention and post-intervention scores. However, the clinical meaning of 

change scores is not intuitively apparent for physical therapists.1, 2 Physical 

therapists need to be able to understand the responsiveness of the measure to 

interpret whether the change scores are reflective of detectable change. 

Responsiveness of a standardized measure is commonly quantified with a 

minimal detectable change (MDC) threshold. MDC thresholds represent the 

amount of change needed to exceed measurement error for a specific measure 

and are calculated with an accompanying confidence interval.3-5 For example, an 

MDC threshold with a 95% confidence interval (MDC95) equal to 15 points means 

that 95% of individuals who are unchanged will have a random fluctuation in their 

scores on pre- and post-tests up to 15.6 Clinically, this means a patient would 

need to change greater than 15 points to have a detectable change that exceeds 

measurement error, regardless of their initial and final scores. The ability to have 

a threshold for establishing “real” change on a measurement tool holds a great 

deal of clinical benefit because physical therapists can easily identify whether 

patients benefit or not from treatment and inform care decisions.  

 However, there are downsides to using MDC thresholds stemming from 

underlying assumptions that limit the clinical interpretation and application for 
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physical therapists.1, 4 A primary concern with MDC thresholds is the reliance on 

group-level error data to calculate the value. Group-level data is heavily 

dependent on the characteristics of the sample used to quantify measurement 

error.7 This means that MDC thresholds are sample specific,  limiting the validity 

of the MDC in situations where an individual patient is not entirely reflective of the 

sample’s characteristics used to derive the change threshold. Group-level data, 

also, assumes that error is consistent across the whole measurement scale.7 

Measures in rehabilitation rarely have consistent error across the whole scale as 

the precision is typically greater at midrange scores and less at the extremes.8 

This means that detecting change is dependent on the error specifically 

associated with an individual patient’s pre- and post-scores. Determining MDC 

values from pre- and post-score combinations should be preferable because it 

may improve (i.e., lower) a measurement tool’s threshold for responsiveness, 

especially when patients have scores near the midrange of the scale.4, 9 More 

precise thresholds could help prevent physical therapists from making 

inappropriate care decisions that result from misclassifying change in patients. 

This method also promotes a more personalized approach to rehabilitation by 

allowing physical therapists to interpret change from individual-level data.  

 The downsides to MDC thresholds were somewhat apparent when the 

concept was initially introduced into physical therapy practice by Stratford and 

colleagues.4 Stratford and colleagues hypothesized that a more precise 

approach for determining change thresholds could come from individualizing 

MDC values to the error associated with a person’s specific initial and final score 
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combinations, also known as a conditional minimal detectable change (cMDC).4 

This conditional approach to calculating an MDC threshold should address 

concerns with changes in error across a measurement scale and allow physical 

therapists to use individual-level data to make personalized decisions regarding 

change for patients. The idea of using cMDC thresholds did not initially take hold 

largely because of the classical test theory approach to measurement and error. 

Typically, classical test theory has been used in measurement to explain the 

patient’s overall score into two parts: 1) the true score and 2) error. This 

approach gives an understanding of the construct for the whole instrument (total 

score) but relies on group-level data error making it difficult to calculate cMDC 

thresholds.7 While there are now mathematical formulas for deriving cMDC 

thresholds under classical test theory approach, the calculations are intensive 

and resulting values can be hard to interpret when scales are ordinal.4, 9  

One way to overcome challenges with classical test theory is to use an 

item response theory model to generate cMDC thresholds.9 Item response theory 

models, like the Rasch model, examine the individual item fit to the measurement 

model by examining the probabilistic relationship between a person’s ability and 

the difficulty of the item.10 For example, persons should have a high probability of 

doing well on items less difficult than their ability levels, a low probability of doing 

well on items that are more difficult than their ability level, and a 50% probability 

of doing well on items that are at their ability level.  When measures fit the Rasch 

model, an item difficulty hierarchy (i.e., easy to hard item difficulty ordering) can 

be generated with a linear, interval measurement scale.10 This scale is 
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independent of the sample and allows a level of precision, standard error, to be 

generated for every person measure available.8 The standard errors can be used 

to quickly generate cMDC thresholds using a simple formula for every pre- and 

post-score combination.9   

 The purpose of this paper is to demonstrate how cMDC thresholds can be 

derived from Rasch informed measure-level error and to illustrate the benefits of 

individualized detectable change thresholds using a common patient-reported 

standardized outcome measure in stroke rehabilitation, the Activities-specific 

Balance Confidence (ABC) scale. We will demonstrate how changes in error 

across a scale comparatively affect cMDC and traditional MDC threshold 

calculations. We will also use theoretical patient examples to illustrate how 

reliance on a single threshold for detecting change can result in misclassification 

and inappropriate clinical decision making compared to a personalized 

conditional threshold, which we argue will enhance care precision.   

  

Methods 

Previous Rasch Analysis Findings 

We previously performed Rasch analysis of the ABC scale using response 

data from persons post-stroke in Winsteps [version 3.93.1; John 

Lincare/Winsteps.com, Beaverton, OR, USA].11 Data for the ABC scale was 

taken from the Locomotor Experience Applied Post-Stroke (LEAPS) trial and 

included 406 individuals approximately 2-months post-stroke.12  
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Results of the Rasch analysis for the ABC scale showed that the original 

rating-scale structure did not adequately fit the Rasch model because many of 

the categories in the rating-scale (i.e., 0-100%) were underused. We addressed 

this issue by collapsing the rating scale to 5 categories: no confidence (0-9%), 

low confidence (10-30%), medium confidence (31-60%), high confidence (61-

90%), full confidence (91-100%). Collapsing the rating-scale improved the fit of 

the ABC scale to the Rasch model and generated item difficulty hierarchies and 

item-level psychometrics that were similar to those found in other studied 

populations.11, 13-16 

Rasch analysis generates an interval scale using logits for person 

measures that quantify a person’s ability level, in this case balance confidence, 

and each person measure has a standard error (SE). The logit scale is anchored 

with a mean value of 0 and standard deviation of 1, which allows for negative and 

decimal point values. The logit scale may confuse clinicians because the current 

scoring for the ABC scale does not provide negative values or decimals. Logits 

can be converted to different values by selecting a new anchor for the mean and 

re-scaling the person measures.17 We converted persons measures and SE from 

logits to a 100-point scale to mimic current scoring for the ABC scale and to help 

with clinical interpretation.  

 

Calculating MDC Thresholds  

 Group-level error data for the ABC scale was calculated using original 

scores (i.e., prior to Rasch analysis) with the following formula18: 
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Standard Error of Measurement (SEM) = Standard Deviation *√(1-Cronbach 

Alpha) 

 

 The Standard Error of Measurement (SEM) was used to calculate an MDC 

threshold with a 95% confidence interval (MDC95) with the following formula19: 

 

MDC95 = 1.96*√(2)*(SEM) 

 

Calculating cMDC Thresholds  

We calculated cMDC thresholds with a 95% confidence interval (cMDC95) 

for every possible pair of pre- and post-score combinations using the following 

formula9: 

 

cMDC95 = ([SEpre-score-SEpost-score]/2)*1.96*√(2) 

 

Comparing MDC and cMDC Thresholds  

 We plotted all the cMDC95 thresholds associated with each patient 

measure on the ABC scale to observe the effect of individual-level standard error 

on detectable change across the measurement scale. In addition, we plotted the 

MDC95 threshold to illustrate the differences between using a fixed and 

conditional threshold for detecting change. We extracted three cMDC95 threshold 

curves to show theoretical patient examples with an initial high (75), moderate 
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(50), and low (25) measure and plotted the cMDC95 thresholds against change 

scores to show when there are mismatches between cMDC95 and MDC95 for 

determining patient change. We use these theoretical examples to show the 

value of using cMDC95 thresholds to detect change in individual patients. 

 

Results 

Figure 1 shows a plot of all possible cMDC95 thresholds for each initial and 

final measure combination compared to the MDC95 threshold. The x-axis 

represents the patient’s final ABC measure. The y-axis represents the change 

threshold value required for detectable change. Each line on the plot contains the 

cMDC95 values associated with an initial measure value. A vertical line can be 

draw up from the final measure value on the x-axis to where it intersects the line 

associated with a person’s initial measure. The point of intersection on the y-axis 

the associated cMDC95. The dash line, in Figure 1, represents the MDC95 

threshold. Our MDC95 was 14.72, which is similar to those reported for the ABC 

scale20, 21 in previous studies with persons post-stroke. The MDC95 threshold 

dash line is fixed across the whole scale because it is not dependent on the 

patient’s initial or final measures. 

The cMDC95 changes across the scale because it is a function of the SE 

associated with the initial and final measures. In the plot, each line has a fixed 

initial measure and associated SE while the final measure and associated SE is 

changing. The different heights for each line are reflective of the amount of SE 

that is associated with the fixed initial measure value. Lines at the top of the plot 
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represent high or low extreme initial measures (i.e., 0 or 100). The lines begin to 

move down towards the bottom of the plot as the initial measure value is closer 

to mid-range of the scale because there is less SE associated with these scores.  

 

(INSERT FIGURE 1 HERE) 

 

Figure 2 contains three theoretical patient examples. Figure 2A. is for a 

patient with a moderate initial measure value of 50, 2B. is for a patient with a low 

initial measure value of 25, and 2C. is for a patient with a high initial measure 

value of 75. Each of the three plots have the change score required for 

detectable change on the y-axis and all possible change scores for that patient. 

The blue dash line in each plot is the cMDC95 curve and the black dash line is the 

MDC95 value. Detectable change based on the cMDC95 and MDC95 value can be 

determined by comparing the x-axis value and the associated y-axis value for 

each line (cMDC95 and MDC95). The patient has achieved a detectable change 

when the x-axis value exceeds the y-axis value. Each plot also has a 

Misclassification Zone. The Misclassification Zone represents a range of change 

scores where there is a mismatch between the cMDC95 and MDC95 thresholds.  

For example, in Figure 2A., the patient has initial measure of 50 and the x-

axis represents change scores from 50 to 100 (max value on the scale). Change 

scores from 0 to 6 (i.e., final measure values of 50-56) would not be considered 

detectable change by the cMDC95 or MDC95, change scores from 7 to 14 would 

be considered detectable change by the cMDC95 but not the MDC95 and change 
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scores from 15 to 50 would be considered detectable change by both the 

cMDC95 or MDC95. The range of change scores from 7 to 14 where there is a 

mismatch in change detection by the cMDC95 or MDC95 creates the Zone of 

Misclassification. Figure 2B. has the same pattern as 2A. The initial range of 

change scores 0 to 8 is not considered detectable change by the cMDC95 or 

MDC95. Change scores between 9 and 14 are considered detectable change by 

the cMDC95, not the MDC95, and creates a Zone of Misclassification. Change 

scores greater than 15 are then considered detectable change under both 

thresholds. Figure 2C still displays a Zone of Misclassification, but the associated 

alignment between cMDC95 and MDC95 thresholds is different. For this patient, 

with a high initial measure value of 75, the change scores from 0 to 14 would not 

be considered detectable change. However, change scores from 15 to 25 would 

be considered detectable change with the MDC95 and not the cMDC95. In this 

case, the relationship between the cMDC95 and MDC95 is reversed for the Zone of 

Misclassification.  

