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We show how one can be led from considerations of quantum steering to Bell’s theorem. We begin with Einstein’s
demonstration that, assuming local realism, quantum states must be in a many-to-one (“incomplete”) relation-
ship with the real physical states of the system. We then consider some simple constraints that local realism
imposes on any such incomplete model of physical reality, and show they are not satisfiable. In particular,
we present a very simple demonstration for the absence of a local hidden variable incomplete description of nature
by steering to two ensembles, one of which contains a pair of nonorthogonal states. Historically this is not how
Bell’s theorem arose—there are slight and subtle differences in the arguments—but it could have been. © 2015
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1. INTRODUCTION

In this paper we attempt a little revisionist history. In particular,
we show how a very simple argument establishing the impos-
sibility of a local realistic description of quantum theory—Bell’s
theorem—was lingering on the edge of Schrödinger’s and
Einstein’s consciousness in 1935–36.

2. EINSTEIN’S LESS FAMOUS ARGUMENT FOR
INCOMPLETENESS OF QUANTUM MECHANICS

In June of 1935 Einstein wrote to Schrödinger [1] bemoaning
that theEinstein–Podolky–Rosen (EPR) paper [2] “buried in the
erudition” the simplicity of the point hewas trying tomake [3,4].
In this letter he defines completeness of a state description as

…Ψ is correlated one-to-one with the real state of the real
system…

and a separation hypothesis between systems enclosed in differ-
ent boxes as

… the second box, along with everything having to do with its
contents, is independent with regards to what happens to the
first box (separated partial systems)….

For our purposes it is important only that the separation
hypothesis, together with the assumption of “real states of real
systems” implies local realism, although it potentially encom-
passes more.

Einstein goes on to consider entangled particles A and B,
and to point out that, depending on the choice of kind of
measurement on A (the type of observable, not its outcome),
we ascribe different state functions ΨB , ΨB to system B.

The real state of B thus cannot depend upon the kind of mea-
surement I carry out on A. (“Separation hypothesis” from
above.) But then, for the same [real] state of B, there are two
(in general arbitrarily many) equally justified [quantum states]
ΨB , which contradicts the hypothesis of a one-to-one or com-
plete description of the real states.

Einstein’s description does not, in fact, carefully distinguish
the ensemble of quantum states that is obtained on B for a sin-
gle fixed measurement on A and the different ensembles of
quantum states that correspond to distinct choices of measure-
ment on A [5,6]. In a moment we will emphasize why the
choice of different (and incompatible) measurements on A
was a necessary part of his argument (and amusingly he points
out, contra-EPR, that he “doesn’t give a damn” whether the
states ΨB , ΨB are eigenfunctions of observables on B!), but first
let us note that this description of all the possible ensembles
achievable in such experiments was subsequently carefully char-
acterized by Schrödinger who, within a year, proved the quan-
tum steering theorem [7–9]:

Theorem 1. Given an entangled state jψABi of two systems A,
B, a measurement on system A can collapse system B to the ensem-
ble of states fjϕiig with associated probabilities pi, if and only if
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ρB �
X
i
pijϕiihϕij;

where ρB � TrAjψABihψABj is the reduced state of system B.
The reason two (incompatible) measurements are necessary

for Einstein’s argument for incompleteness is that if one con-
siders only a single measurement on A it is trivially possible to
maintain a one-to-one correspondence between a real state λ of
system B and the quantum state: in this setting, the steering
statistics for an entangled state on AB is indistinguishable from
those of a mixture of quantum/real states fjϕii↔λig for B,
arranged such that the measurement on A needs reveal only
which member of the ensemble pertains. By choosing to steer
to one of two different ensembles of quantum states fjϕiig,
fjϕ 0

iig with at least some elements distinct, this is no longer
possible.

Einstein concluded that, assuming local realism, many dif-
ferent quantum states must be associated with any given real
state of B. Note, however, that since these different quantum
states for B are operationally distinct, it clearly cannot be the
case that those different quantum states are all only ever asso-
ciated with that one single real state of B. They must somehow
differ in the ensemble of real states they correspond to. Such a
difference can be reflected either in terms of the members of the
ensemble (i.e., sometimes being associated with completely dif-
ferent real states) or in terms of the frequencies (probabilities)
over the ensemble, or both.

In the EPR, paper the initial state of AB used is maximally
entangled, and the ensembles steered to are those of orthogonal
quantum states (position or momentum eigenstates). For this
steering scenario it is well known (see, e.g., [11]) that the
Wigner function provides a local (but as per Einstein’s argu-
ment, necessarily incomplete) description of reality. We begin
by showing that steering between two ensembles of orthogonal
states for a qubit also can be explained within such a local real-
istic theory.

3. STEERING BETWEEN TWO ENSEMBLES OF
ORTHOGONAL STATES

Let us formalize Einstein’s conclusion and its implications, sim-
plifying to the easiest case possible: two different measurements
on A that steer the quantum state of a qubit B to ensembles
fjxi; jX ig, fjyi; jY ig, where jxi; jX i; jyi; jY i are all different,
hxjX i � 0 � hyjY i, and the members of each ensemble are
equally likely. As Schrödinger had proven, this is possible
for any entangled state jψABi for which

ρB � 1

2
jxihxj � 1

2
jX ihX j � 1

2
jyihyj � 1

2
jY ihY j: (1)

In a realistic description, every quantum state corresponds to
a probability distribution over a set of real states λ. When an
entangled quantum state is prepared on AB, let ν�λ� denote the
ensemble of real states for B. It must be the case that ν�λ� can
be resolved into the steering ensembles as

ν�λ� � 1

2
x�λ� � 1

2
X �λ� � 1

2
y�λ� � 1

2
Y �λ�; (2)

where μ�λ�, μ � x; X ; y; Y denotes the probability density over
real states corresponding to the quantum state jμi. Einstein’s

argument then runs that while x�λ�; X �λ� could potentially
have disjoint support, thereby still allowing for the possibility
each λ is associated with a unique quantum state, the incom-
pleteness of quantum theory is assured by the fact that at a
given λ for which (say) x�λ� is nonzero, one or other of
y�λ�, Y �λ� must be nonzero.

Now, Einstein (explicitly) and Schrödinger (at least for the
sake of argument) assumed that a complete description of
reality is possible, and that in such a theory the quantum
state would therefore be incomplete in the precise sense
Einstein defined [12]. Even for the simple case of steering
between two ensembles captured by the generic decomposi-
tion of Eq. (2) this