 

(INSERT FIGURE 2 HERE) 

 

Discussion 

 The purpose of this paper was to demonstrate that cMDC thresholds can 

be derived from a Rasch informed version of the ABC scale and to examine the 

differences between an MDC and cMDC approach for detecting change using 

theoretical patient examples. Our results show that cMDC thresholds can easily 
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be derived when patient measure-level data is available for a standardized 

outcome measure. We were able to demonstrate how cMDC thresholds are a 

function of the change in error across a scale with more error associated at the 

extreme scores following a “u-shaped” trajectory.8 This feature allows cMDC’s to 

generally reduce the threshold for detecting change in comparison to an MDC 

threshold – particularly for persons with measures near the mid-range of the 

scale. Our theoretical patient examples show that there are ranges of change 

scores that fall into a Misclassification Zone where detectable change under the 

MDC and cMDC are not in agreement. These examples highlight the benefits of 

using individual-level data compared to group-level data for making 

interpretations about unique patients. The examples also demonstrate how 

patients are at risk of being misclassified as either changing or not changing 

when using group-level data informed thresholds for detectable change (i.e., 

MDCs). 

 Misclassification of patients based on  the MDC approach has wide 

reaching implications for clinical decision making.9 In a broad sense, the most 

concerning misinterpretation of change would be classifying a patient as having 

plateaued or not responded to physical therapy treatment and ending an episode 

of care when the patient had in fact made a measurable change. However, 

misclassification of change also has implications for clinical decision making 

related to treatment prescription. Physical therapists regularly make decisions to 

manipulate variables related to treatment prescription to either progress patients 

or regress them when a prescription has detrimental effects. Misinterpretation of 
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change, positive or negative, could result in clinicians inappropriately altering the 

volume, frequency, intensity, or mode of treatment. Regardless of whether these 

inappropriate decisions have serious adverse events (i.e., over prescribing 

treatment), treatment precision is lost, and individual patient outcomes suffer.    

 In addition to clinical applications, the use of cMDC vs MDC thresholds 

has implications for research. Often MDC thresholds are used to determine 

sample size, determine treatment efficacy, calculate measures used to inform 

clinical decisions like number needed to treat, and serve as anchors for 

identifying minimally important differences or minimally important clinical 

differences.9, 22-25 Specifically, using an MDC threshold will likely cause samples 

sizes to be overestimated, which may cause trials to not appear feasible because 

of the required number of participants. In addition, MDC thresholds may cause 

beneficial (or detrimental) treatment effects to be missed, especially when the 

primary outcome is dichotomized based on whether a participant had a 

detectable change. These implications are especially relevant in rehabilitation 

studies where patient-reported or clinician-observed measures, instead of 

laboratory measures, are the primary outcome. Researchers should consider 

using item-response theory informed measures and cMDC thresholds to prevent 

overpowering studies or inappropriately concluding that a treatment has no 

effect.  

  

Limitations and Future Directions 
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 There are still limitations to the cMDC approach despite the benefits of 

using individual-level data. The primary limitation is that cMDC thresholds must 

be more easily attainable to be commonly used by researchers and physical 

therapists.26 There are a couple of ways to address this barrier. First, 

standardized measures that use ordinal scales need to be informed by item 

response theory methodology (e.g., Rasch analysis) to generate interval-level 

scaling and measure-level precision estimates (i.e., standard error). This should 

quell concerns about using ordinal level data for calculating MDC thresholds.26-29 

Second, measure-level precision should be reported in item response theory 

papers generating item-level psychometrics for generating cMDCs. This would 

allow clinicians to be able to generate cMDC’s and provide researchers to with 

access to error information for study design and statistical analysis planning. 

Another limitation for adopting a cMDC approach is the fact each standardized 

measure will have a change threshold for every possible score combination. It is 

unlikely to expect clinicians to use cMDCs if they are not easily accessible in real 

time, especially when the alternative is committing to memory a few MDC 

thresholds that are relevant to common measures they use and patient 

populations they treat. To address this concern, we recommend creating web-

based calculators or apps that can integrate with electronic medical records to 

rapidly generate an individual’s cMDC threshold in real time for clinical decision 

making. These products also have potential to be integrated with electronic 

versions of standardized measures, such as a computerized adaptive test, to 

provide a real-time indicator to clinicians when patients have a detectable 
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change. Future studies should also aim to examine whether measure-level 

precision estimates are unique to specific populations. It is feasible that some 

standardized measurement tools may be “diagnosis-free” 11, but more research 

in this area is necessary before applying cMDC’s across patient populations. 

Also, while we have shown how cMDC’s work for a patient-reported outcome 

measure, the Misclassification Zone may not be as large or display a similar 

result for measures that already have appropriate rating-scale structure prior to 

performing a Rasch analysis. We recommend that future studies examining the 

differences between MDC and cMDC thresholds investigate the effect of rating-

scale structure on error.  

Lastly, clinicians should be aware that cMDC thresholds allow for the 

detection of change beyond measurement error for individual patients but do not 

attempt to inform whether that change was meaningful to the patient. There are 

several proposed methods for assigning meaningfulness to change scores.1, 24, 25 

However, many of these approaches utilize group-level MDC calculations and do 

not allow for individual interpretation.  We recommend that clinicians consider the 

individual patient goals in relation to their overall function with the cMDC to make 

clinical decisions regarding the “meaningfulness” of change until more empirical 

methodology is presented to promote a more personalized rehabilitation 

approach. 

 

Conclusions 
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 In conclusion, cMDC thresholds can be easily generated from Rasch 

informed measure-level precision estimates. These cMDC thresholds have 

explicit benefits over the traditional MDC approach including the use of 

individual-level data to inform change detection. The cMDC approach allows 

clinicians to interpret change relative to their individual patients and greatly 

reducing the opportunity for misclassifying change or no change. This is 

especially true where clinicians are at risk of underreporting change for measures 

in the middle of a scale and overreporting change at the extreme high end using 

a traditional MDC. Clinicians can use cMDCs to provide a personalized view of 

interpreting change that should enhance clinical decision making and precision 

rehabilitation.   

 

Role of the Funding Source 

The funding sources for this research played no role in the design, conduct or 

reporting of this study and findings. 

 

Acknowledgements  

We would like to acknowledge the LEAPS investigator team [Principal 

Investigator: Pamela Duncan, PT, PhD, FAPTA, FAHA] for data collection and 

archival. We also want to acknowledge the National Institute of Neurological 

Disorders and Stroke for funding the LEAPS trial (R01 NS050506). 

 

Authors Note 



136 
 

 

Data from the LEAPS trial can be obtained by contacting the National Institute of 

Neurological Disorders and Stroke at www.ninds@nih.org 

 

Funding 

Partial funding for this project was provided by the VA Office of Research and 

Development (ORD), with additional support from the VA/ORD Rehabilitation 

R&D Service (1I01RX001935), support from the National Institutes of Health 

(NIH P20 GM109040,) and the Promotion of Doctoral Studies Level I Scholarship 

from the Foundation for Physical Therapy Research. Data for the study was 

provided by the NIH National Institute of Neurological Disorders and Stroke from 

the Locomotor Experience Applied Post-stroke (LEAPS) trial (R01 NS050506). 

 

Any opinions expressed in this publication are those of the authors and do not 

necessarily reflect the view of the U.S. Department of Veteran Affairs or the NIH. 

 

Clinical Trial Registration: 

Some of the data used in this study was collected from clinical trials registered at 

ClinicalTrials.gov (NCT00243919).  

 

Disclosures/Presentations 

The authors report no conflicts of interest. 

 



137 
 

 

Partial findings from this manuscript were presented at the Medical University of 

South Carolina’s Research Day in 2020. The full manuscript has not been 

submitted for publication with any other journal. 

  



138 
 

 

References 

1. Haley SM, Fragala-Pinkham MA. Interpreting change scores of tests and 

measures used in physical therapy. Physical therapy. May 

2006;86(5):735-743. 

2. Velozo CA, Woodbury ML. Translating measurement findings into 

rehabilitation practice: an example using Fugl-Meyer Assessment-Upper 

Extremity with patients following stroke. Journal of rehabilitation research 

and development. 2011;48(10):1211-1222. 

3. Riddle DL, Stratford PW. Is This Change Real? : Interpreting Patient 

Outcomes in Physical Therapy. Philadelphia: F.A. Davis Company; 2013. 

4. Stratford PW, Binkley J, Solomon P, Finch E, Gill C, Moreland J. Defining 

the Minimum Level of Detectable Change for the Roland-Morris 

Questionnaire. Physical therapy. 1996;76(4):359-365. 

5. Stratford PW, Binkley JM. Applying the results of self-report measures to 

individual patients: an example using the Roland-Morris Questionnaire. 

The Journal of orthopaedic and sports physical therapy. Apr 

1999;29(4):232-239. 

6. Stratford PW, Riddle DL. When minimal detectable change exceeds a 

diagnostic test-based threshold change value for an outcome measure: 

resolving the conflict. Physical therapy. Oct 2012;92(10):1338-1347. 

7. Albano AD. Reviewing Classical Test Theory. Introduction to Educational 

and Psychological Measurement Course Notes: University of Nebraska-

Lincoln; 2016. 



139 
 

 

8. Linacre JM. Standard Errors and Reliabilities: Rasch and Raw Score. 

Rasch Measurement Transactions. 2007;20(4). 

9. Kozlowski AJ, Cella D, Nitsch KP, Heinemann AWDoPM, Rehabilitation 

FSoMNUCIL. Evaluating Individual Change With the Quality of Life in 

Neurological Disorders (Neuro-QoL) Short Forms. Archives of physical 

medicine and rehabilitation. 2016;97(4):650-654. 

10. Bond TG, Fox CM. Applying the Rasch Model: Fundamental 

Measurement in the Human Sciences. 3rd ed. New York and London: 

Routledge; 2015. 

11. Seamon BA, Kautz SA, Velozo CA. Rasch Analysis of the Activities-

Specific Balance Confidence Scale in Individuals Poststroke. Archives of 

Rehabilitation Research and Clinical Translation. 2019/12/01/ 

2019;1(3):100028. 

12. Duncan PW, Sullivan KJ, Behrman AL, et al. Protocol for the Locomotor 

Experience Applied Post-stroke (LEAPS) trial: a randomized controlled 

trial. BMC neurology. Nov 8 2007;7:39. 

13. Arnadottir SA, Lundin-Olsson L, Gunnarsdottir ED, Fisher AG. Application 

of Rasch analysis to examine psychometric aspects of the activities-

specific balance confidence scale when used in a new cultural context. 

Archives of physical medicine and rehabilitation. Jan 2010;91(1):156-163. 

14. Franchignoni F, Giordano A, Ronconi G, Rabini A, Ferriero G. Rasch 

validation of the Activities-specific Balance Confidence Scale and its short 



140 
 

 

versions in patients with Parkinson's disease. Journal of rehabilitation 

medicine. Jun 2014;46(6):532-539. 

15. Sakakibara BM, Miller WC, Backman CL. Rasch analyses of the Activities-

specific Balance Confidence Scale with individuals 50 years and older with 

lower-limb amputations. Archives of physical medicine and rehabilitation. 

Aug 2011;92(8):1257-1263. 

16. Wang YC, Sindhu B, Lehman L, Li X, Yen SC, Kapellusch J. Rasch 

Analysis of the Activities-Specific Balance Confidence Scale in Older 

Adults Seeking Outpatient Rehabilitation Services. The Journal of 

orthopaedic and sports physical therapy. Jul 2018;48(7):574-583. 

17. Linacre JM. A user’s guide to Winsteps Rasch-model computer programs. 

Help for Winsteps Rasch Measurement and Rasch Analysis 

Software2009: http://www.winsteps.com/a/winsteps.pdf. Accessed 2019. 

18. Wyrwich KW. Minimal important difference thresholds and the standard 

error of measurement: is there a connection? Journal of 

biopharmaceutical statistics. Feb 2004;14(1):97-110. 

19. Stratford PW, Binkley JM, Riddle DL, Guyatt GH. Sensitivity to change of 

the Roland-Morris Back Pain Questionnaire: part 1. Physical therapy. Nov 

1998;78(11):1186-1196. 

20. Botner EM, Miller WC, Eng JJ. Measurement properties of the Activities-

specific Balance Confidence Scale among individuals with stroke. 

Disability and rehabilitation. Feb 18 2005;27(4):156-163. 



141 
 

 

21. Salbach NM, Mayo NE, Robichaud-Ekstrand S, Hanley JA, Richards CL, 

Wood-Dauphinee S. Balance self-efficacy and its relevance to physical 

function and perceived health status after stroke. Archives of physical 

medicine and rehabilitation. Mar 2006;87(3):364-370. 

22. van de Graaf VA, Noorduyn JCA, Willigenburg NW, et al. Effect of Early 

Surgery vs Physical Therapy on Knee Function Among Patients With 

Nonobstructive Meniscal Tears: The ESCAPE Randomized Clinical Trial. 

Jama. 2018;320(13):1328-1337. 

23. Froud R, Eldridge S, Lall R, Underwood M. Estimating the number needed 

to treat from continuous outcomes in randomised controlled trials: 

methodological challenges and worked example using data from the UK 

Back Pain Exercise and Manipulation (BEAM) trial. BMC Medical 

Research Methodology. 2009/06/11 2009;9(1):35. 

24. Malec JF, Ketchum JM. A Standard Method for Determining the Minimal 

Clinically Important Difference for Rehabilitation Measures. Archives of 

physical medicine and rehabilitation. 2020/06/01/ 2020;101(6):1090-1094. 

25. Collins JP. Measures of Clinical Meaningfulness and Important 

Differences. Physical therapy. 2019;99(11):1574-1579. 

26. Caronni A, Picardi M, Gilardone G, Corbo M. The McNemar Change Index 

worked better than the Minimal Detectable Change in demonstrating the 

change at a single subject level. Journal of clinical epidemiology. 

2021/03/01/ 2021;131:79-88. 



142 
 

 

27. Stevens SS. On the theory of scales of measurement. Science (New York, 

N.Y.). Jun 7 1946;103(2684):677-680. 

28. Kahler E, Rogausch A, Brunner E, Himmel W. A parametric analysis of 

ordinal quality-of-life data can lead to erroneous results. Journal of clinical 

epidemiology. May 2008;61(5):475-480. 

29. Anselmi P, Vidotto G, Bettinardi O, Bertolotti G. Measurement of change 

in health status with Rasch models. Health and quality of life outcomes. 

Feb 7 2015;13:16. 

  



143 
 

 

Figure 1. cMDC95 and MDC95 thresholds for the ABC scale 

 

Each line contains all possible cMDC95 thresholds associated with a fixed initial 

score. The dash line represents the MDC95 threshold. The dash line representing 

the MDC95 threshold is fixed because it is not dependent on a specific initial and 

final measure combination. The x-axis represents the patient’s final measure 

value, and the y-axis reflects the minimal detectable change threshold value 

associated with the combination of initial and final measures. A specific cMDC95 

threshold can be identified selecting a final measure value and drawing a vertical 

line from the measure’s location on the x-axis to a line that represents a fixed 

initial measure of interest. The corresponding y-axis value where the lines 

intersect is the cMDC95 threshold for that measure pairing. The different heights 

of the curves are related to the amount of standard error associated with the 

fixed initial score. For example, the higher a line is on the plot, the closer the 

initial measure is to an extreme end of the scale and the lower a line is on the 

plot the closer the initial measure is to the middle of the scale. 
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Figure 2. Comparing cMDC95 and MDC95 thresholds with Patient Examples 
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Figure 2 presents three theoretical patient examples to demonstrate how 

misclassification of change occurs when using the MDC95 compared to a 

cMDC95. The x-axis represents the change scores based on the person’s initial 

measure value on the ABC. The y-axis represents the change scores required for 

detectable change. The blue dash line represents the cMDC95 curve associated 

with the initial measure value for the theoretical patient and the black dash line 

represents the MDC95. The change threshold can be identified by drawing a 

vertical line from the x-axis of the patient’s change score to where it intersects 

with the blue dash line. The associated y-value with the intersection is the 



146 
 

 

required threshold for detectable change. The change score magnitude can be 

compared to the threshold to see if the patient has a detectable change. These 

figures compare whether the patient had detectable change under the cMDC95 

and MDC95 approach. The Misclassification Zone is noting the range of scores 

where the cMDC95 and MDC95 approach do not agree. In A and B the cMDC95 

identified a change but the MDC95 did not in the Misclassification Zone. In C the 

cMDC95 did not identify change and the MDC95 did in the Misclassification Zone. 

Outside of the Misclassification Zone the cMDC95 and MDC95 were in agreement.  
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4.3 PART II MANUSCRIPT 

 

Associations between biomechanical variables of walking performance 

and muscle coordination during self-selected steady-state walking 
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Abstract 
 
Background 

Factorization of EMG data into modules has been used to quantify muscle 

coordination during gait. However, no one has examined the association 

between modules and observable biomechanical variables during walking 

outside of computer simulation models. 

 

Research Question 

Are modules associated with observable measures of biomechanical functions 

during steady-state walking?  

 

Methods 

We used a cross-sectional design with twenty, healthy individuals who completed 

3, 30-second trials of steady-state walking at self-selected speeds on an 

instrumented treadmill with motion capture. EMG was collected from 8 lower 

extremity muscles bilaterally. Non-negative matrix factorization was used to 

extract 4 modules. Changes in biomechanical variables were quantified using the 

area under the curve for each bin of the gait cycle per step. Variables included 

anterior-posterior and vertical ground reaction force, leg angle, and leg length. 

Generalized mixed linear models with random coefficients for person by leg and 

person by step interactions were used to quantify the association between 

changes in module activation with biomechanical measures of walking. 

Comparisons within bins between modules and biomechanical variables were 
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selected a priori based on hypothesized relationships suggested from previous 

computer simulation work. Bonferroni corrections were applied for evaluating 

statistical significance. 

 

Results 

We found significant positive associations between Module 1 and vertical ground 

reaction force during early stance; Module 2 and AP and vertical ground reaction 

forces during late stance; Module 3 and changes in leg angle and leg length 

during swing phase, and decreased AP ground reaction forces in early stance; 

Module 4 and increased vertical ground reaction force in early stance, and 

decreased leg angle in late swing phase.  

 

Significance 

Our findings demonstrate that there are physiologically expected associations 

between biomechanical variables and modules during steady-state walking. 

Results from this study can be used for comparisons with pathological conditions 

impacting walking performance and informing biomarkers of walking recovery. 

 

Keywords: Gait, biomechanics, electromyography, coordination, modules 
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Introduction 

Walking is a particularly complex task that requires a high degree of well-

coordinated muscle activity.[1] Recently, growing evidence has supported that 

the complex coordination of muscle activity during walking can be quantified 

using a module-based analysis.[2-5] Module-based analyses apply factorization 

algorithms to surface electromyographic (EMG) data collected from multiple 

muscles to identify modules that contain co-excited muscles with their activation 

profile during the gait cycle. Four modules are typically identified in healthy 

walking that have robust consistency in composition and timing of activation 

during the gait cycle across healthy individuals.[2, 4] Module 1, active in early 

stance, primarily contains activity from gluteus medius, rectus femoris, and 

vastus medialis. Module 2, active in late stance, consists of soleus and medial 

gastrocnemius activity. Module 3, active in early stance and swing, consists of 

tibialis anterior and rectus femoris. Module 4, active in late stance and early 

swing, consists of medial and lateral hamstring activity. However, factorization 

algorithms used to generate modules, are primarily a means of data reduction 

and may not necessarily produce factors, or modules, that are physiologically 

relevant.[6] 

Neptune and colleagues[6] addressed this concern using a muscle-

actuated forward dynamic computer simulation model with module data from 

Clark et. al..[2] They were able to show that the typical 4 modules were sufficient 

for producing coordinated waking. Additionally, they identified the contributions of 

each module to key biomechanical functions during walking. Module 1 provided 
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body support and deceleration during early stance, Module 2 provided body 

support and forward propulsion in late stance, while Module 3 and 4 provided leg 

acceleration in early swing and deceleration in late swing to prepare for foot 

contact.  

No one to date has demonstrated the association between observable 

walking biomechanics and modules during healthy walking, outside of simulation. 

Therefore, while simulation has shown the biomechanical functions the modules 

should perform, no one has yet linked module performance with quantified 

biomechanical performance during walking. The purpose of this study was to 

quantify the associations between modules and biomechanical variables of 

walking that reflect the functions described in Neptune et al., 2009 during steady 

state walking at self-selected speeds in healthy adults. Specifically, we compared 

the association between module activation with changes in anterior-posterior 

(i.e., propulsion) and vertical (i.e., body support) ground reaction forces, leg 

angle (i.e. stance to swing transition), and length (i.e., leg clearance). 

Specifically, we hypothesized that Module 1 would be associated with changes in 

anterior-posterior and vertical ground reaction forces during early stance; Module 

2 would be associated with changes in anterior-posterior and vertical ground 

reaction forces, and trailing leg angle during late stance; Module 3 would be 

associated with changes in anterior-posterior ground reaction forces during late 

stance, and leg angle and leg length during swing phase; and Module 4 would be 

associated with changes in anterior-posterior and vertical ground reaction forces 

during early stance, and leg angle in late swing phase.   
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Methods 

Participants: 

Participants for this study included 20 healthy older adults between the 

ages of 40-85. Participants were excluded if they had any neurologic disease or 

significant orthopedic impairments in the lower limb that would limit walking 

performance. All participants signed a written informed consent form approved by 

the Institutional Review Board at the Medical University of South Carolina and 

conformed to the Declaration of Helsinki. 

 

Procedures: 

 Participants completed three, 30 second, walking trials at self-selected 

walking speed on a split belt instrumented treadmill (Bertec; Columbus, OH). 

Ground reaction forces were sampled at 2000 Hz. Force data was then filtered 

with a 4th order Savitzky-Golay filter and resampled at 100 Hz. Whole-body 3D 

kinematic data was recorded by a 16-camera motion capture system 

(PhaseSpace, Inc.; San Leandro, CA) and sampled at 120 Hz, filtered with a 4th 

order Savitzky-Golay filter, and resampled at 100 Hz. Bipolar pre-amplified 

electrodes (Motion Lab Systems; Baton Rouge, LN, USA) were used to collect 

surface EMG from eight muscles bilaterally: tibialis anterior, soleus, medial 

gastrocnemius, vastus medialis, rectus femoris, medial hamstrings, lateral 

hamstrings, and gluteus medius. Surface EMG was sampled at 2000 Hz, high-

pass filtered at 40 Hz, demeaned, rectified, and low-pass filtered at 4 Hz using a 
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zero-lag forth order Butterworth filter and resampled to 100 Hz. EMG amplitude 

for each muscle was averaged within each region of the gait cycle (or bin): (1) 

initial contact/loading response (initial double support), (2) first half of single-leg 

stance, (3) second half of single-leg stance (4) second double support, (5) first 

half of swing, (6) second half of swing) for each step. The bin with the highest 

average was used to normalize EMG amplitude across all trials for an individual. 

Data for each step was time normalized to the gait cycle (0-100%) 

 

Data Analysis: 

NON-NEGATIVE MATRIX FACTORIZATION (NNMF): Quantifying muscle 

coordination was done using a module analysis with NMMF. EMG from each 

muscle for per leg was combined into an m x t matrix (EMGO), where m is the 

number of muscles (8) and t is the time base (t = number of gait cycles x 101). 

An NNMF algorithm is applied to the m x t matrix for each person. NNMF creates 

two matrices that define a pre-selected number of modules (n), in this case n = 4. 

One is an m x n matrix indicating the relative weighting of each muscle within 

each module, also known as the W matrix. The second is an n x t matrix 

indicating the activation timing profile of each module for each step in the trial, 

also known at the H matrix. NNMF assumes that the muscle weightings are fixed 

across all steps and allows for muscles to be belong to more than one module. 

NNMF runs an iterative optimization procedure to minimize the error by adjusting 

the muscle weightings (W matrix) and activation profiles (H matrix). The H matrix 
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for each module per person was divided into separate steps and an area under 

the curve was calculated for each bin of the gait cycle per step.  

 

BIOMECHANICAL VARIABLES FOR WALKING: Biomechanical variables were 

quantified from force and motion capture data using custom software in MATLAB 

(Mathworks, Natick, MA). Specific kinematic and kinetic variables of interest were 

selected to represent the biomechanical subtasks of walking. These variables 

included:  

 

(1) Changes in ground reaction force or impulse (the time integral of the ground 

reaction force) in the anterior-posterior (AP), and vertical directions. Impulse was 

calculated by taking the net area under the curve (AUC) for each component 

(AP, vertical) of the ground reaction force in each bin of the gait cycle.  

 

(2) Changes in leg angle in the anterior-posterior direction. Leg angle was 

calculated by taking the angle from a vertical line between the ground and center 

of mass of the pelvis and a line between the center of mass of the pelvis to the 

center of mass of the foot. The changes in leg angle were represented by the net 

AUC in each bin for each step.  

 

(3) Changes in leg length. Leg length was calculated as the distance from the 

center of mass of the pelvis to the center of mass of the foot. We normalized leg 

length to for each participant to the distance between their pelvis center of mass 
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and foot center of mass during static standing. Changes in leg length were 

represented by the AUC in each bin for each step.  

 

Statistical Analysis: 

All statistical analyses were completed in SAS version 9.4 (SAS Inc., 

Cary, NC). PROC GLIMMIX was used to fit linear mixed models with random 

coefficients. The participant variable, participant by leg (i.e., right and left) 

interaction, and participant by step interaction were included as random effects in 

the model. The random coefficients model allowed us to examine the association 

between module and biomechanical variables while controlling for variability at 

the individual and group levels. Magnitude of association was quantified using 

parameter estimates. We used a Bonferroni correction for the number of tests 

(tests = 18) resulting in an alpha level of 0.003. 

 

Results 

 Our sample consisted of 20 healthy adults with a mean age of 58 years. 

Twelve individuals were female, 17 were Caucasian, and 3 Black. Demographic 

data is presented in Table 1.  

 

(INSERT TABLE 1 HERE) 

 

Module Weighting and Activation Profiles 
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Module weighting and activation profiles are presented in Figure 1. The 

four modules’ weightings were like previously published muscle compositions 

and displayed similar timing curves, with the exception of increased rectus 

femoris activity in Module 1 compared to Module 3.[2, 6] Visually, there was 

consistency across participants and between legs for module weightings and 

activation profiles. Module 1 was primarily active in early stance and consisted 

mainly of muscle activity from the gluteus medius, rectus femoris, and vastus 

medialis. Module 2 was primarily active in late stance and consisted mainly of 

muscle activity from the medial gastrocnemius and soleus. Module 3 was 

primarily active in swing phase and early stance, consisting mainly of muscle 

activity from the tibialis anterior and rectus femoris. Module 4 was primarily active 

in late swing phase and early stance, consisting mainly of muscle activity from 

the medial and lateral hamstrings. Module weighting and activation profiles are 

presented in Figure 1. 

 

(INSERT FIGURE 1 HERE)  

 

Module Associations with Biomechanical Variables 

 Average curves for each biomechanical variable during the gait cycle are 

presented in Figure 2. Each plot contains the group mean (black line), 1 (light 

gray) and 2 (dark gray) standard deviation ranges. Individual averages across 

steps for each leg (right and left) are shown as gray curves. Descriptive statistics 

for each biomechanical variable mean AUC and standard deviation are 
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presented by bin in Table 3. All parameter estimates and p-values from the linear 

mixed models are presented in Table 4 by module.  

 

(INSERT FIGURE 2 HERE) 

(INSERT TABLE 2 HERE) 

 

MODULE 1: Module 1 was found to have a positive association with increases in 

vertical ground reaction forces in bin 1 (parameter estimate (PE)=68.38 standard 

error (6.05); p<0.0001) and bin 2 (PE=39.56 (7.66); p<0.0001). Module 1 also 

had a positive association with increases in AP ground reaction force in bin 2 

(PE=5.49 (1.54); p<0.0001) and no significant association with bin 1.  

 

MODULE 2: Module 2 was found to have a positive association with cumulative 

increases in vertical and AP ground reaction forces across bins 3 and 4, with the 

greatest magnitude in bin 4 (Vertical – PE=286.39 (8.12), p<0.0001; AP – 

PE=38.17 (1.48), p<0.0001). Additionally, Module 2 was associated with 

cumulative increased leg extension (i.e., increased negative AUC for leg angle) 

across bins 3 (PE=-2.35 (0.16); p<0.0001) and 4 (PE=-8.43 ()0.32); p<0.0001).   

 

MODULE 3: Module 3 was associated with decreases in AP ground reaction 

force in bin 1 4 (PE=-6.0 (1.44); p<0.0001); a decrease in leg angle, or leg 

extension, in bin 5 (PE=-1.45 (0.28); p<0.0001); and an increase in leg length in 
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bin 6 (PE=0.03 (0.01); p<0.0017). Module 3 did not have any significant 

associations with AP leg angle in Bin 6 or leg length in Bin 5.  

 

MODULE 4: Module 4 was positively associated with increases in vertical ground 

reaction force during bin 1 (PE=37.48 (4.43); p<0.0001) and with decreases in 

leg angle during bin 6 (PE=-2.46 (0.39); p<0.0001). We did not find any 

significant associations between Module 4 and AP ground reaction force in bin 1. 

 

(INSERT TABLE 3 HERE) 

 

Discussion 

Our results demonstrate that there is a strong association with modular 

organization of muscle coordination and biomechanical variables of walking 

performance at self-selected speeds. We found several associations that 

supported our proposed hypotheses which were informed by previous computer 

simulation work[6] and are consistent with the theory that neural organization 

drives biomechanical output during movement.[3, 4, 6-10] The 4 modules we 

identified for each individual were consistent across participants and previous 

analyses using similar methodology, with the exception of increased rectus 

femoris activity in Module 1.[2, 11]  

We hypothesized that Module 1 would be associated with changes in AP 

and vertical ground reaction forces in bins 1 and 2 because simulation showed 

Module 1 contributed to body support and braking during early stance phase.[2, 
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6] We observed that Module 1 was primarily associated with increases in vertical 

ground reaction force in bins 1 and 2. This association is supported by the 

primary contributions of vastus medialis and rectus femoris in Module 1. Several 

simulations studies have shown that vastus medialis contributes to body support 

through vertical ground reaction force[6, 12-14] and that rectus femoris 

contributes to body support with vastus medialis when co-active in early 

stance.[14, 15] However, contrary to our hypothesis, we did not see an 

association with AP ground reaction forces during bin 1 where one may expect to 

see a negative AP impulse (i.e., braking or backward propulsion) to correspond 

with deceleration and vastus medialis activity. [6, 12-14]  Our observation of a 

positive association with increase AP ground reaction force in bin 2 could 

potentially be explained by gluteus medius activity since this muscle can 

contribute to forward propulsion, in addition to body support, during early 

stance.[12, 13] 

We hypothesized Module 2 would be associated with changes in AP and 

vertical ground reaction forces in bins 3 and 4 because Module 2 has been 

shown to contribute to body support and forward propulsion during stance phase 

in simulation.[2, 6] Additionally, we hypothesized that Module 2 would be 

associated with increased leg extension which has been associated with 

propulsion in terminal stance during walking.[16, 17] Consistent with our 

hypotheses, we observed that Module 2 was primarily associated with a positive 

increase in vertical and anterior-posterior ground reaction forces across bins 3 

and 4. We also observed that Module 2 was also strongly associated with leg 
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angle movements into extension across mid to late stance, bins 3 and 4. These 

findings are consistent with previous studies linking trailing leg angle and forward 

propulsion. [16, 17] Our findings suggest that muscle activity is coordinated to 

place the foot in an optimal position to maximize propulsion forces with respect to 

vertical forces generated by the ankle plantarflexors. We also found that Module 

2 was associated with an increase in foot velocity during early swing in the 

anterior-posterior direction.  

We hypothesized that Module 3 would be associated with changes in leg 

angle and leg length during swing phase because it is thought to coordinate with 

Module 4 to accomplish swing phase.[2, 6] We found that Module 3 was 

associated with leg angle (increased extension) in bin 5 and increases in leg 

length in bin 6, but we did not find any significant association for leg angle in bin 

6 or leg length in bin 5, partially proving our hypothesis. We also hypothesized 

that Module 3 would be associated with decreases in AP ground reaction force 

(i.e., propulsion) during bin 4. We confirmed this hypothesis which supports 

previous findings that increased tibialis anterior activity in late stance can 

counteract propulsion by the ankle plantarflexors.[18]  

Lastly, we hypothesized that Module 4 would be associated with leg angle 

in late swing phase (capturing leg deceleration) and increases in AP and vertical 

ground reaction forces during early stance.[2, 6] Our findings partially confirmed 

our hypotheses because we observed associations between Module 4 and leg 

angle in late swing and with vertical ground reaction forces in early stance. The 

negative association we saw in late swing with leg angle would suggest that 
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Module 4 is contributing to a decrease in leading limb angle in preparation for 

heel strike and stance phase. 

 

Limitations 

 There are several limitations to this study. We selected biomechanical 

variables based on theorized linkages between the biomechanical functions of 

body support, propulsion, and leg swing. Our results suggest that there may have 

been other variables with stronger associations to these biomechanical functions, 

especially with respect to leg swing and propulsion; for example, using pelvic and 

foot center of mass acceleration to capture changes in velocity at the trunk and 

leg segments. Another limitation was our constraint to the sagittal plane of 

movement. Future studies should examine associations of modules with key 

biomechanical variables in the frontal plane.[6] Also, we constrained our 

quantification of biomechanical variables to the net area under the curve for each 

bin. It is reasonable to consider exploring associations with positive and negative 

AUCs especially for variables that may have primarily negative or positive values 

during a single bin. Additionally, our large sample size left us overpowered. 

Although generalized mixed linear models are very robust[19] and able to control 

for repeated measures (i.e., between legs and steps), we were at risk for 

identifying significant findings that were not meaningful[20]. We took steps to 

address this, including hypothesizing associations a priori and applying a more 

conservative correction for the number of statistical tests. Lastly, our study 

design is not able to prove causation between modular activation and changes in 
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biomechanical variables, although the simulation work has shown that the 

changes are consistent with module contributions to the dynamics of walking. 

Prospective study designs are needed to confirm our findings are causal. 

 

Future Directions 

Our findings provided more evidence to strengthen the theory that 

modules share a mechanistic link with observable biomechanical variables that 

are measurable during walking. This seems to suggest that modules may have a 

biomechanical signature that is expressed which could potentially be used as a 

biomarker for walking-specific motor control recovery in persons with pathological 

gait. Future studies should examine whether observed changes in module 

activity have similar associations with changes in biomechanical variables in 

pathological walking. This would be especially helpful for individuals with stroke 

where modules may reflect the loss of movement fractionation common in this 

patient population[2, 21-29] and can change with interventions.[11, 21, 30, 31]  A 

biomechanical biomarker for modules could enable clinicians to have a surrogate 

measure for the measurement of muscle coordination during walking and inform 

patient specific interventions.[32]   
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Table 1. Participant Demographics 

n = 20 

Age (years) 58.2 (10.1) [40-79] 

Sex  

Male 8 (40%) 

Female 12 (60%) 

Race  

White 17 (85%) 

Back 3 (15%) 

 
Continuous variables are presented as mean (standard deviation) [range] 
 
Categorical variables are presented as count (frequency - percentage) 
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Figure 1. Muscle weightings and activation profiles for each module 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Muscle weighting plots show the strength of representation for each muscle 

within a module. Gray bars are used to show the muscle weightings for each leg 

per participant per module. The black bar represents the group mean. Activation 

profiles represent the activation of the module over the gait cycle. Thin gray lines 

represent the profiles for each leg per participant averaged across all steps. The 

black line represents the group mean. Solid vertical lines represent the group 

mean for the start and stop of each bin. Dash vertical lines are presented to the 

right and left of the mean to show the range of values observed from our sample 

(i.e., average per person per leg) for the start and stop of each bin. 
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TA – tibialis anterior; SO – soleus; MG – medial gastroc; VM – vastus medialis; 

RF – rectus femoris; LH – lateral hamstring; MH – medial hamstring; GM – 

gluteus medius 
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Figure 2. Average curves for biomechanical variables of interest across the gait  
cycle 

 
Biomechanical plots show the change for a variable across the gait cycle. Gray 

lines represent the average curve for each leg per participant. The black line 

represents the group mean. A dark shaded region surrounding the black line 

represents 1 standard of deviation and lighter shaded region represents 2 
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standards of deviation. Solid vertical lines represent the group mean for the start 

and stop of each bin. Dash vertical lines are presented to the right and left of the 

mean to show the range of values observed from our sample (i.e., average per 

person per leg) for the start and stop of each bin. 
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Table 2. Descriptive Statistics for Biomechanical Variable Areas Under the Curve 
 
 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 

AP Ground 
Reaction 
Force 

-9.66 
(3.26)  

-9.42 
(3.98)  

5.77  
(3.31)  

13.21 
(3.75) . . 

Vertical 
Ground 
Reaction 
Force 

94.18 
(34.06) 

158.02 
(31.08) 

157.60 
(31.96) 

96.95 
(28.81) . . 

AP Leg Angle 3.44  
(0.78) 

1.31 
(0.48) 

-0.80 
(0.58) 

-2.97 
(0.69) 

-2.78 
(0.91) 

2.45 
(0.91) 

Leg Length 0.19 
(0.05) 

0.19 
(0.02) 

0.19 
(0.02) 

0.18 
(0.04) 

0.17 
(0.02) 

0.18 
(0.02) 

 
Values are presented as mean (standard deviation) 
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Table 3. Associations between Biomechanical Variables and Modules 
 

A. Module 1 
 
 Bin 1 Bin 2 
AP Ground Reaction Force 1.68 (0.81) 

p=0.039  
5.49 (1.54) 
p<0.0001* 

Vertical Ground Reaction 
Force 

68.38 (6.05) 
p<0.0001* 

39.56 (7.66) 
p<0.0001* 

 
B. Module 2 

 
 Bin 3 Bin 4 
AP Ground Reaction Force 16.11 (1.13)  

p<0.0001* 
38.17 (1.48)  
p<0.0001* 

Vertical Ground Reaction 
Force 

223.97 (6.96)  
p<0.0001* 

286.39 (8.12)  
p<0.0001* 

AP Leg Angle -2.35 (0.16)  
p<0.0001* 

-8.43 (0.32)  
p<0.0001* 

 
C. Module 3 

 
 Bin 4 Bin 5 Bin 6 
AP Ground Reaction 
Force 

-6.0 (1.44) 
p<0.0001* 

. . 

AP Leg Angle . -1.45 (0.28) 
p<0.0001* 

0.73 (0.38) 
p=0.053 

Leg Length . 0.01 (0.01) 
p=0.52 

0.03 (0.01) 
p=0.0017* 

 
D. Module 4 

 
 Bin 1 Bin 6 
AP Ground Reaction Force 0.95 (0.59) 

p=0.106 
. 

Vertical Ground Reaction 
Force 

37.48 (4.43) 
p<0.0001* 

. 

AP Leg Angle . -2.46 (0.39) 
p<0.0001* 

 
Values presented are parameter estimates with p-values 
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* indicates significant finding, p<0.003 
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4.3 PART III MANUSCRIPT 

 

tDCS electrode montages may differentially impact variables of walking 

performance in individuals post-stroke: a preliminary study 
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Abstract:  

Background:  

Transcranial direct current stimulation (tDCS) has mixed effects on walking 

performance in individuals post-stroke. This is likely the result of variations in 

tDCS electrode montages and individualized responses. The purpose of this 

study was to quantify the effects of a single session of tDCS using various 

electrode montages on post-stroke walking performance.  

 

Methods:  

Individuals with chronic stroke (n=16) participated in a double-blind, randomized 

cross-over study with sham stimulation and three tDCS electrode montages. Gait 

speed, paretic step ratio and paretic propulsion were assessed pre- and post-

stimulation at self-selected and fastest comfortable speeds. Changes in muscle 

activation patterns with self-selected walking were quantified by the number of 

modules derived from non-negative matrix factorization of EMG signals for 

hypothesis generation.   

 

Results:  

There was no significant effect of active stimulation montages compared to 

sham. Comparisons between each participant’s best response to tDCS and 

sham show personalized tDCS may have a positive effect on fastest comfortable 

overground gait speed (p=0.084), paretic step ratio (p=0.095) and paretic 

propulsion (p=0.090), and self-selected paretic step ratio (p=0.012). Participants 
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with 2 or 3 modules at baseline increased module number in response to the all 

experimental montages and sham, but responses were highly variable. 

 

Conclusions:  

A single session of tDCS may affect clinical and biomechanical walking 

performance, but effects appear to be dependent on individual response 

variability to different electrode montages. Our findings are consistent with 

responses to various tDCS electrode montages being the result of underlying 

neuropathology and we recommend examining how individual factors affect 

responses to tDCS.  

 

Key Words: (6 allowed) 

Brain stimulation, electromyography, stroke, walking, biomechanics, rehabilitation  
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Individuals post-stroke commonly report impaired walking performance 

that is associated with the severity of central nervous system damage.(1) 

Transcranial direct current stimulation (tDCS) holds promise as a potential 

therapeutic adjuvant capable of modifying or modulating the central nervous 

system and may be able to augment standard rehabilitation strategies for 

recovery of walking function.(2, 3) tDCS is a non-invasive brain stimulation 

technique that uses a small electrical current to modulate cortical activity and is 

simple to administer, low-cost, and low-risk.(4, 5) tDCS neuromodulation has 

been shown to up or down regulate cortical excitability and effect 

interhemispheric imbalances that can result from a stroke(6, 7) including deeper 

structures like the leg area of the motor cortex in healthy individuals(2, 8, 9) and 

persons post-stroke.(3) Regulating cortical excitability or interhemispheric 

imbalance has been hypothesized as a mechanism for improving motor 

function(6, 10) (primarily in the upper extremity(7, 11-13)) and aphasia(14, 15). 

Treating interhemispheric imbalance may have a larger influence on walking 

performance given the bilateral  task requires coordination between 

hemispheres(16) although this model has not been conclusively translated to the 

lower extremity.  

Despite the promise of tDCS acting on impaired cortical activity to improve 

motor function the effects are often small bringing into question the therapeutic 

utility of tDCS in clinical practice especially for walking rehabilitation (i.e. gait 

speed and endurance).(16-18) One hypothesized reason for this is the limited 

evidence to guide personalization of tDCS prescription to combat the inherent 
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heterogeneity of the pathology.(18) Few experiments examine the effect of 

varying available parameters such as; treatment frequency, duration and length, 

current strength, and electrode montage.(14, 17-19) 

Electrode montage is of specific therapeutic interest in post-stroke 

rehabilitation for walking because electrode placement informed by 

neuroanatomical and physiological pathology has had a positive effect on clinical 

measures of upper extremity and hand function.(7, 11-13) Improvements are 

seen with either excitatory (anode applied over ipsilesional M1)(7) or inhibitory 

stimulation (cathode is applied over contralesional M1)(11) when compared to 

sham.(12, 13) Studies examining the effects of dual montages (anode over 

ipsilesional M1 and cathode over contralesional M1 simultaneously) had positive 

findings on measures of walking function (decreased Timed Up and Go 

times(20), increased 6-minute walk test distance(21), and increased paretic 

power(22)) in response to a single session of tDCS. Yet, it remains unknown how 

dual montages compare to single anode or cathode configurations against sham 

stimulation on walking performance.(17) 

The purpose of this study was to quantify the effects of a single treatment 

of tDCS delivered during treadmill walking on gait speed, paretic step ratio and 

paretic propulsion in individuals post-stroke and to compare three electrode 

montages to sham stimulation: 1.) Excitatory (anode over ipsilesional M1), 2.) 

Inhibitory (cathode over contralesional M1, and 3.) Dual (an anode over 

ipsilesional M1, and a cathode over contralesional M1). We hypothesized the 

dual electrode montage would have the largest effect on measures of walking 
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performance as walking is a bilateral, coordinated activity resulting from restored 

interhemispheric balance. In an exploratory analysis, we examined the effect of 

tDCS stimulation and electrode montage on muscle activation patterns in 

individuals post-stroke during treadmill walking. 

 

Materials and Methods:  

Participants: Eighteen individuals with chronic stroke were enrolled and sixteen 

completed all study procedures. One participant dropped-out and one did not 

meet the inclusion criteria. Demographic data are presented in Table 1.  

 

(INSERT TABLE 1 HERE) 

 

Inclusion criteria were: 1) age 18 to 85 years old; 2) at least six-months post-

stroke; 3) residual lower extremity paresis (Fugl-Meyer Lower Extremity motor 

score <34); 4) ability to walk independently at least 10 feet; 5) self-selected 10-

meter gait speed < 0.8 m/s (at time of consent); and 6) provision of informed 

consent.  Participants were excluded for: 1) significant musculoskeletal problems 

limiting hip and knee extension or ankle plantarflexion to neutral joint positions; 2) 

self-reported history of unstable cardiovascular disease or severe osteoporosis, 

or 3) pregnancy. Screening, testing and tDCS interventions were completed by a 

team of licensed physical therapists and associated study staff.  All participants 

signed a written informed consent form approved by the Institutional Review 
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Board at the Medical University of South Carolina and conformed to the 

Declaration of Helsinki.  

 

Experimental Procedure: We used a double-blind, randomized, cross-over 

experimental design. A timeline of procedures is presented in Figure 1. 

Participants were screened and completed a clinical assessment, which included 

the lower extremity motor portion of the Fugl-Meyer(23), Berg Balance Test(24), 

and Dynamic Gait Index(25). Participants then completed three single sessions 

of tDCS and one sham stimulation session. Sessions were blocked randomized 

to control for order effects and separated by a minimum 48-hour washout period. 

Participants completed pre- and post-stimulation testing for each session. 

 

(INSERT FIGURE 1 HERE) 

 

Transcranial direct current stimulation: tDCS was delivered using an EMPI unit 

(Chattanooga; Hixson, TN) and 1.75 cm2 sponges prepped with 0.9% saline 

solution. This created a current density of 0.1 mA/cm2 consistent with 

recommendations.(26) We informed participants they may feel a slight tingling 

sensation that should subside within approximately 60 seconds. Stimulation was 

ramped up to 2mA x at a dose rate of 40mA/min for a total of 20 minutes. 

Experimental conditions administered tDCS with one of the following electrode 

montages illustrated in Figure 2: 1) excitatory (anode over target ipsilesional leg 

M1 area), 2) inhibitory (cathode over target contralesional leg M1 area) or 3) dual 
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(both excitatory and inhibitory montages applied simultaneously to target both leg 

M1 areas). Reference pads for the excitatory and inhibitory montages were 

placed on the ipsilateral shoulder. Modeling work has shown that this type of 

extracephalic pad placement creates a more focal concentration of current under 

the electrode, increasing penetration depth.(27) Studies with healthy individuals 

suggest that extracephalic pad placement has a greater effect on cortical 

excitability (9) and neuromotor output (28) compared to cephalic placement for 

deeper M1 areas of the leg. The dual montage used two EMPI units to deliver 

simultaneous active anodal stimulation over ipsilesional M1 and cathodal 

stimulation over contralesional M1. Reference pads for both units were placed on 

the respective ipsilateral shoulder. In each montage, M1 location was determined 

in a forward seated position approximately 1cm lateral to the vertex and 1cm 

posterior to a hypothetical line between the tragi creating a 2cm gap between the 

cephalic pads in the dual montage configuration. 

 

(INSERT FIGURE 2 HERE) 

 

 Stimulation parameters were set prior to each session by an unblinded 

investigator and participants were fitted with two EMPI units using pad placement 

described in the dual experimental setup to maintain participant and staff blinding 

to active stimulation parameters. Sham stimulation was done by turning on the 

EMPI units to apply 30 seconds of stimulation before manually turning the units 

off by an unblinded investigator (per published guidelines).(29) Participants 
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received tDCS or sham stimulation for 5 minutes in a seated position and then 

continued receiving stimulation while walking for 15-minutes on a treadmill. 

Participants walked at their fastest comfortable speed on the treadmill to provide 

an adequate training stimulus. Faster walking speeds are commonly used in 

rehabilitation programs having been shown to have immediate and long-term 

effects on walking performance for persons post-stroke.(30, 31) Walking was 

paused every 5-minutes to assess cardiovascular response to exercise (i.e. 

blood pressure, heart rate, and activity tolerance). Walking immediately resumed 

unless continuation was contraindicated for safety. A ceiling harness system 

without body-weight support was used to prevent falls or injury. Verbal cues to 

alter gait pattern were not provided. Minimal physical assistance was provided to 

prevent tripping or interruptions in walking and not given during data collection 

trials. 

 

Data analysis: GaitRite (CIR Systems, Inc.; Franklin, NJ) data was used to 

calculate self-selected and fastest comfortable overground gait speeds. 

Participants walked over a 24-foot GaitRite for one trial at their self-selected 

speed and three trials at their fastest comfortable speed during pre- and post-

testing. Participants also walked for three, 30-second trials on a split belt 

instrumented treadmill (Bertec; Columbus, OH) at self-selected and fastest 

comfortable speeds, which did not have to match overground speeds. Ground 

reaction force (GRF) data was sampled at 1000 Hz to derive paretic step ratio 

and paretic propulsion using methods previously described by our lab.(32) 



190 
 

 

Paretic propulsion was calculated by dividing the positive anterior impulse of the 

paretic leg by the anterior impulse of both legs combined.(32) Paretic step ratio 

was calculated from the percentage of stride length performed by the paretic 

step.(33) Paretic step ratio and paretic propulsion were expressed as the 

absolute value of deviation from symmetry (0.5). 

Muscle coordination patterns were quantified for each participant during 

self-selected treadmill walking by extracting modules using a non-negative matrix 

factorization (NNMF) algorithm.(34, 35) Surface EMG was recorded at 2000 Hz 

with bipolar pre-amplified electrodes (Motion Lab Systems; Baton Rouge, LN, 

USA) at the following eight muscle locations bilaterally: tibialis anterior, soleus, 

medial gastrocnemius, vastus medialis, rectus femoris, medial hamstrings, lateral 

hamstrings and gluteus medius.(36) Specific post-processing of EMG signals 

and selection of modules for the paretic leg can be found in Clark et. al., 

2010.(37) 

Statistical analyses were conducted using SAS version 9.4 (SAS Institute 

Inc. Cary, NC) on change scores for gait speed, paretic step ratio and paretic 

propulsion at self-selected and fastest comfortable speeds. A one-way ANOVA 

(or Kruskal-Wallis Test for non-parametric data) examined the main effect of 

active stimulation across all three montages compared to sham for each variable 

of walking performance. Post-hoc testing with multiple t-tests (or Wilcoxon Rank-

Sum tests) were performed to compare the effects of each electrode montage. 

Corrections for multiple comparisons were not performed for this preliminary 
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study. Changes in module number are reported observationally to generate 

hypotheses for future studies. 

 

Results: 

Walking performance: No significant main effect of active stimulation montage 

was observed for overground walking speed at self-selected (ANOVA; F=0.44, 

p=0.723, df=3) or fastest comfortable speed (Kruskal-Wallis; Χ2=2.419, p=0.490, 

df=3). Additionally, no significant effect was found for paretic step ratio at self-

selected (Kruskal-Wallis; Χ2=3.013, p=0.389, df=3) or fastest comfortable speeds 

(Kruskal-Wallis; Χ2=1.357, p=0.716, df=3) or paretic propulsion at self-selected 

(ANOVA; F=0.31, p=0.819, df=3) or fastest comfortable speeds (Kruskal-Wallis; 

Χ2=0.749, p=0.862, df=3). Group descriptive statistics for each variable are 

presented in Table 2. 

 

(INSERT TABLE 2 HERE) 

 

Visual inspection of the data showed a high degree of overall response variability 

to each electrode montage for each measured variable. Table 3 shows each 

participant’s best response to an electrode montage for each variable.  

 

(INSERT TABLE 3 HERE) 
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To examine the possibility participants may exhibit preferential responses to 

specific montages, we compared each participant’s best response to stimulation 

with sham for each variable using t-tests (or Wilcoxon Rank-Sum test for non-

parametric data). We also accepted a higher false positive rate of 10% 

(alpha=0.1) for generating exploratory hypotheses. We observed a significant 

difference and improved fastest comfortable overground gait speed (mean 

difference=0.06 m/s, 95% CI [-0.008 – 0.12], t-test p=0.084) but not self-selected 

(mean difference=0.05, 95% CI [-0.036 – 0.137], t-test p=0.242). There was a 

significant effect for improvement in paretic step ratio (median=0.017, IQR 

[0.023], Wilcoxon; p=0.012) and paretic propulsion (mean difference=0.035, 95% 

CI [-0.006 – 0.077], t-test p=0.090) at self-selected speeds and paretic step ratio 

(mean difference=0.01, 95% CI [-0.002 – 0.02], t-test p=0.095) at fastest 

comfortable speeds. No differences were found for paretic propulsion 

(median=0.002, IQR [0.068], Wilcoxon; p=0.645) at fastest comfortable speeds.  

 

(INSERT TABLE 4 HERE) 

 

Muscle activation patterns: In our sample, 6 participants used 2 modules, 6 

participants used 3 modules and 4 participants used 4 modules for self-selected 

comfortable treadmill walking at baseline. The change in module number for the 

participants in response to tDCS with each electrode montage and sham are 

presented in Table 5.  
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(INSERT TABLE 5 HERE) 

 

Only one of the 6 participants with 2 modules did not change their module 

number after tDCS or sham stimulation. Four of the remaining 5 participants 

increased module number with the excitatory, inhibitory and/or dual electrode 

montage and 4 of the 6 participants increased module number with sham 

stimulation. One 2 module participant increased module number with all 

electrode montages and sham stimulation.  

 One of the 6 participants with 3 modules did not change their module 

number after tDCS or sham stimulation. Two participants did not change their 

module number in response to any tDCS condition but did to sham stimulation. 

One of these individuals improved module number and the other decreased. One 

participant increased module number after the inhibitory montage, one in 

response to the excitatory montage and dual montage and one in response to 

the inhibitory and dual montage. However, all three of these participants also 

increased module number in response to sham stimulation.  

Although module number cannot increase from 4, we observed two 

instances where module number decreased in those with 4 modules at baseline. 

One participant reduced module number to 3 in response to the dual montage 

and sham stimulation, the other reduced module number to 3 in response to the 

inhibitory montage.  

A small positive association was found between a change in module 

number and change in paretic propulsion symmetry (r=0.29; p=0.0251) across all 
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conditions; including sham stimulation. However, this association was not 

present within experimental and sham conditions separately. There were no 

associations between changes in module number and changes in gait speed, 

paretic step ratio or paretic propulsion at self-selected walking speeds when 

examining all tDCS conditions or within each experimental montage group. 

 

Discussion: 

Our aim was to compare the immediate effects of three tDCS electrode 

montages and sham stimulation on post-stroke walking performance. We used a 

double blind, placebo controlled, randomized cross-over design to evaluate 

changes in gait speed, paretic step ratio and paretic propulsion. We found no 

group main effects for any of the electrode montages compared to sham 

stimulation on walking performance immediately following one session of tDCS, 

which was inconsistent with our hypothesis.  

Our lack of a single session effect on post-stroke walking performance is 

comparable with findings from other experiments.(20-22) The immediate effect of 

tDCS with an excitatory or dual electrode montage has not had a significant 

effect on walking performance with the exception of the 6-minute walk and 

Timed-up and Go tests, compared to sham.(20-22) The authors hypothesized the 

large variation in participant response to tDCS likely caused the negative 

findings(20-22) and this heterogeneity continues to be a key challenge in post-

stroke tDCS neuromodulation research.(18) In an exploratory attempt to address 

variation in our sample, we tested the main effect of tDCS by comparing each 
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participant’s best response of the electrode montages to sham stimulation. This 

is based on the assumption that individuals may respond to different montages 

based on unknown characteristics likely arising from the variety of motor network 

impairments result from lesion location, size and cortical reorganization.(22, 38, 

39) A higher false positive rate, alpha=0.1, was accepted to generate hypotheses 

for future research. We found tDCS stimulation had a positive effect on fastest 

comfortable gait speed, paretic step ratio during self-selected and fastest 

comfortable speeds, and paretic propulsion at self-selected speeds. We also 

observed the “best montage” often varied for each measure of walking 

performance (Table 3) within individuals. The lack of a specific pattern lends 

support to the idea that “one-size does not fit all” in tDCS prescription.(40) 

Investigators should consider that different electrode montages may impact 

different features of walking performance on an individual level based on gait 

speed, clinical features like stroke chronicity(40), or presence, type and degree of 

interhemispheric imbalance. It is important to note we did not investigate the 

reproducibility and robustness of our observed effects (i.e., would the electrode 

configuration that shows the best result be the same under a second test). Nor 

did we have a large enough sample to examine whether clinical performance or 

baseline walking performance could predict tDCS response. Previous 

investigations have demonstrated the reproducibility and benefit of personalized 

tDCS electrode montage in language rehabilitation.(41, 42) Our results suggest 

this effect should also be tested in walking rehabilitation and whether markers of 

clinical or baseline walking performance predict participant response. 
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Investigators should screen individuals for inter-hemispheric imbalances using 

TMS in addition to prioritizing assessment of neurophysiological effects from 

tDCS to establish associations between stimulation and neural 

pathophysiological changes.  

Our exploratory comparison of the effect of tDCS on muscle activation 

patterns offers one potential window into the mechanisms by which different 

tDCS electrode configurations may influence walking. Many participants with 

more severe impairment (ie, 2 or 3 modules) were able to move away from mass 

flexion and extension muscle activation patterns in response to tDCS. We 

hypothesize that tDCS can modulate the cortex to enhance voluntary muscle 

activity during walking for some individuals. This is supported by evidence that 

tDCS can increase force production in lower extremity muscles and helps explain 

the association we found between paretic propulsion and improved muscle 

activation patterns.(22, 29, 43) The individual variability we observed could be 

explained by the fact that walking is also influenced by subcortical structures. 

Thus, individuals with more severe cortical impairments may have a greater 

response to tDCS. However, like our findings related to the best response 

condition, we cannot be certain that we have captured a true effect since we did 

not test the reproducibility of our findings and we have a very small sample for 

each module number at baseline limiting our statistical power. We recommend 

that more research examine the effects of tDCS on muscle activation patterns 

since they can provide a mechanistic understanding for biomechanical changes 

in task performance.(44)  
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Finally, there are a few methodological choices in our design that may 

have impacted the results. First, we are unable to know whether current was 

shunted during the dual montage experimental condition. It is possible that 

current may have crossed between the two cephalic pads creating a different 

stimulation environment than hypothesized. Second, our washout period of 48 

hours may not have been sufficiently long enough. There is precedence for a 48-

hour washout in post-stroke tDCS literature(3, 11) but no formal investigation into 

the optimal length of time has been done and recent recommendations call for a 

minimum 1-week period(26). Lastly, the robust response to sham for many 

subjects suggests that twenty minutes of walking may provide a neuromodulating 

effect as potent as a single tDCS session and appears to have been an active 

ingredient in our experiment. Ojardias et. al.(21) saw a similar response to 

walking on walking performance in individuals post-stroke after examining a 

single session of tDCS and there is recent evidence to support that moderate 

intensity aerobic activity can increase neurophysiological markers of corticospinal 

excitability.(45-47) An intriguing question is whether the increase in corticospinal 

excitability that accompanies tDCS has a similar mechanism to the increase with 

walking practice, and whether the effects are additive when the two stimuli are 

combined. Future research should be designed to further investigate the effects 

of walking practice on excitability, with and without concomitant tDCS.  

In summary, our observation that individuals may have an optimal tDCS 

electrode montage to elicit improvements in walking performance is perhaps the 

most important finding of this study. The possibility that individuals post-stroke 
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likely need personalized stimulation parameters has important implications for 

hypothesis generation and future tDCS studies attempting to optimize tDCS 

prescription. It is imperative for investigators to employ research methods to best 

understand how electrode placement will impact walking performance 

considering clinical presentation corticomotor response, neuroanatomy and 

tractography to address heterogeneity in participant response to tDCS.  
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Figure 1: Timeline of Experimental Procedures 

 

 

Participants completed clinical testing during enrollment. For each of the four 

experimental sessions (3 active and one sham), participants completed pre-

testing followed by active tDCS or sham stimulation with treadmill walking and 

concluded with post-testing.  
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Figure 2: Diagram of experimental tDCS montages 

 

Excitatory Montage: Anode pad was placed over the target ipsilesional M1 leg 

area, reference pad was placed on the ipsilateral shoulder 

Inhibitory Montage: Cathode pad was placed over the target contralesional M1 

leg area, reference pad was placed on the ipsilateral shoulder. 

Dual Montage: Combination of the Excitatory and Inhibitory montages using 2 

tDCS units with one delivering the excitatory (anode placed over the target 

ipsilesional M1 leg area) and the other inhibitory (cathode pad was placed over 

the target contralesional M1 leg area) currents.  

 

In each montage the cephalic pad was placed 1cm lateral to the vertex and 1 cm 

posterior to an imaginary line between the tragi. This created a 2cm gap between 

cephalic electrodes in the Dual montage. 
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Table 1: Participant Demographics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 n Descriptive Statistics 
Age (years)  
mean (SD) [range] 16 59 (11.5) [30-77] 

Sex (male) 
frequency (%) 16 11/16 (68.8%) 

Hemiparetic side (right) 
frequency (%) 16 9/16 (56.3%) 

Chronicity (months) 
mean (SD) [range] 16 54.56 (76.5) [10-325] 

FM-Total LE 
mean (SD) [range] 16 23.94 (5.78) [13-32] 

FM-Synergy 
mean (SD) [range] 16 15.56 (4.15) [8-21] 

Dynamic Gait Index 
mean (SD) [range] 15 16 (4.55) [7-22] 

Berg Balance Scale 
mean (SD) [range] 11 46.91 (8.94) [25-55] 

Gait Speed  
(self-selected) (m/s) 
mean (SD) [range] 

16 0.82 (0.33) [0.23-1.43] 

Paretic Step Ratio 
mean (SD) [range] 16 0.51(0.06) [0.37-0.63] 

Modules 
mean (SD) [range] 16 2.94 (0.85) [2-4] 
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Table 2: Descriptive statistics for change scores as a result of each tDCS 

electrode montage and sham stimulation 

 

 

Statistics are presented as mean (standard deviation) 

ǂ Indicates median (interquartile range) 

Gait speed was calculated from overground walking trials.  

Paretic Step Ratio and Paretic Propulsion were calculated from treadmill walking 

trials. 

  

 tDCS Experimental Condition 
Sham Excitatory Inhibitory Dual 

Self-
Selected 

Gait Speed 
m/s 

0.086 
(0.132) 

0.043 
(0.128) 

0.068 
(0.092) 

0.085 
(0.109) 

Paretic 
Step Ratio 

0.005 
(0.012) 

0.009 
(0.022) 

0.003 
(0.032) ǂ 

0.002 
(0.032) 

Paretic 
Propulsion 

0.015 
(0.061) 

0.006 
(0.069) 

0.027 
(0.043) 

0.023 
(0.074) 

Fastest 
Comfortable 

Gait Speed 
m/s 

0.059 
(0.051) 

0.042 
(0.134) 

0.020 
(0.081) 

0.036 
(0.100) ǂ 

Paretic 
Step Ratio 

-0.003 
(0.012) 

-0.000 
(0.017) 

-0.005 
(0.019) 

-0.020 
(0.0.28) ǂ 

Paretic 
Propulsion 

0.012 
(0.056) 

-0.003 
(0.041) ǂ 

-0.007 
(0.048) ǂ 

0.005 
(0.040) 



210 
 

 

Table 3: Individual variability in response to tDCS stimulation based on electrode 

montage 

 
 Self-Selected Speed Fastest Comfortable Speed 

Participant 
Number 

Gait 
Speed 

Paretic 
Step 
Ratio 

Paretic 
Propulsion 

Gait 
Speed 

Paretic 
Step 
Ratio 

Paretic 
Propulsion 

1 2 1 3 1 2 2 
2 2 3 1 2 1 3 
3 2 1 2 1 1 3 
4 3 1 2 3 2 1 
6 3 2 1 3 3 1 
7 3 3 3 1 1 1 
8 2 2 2 2 2 1 
9 3 3 2 3 3 3 
10 3 3 2 3 1 1 
11 3 1 × 1 3 × 
12 3 2 2 1 1 3 
13 1 1 3 2 3 1 
15 1 1 1 3 1 3 
16 3 2 1 2 1 1 
17 1 1 2 1 2 2 
18 3 1 3 1 1 2 

 
Numeric codes for each variable indicate the montage (electrode placement and 

stimulation parameters) that elicited the best response for each participant. 

1 = Excitatory montage (color = light orange) 

2 = Inhibitory montage (color = light blue) 

3 = Dual montage (color = white) 

× Missing data due to poor GRF quality during data collection. 
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Table 4: Descriptive statistics for change scores comparing the effect of tDCS 

compared to sham stimulation using a participant’s best response to each of the 

three electrode montages 

 

 
Sham Pooled Best 

Response to tDCS 

Self-Selected 

Gait Speed 
m/s 0.086 (0.132) 0.136 (0.106)  

Paretic Step 
Ratio 0.005 (0.019) ǂ 0.017 (0.023) ǂ ** 

Paretic 
Propulsion 0.015 (0.061) 0.051 (0.049) * 

Fastest 
Comfortable 

Gait Speed 
m/s 0.059 (0.051) 0.114 (0.111) * 

Paretic Step 
Ratio -0.003 (0.012) 0.007 (0.019) * 

Paretic 
Propulsion 0.002 (0.068) ǂ 0.026 (0.053) ǂ 

 

** Indicates statistical significance at p<0.05. 

* Indicates statistical significance at p<0.10. 

Statistics are presented as mean (standard deviation)  

ǂ Indicates median (interquartile range) 

Pooled Best Response was created by pooling each participant’s best response 

to any of the tDCS electrode montages for a given variable. 

Gait speed was calculated from overground walking trials.  

Paretic Step Ratio and Paretic Propulsion were calculated from treadmill walking 

trials. 
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Table 5: Individual variability in muscle activation pattern response to tDCS 

stimulation 

 

 Change in Module Number 

Participant 
Number 

Baseline 
Module 
Number 

Excitatory Inhibitory Dual Sham 

1 2 0 1 2 2 
7 2 1 1 0 2 
11 2 0 0 0 0 
12 2 0 2 1 2 
16 2 1 0 1 0 
17 2 1 1 1 1 
3 3 0 1 0 1 
4 3 1 0 1 1 
8 3 0 0 0 1 
10 3 0 0 0 -1 
15 3 0 1 1 1 
2 4 0 0 0 0 
6 4 0 0 0 × 
9 4 0 × -1 -1 
13 4 0 0 0 0 
18 4 0 -1 0 0 

 

× Missing data due to poor EMG quality during data collection. 



213 
 

 

CHAPTER 5 
 

CONCLUSION 

 

5.1 CONCLUSION 

 Personalized rehabilitation holds the promise of improved health 

outcomes because it can account for individual differences between people 

(Denny & Collins, 2021). Addressing individual differences has been a prominent 

barrier for advances in stroke rehabilitation that has typically been relegated to a 

“one size fits all” approach because of the lack of evidence-based tools for 

personalized rehabilitation (Cramer et al., 2017). As stroke rehabilitation 

embraces personalized approaches clinicians and researchers should use and 

generate evidence that addresses individual variability to improve outcomes by 

providing the right treatment to the right person at the right time. The work in this 

dissertation provides a body of evidence for personalized stroke rehabilitation by 

addressing three research needs identified by StrokeNet for understanding 

individual variability.  

Part I was designed to show the benefit of standardized outcome 

measurement on personalized stroke rehabilitation. Our work demonstrated how 

applications of item-psychometrics can give meaningfulness to standard outcome 

measurement scores. We used an ability map for the FGA to show how clinicians 
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can use information about item difficulty hierarchies and patient response 

patterns to inform treatment planning and plan of care development for an 

individual patient. We also used item-level psychometrics generated by a Rasch 

analysis to demonstrate how error is different for different portions of a 

measurement scale and how that information can be used to evaluate change 

more precisely at the individual-level. 

Part II was an initial step towards identifying a biomarker for walking-

specific motor control recovery. Biomarkers need to be linked with underlying 

mechanisms for pathophysiology. We showed how modules, a measure of 

muscle coordination (i.e., walking-specific motor control) during walking, is 

strongly associated with observable biomechanical measures that are related to 

key functional tasks for successful walking. Our findings suggests that modules 

may have an expressed biomechanical signature of that could be used as a 

biomarker for walking-specific motor control recovery. This is important for stroke 

rehabilitation because modules share a strong association with neural damage 

and differences in motor recovery among individuals. 

Part III demonstrated that more emphasis should be placed on evaluating 

how manipulation of treatment parameters will influence individual treatment 

response. We showed that the type of tDCS montage may to be a source of the 

high individual variability in treatment response to non-invasive brain stimulation. 

Our findings illustrate the importance of examining treatment parameters to 

provide the best evidence for individualized prescription.    
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5.2 FUTURE DIRECTIONS 

 The collection of studies in this dissertation have provided a “road map” 

for future studies in the areas of standardized measurement, biomarker 

development, and evaluating variability in treatment response.  

 Many of the applications from item response theory have yet to be tested 

in a pragmatic way. We have demonstrated how ability maps can inform clinical  

decision making to elevate personalized rehabilitation, but future studies need to 

examine whether using ability maps have an impact on clinical outcomes. Future     

pragmatic trials could be designed to evaluate stroke rehabilitation outcomes 

between traditional practice and a cohort using ability maps. Alongside this study, 

investigators could survey physical therapists to determine whether ability maps 

addressed many of the previously reported barriers to standardized outcome 

assessment that we theorized the maps would. Based on our work in Part I, we 

make the argument that cMDCs will improve clinical care by preventing 

misclassification of patients’ change status. We also argue that cMDCs would 

reduce sample size needs and prevent Type II errors in research studies. 

However, more work is needed to determine whether both would be the case. 

We recommend using simulation studies to examine the differences between the 

MDC and cMDC on sample size and Type II error rates, as well as 

retrospectively examine change data from large trials to see what proportion of 

individuals would have been misclassified under the cMDC approach. 
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 Biomarkers for stroke recovery hold a great deal of promise. However, it 

has been difficult to identify biomarkers for functional tasks, like walking. Our 

findings in Part II take an important step towards identifying a biomarker for 

stroke recovery of walking-specific motor control using modules and 

biomechanical variables. Our findings provided more evidence to strengthen the 

theory that modules share a mechanistic link with observable, measurable 

biomechanical variables during healthy walking. However, we limited ourselves 

to sagittal plane mechanics and found that anterior-posterior leg angle and leg 

length only partially captured swing mechanics. Future work should attempt to 

expand on the measures we used in our design to create a more comprehensive 

biomechanical signature for each module. Specific examples include expanding 

the analyses to include frontal plane biomechanical variables and measures of 

leg velocity or acceleration to better capture swing phase mechanics. 

Biomechanical variables have always held interest as a potential marker for 

stroke walking performance because deviations in movement patterns can often 

be observed and used as treatment targets in rehabilitation. However, there is 

not a well understood framework for linking biomechanics back to the level of 

stroke pathology that would help differentiate individuals for more personalized 

treatment. Modules are a potential way to solve this problem because they 

capture individual differences in motor recovery linked with mechanisms of 

underlying neural pathology. Once a comprehensive biomechanical signature is 

established for each module, future work that can explore module and 

biomechanical variable associations in stroke pathology. Specifically, studies can 
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examine how changes in modules post-stroke are related to changes in 

biomechanical signatures and whether altered signatures can be predictive of 

modules or walking-specific motor control. Lastly, future prospective studies can 

examine whether treatments designed to treat abnormal biomechanical 

signatures result in changes to modules. 

 Finally, there is still more work needed in the field of intervention 

prescription for stroke rehabilitation. Individual variability in treatment response 

continues to impede progress for tDCS to be used regularly in clinical practice. 

Our findings demonstrate that individual variability could be a result of limited 

knowledge about how manipulation of treatment parameters influence outcomes. 

Future studies should examine the effects of individual parameters on outcomes 

and attempt to replicate those effects by re-treating or testing individuals based 

on findings from a test period. For example, with respect to electrode montage in 

tDCS, future studies would have a second arm of the study where individuals 

received their “optimal” prescription and evaluate whether their “optimal” 

prescription reproduced their previous results. Secondly, our results point to the 

importance for intervention prescription to have a theoretical mechanistic link to 

pathology that can be tested. This is important because a common framework for 

relating individual stroke neuropathology to recommended interventions is still a 

bit disparate. We theorized pad placement montages in our design based on 

predicted neural damage, however, our study would have been strengthened by 

testing our underlying hypotheses for each montage. Measures of neural 

physiology and brain imaging could have been used to test whether our 
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proposed neuropathology was present and whether the tDCS prescription has an 

impact on the underlying neuropathology. Another potential direction is to 

examine the effect of tDCS on impairment measures that reflect changes in 

individual neuropathology. This can be particularly useful for clinicians because 

impairment measures may reveal a phenotypic expression of neuropathology 

that serves to identify treatment targets for a specific individual. Our study 

examined the effects of tDCS on modules which is an impairment measure for 

walking-specific motor control. Our results suggested that tDCS may have an 

acute effect on modules and that treatment response may be dependent on 

individual variability in walking-specific motor control impairment. However, the 

robustness of our findings needs to be investigated. Still, modules may serve as 

an impairment measure that can be used to understand variability between 

individuals and inform treatment prescription. Future studies should keep this 

conceptual model of approaching study design for interventions to strengthen our 

ability to differential between individuals and personalize treatment prescription.
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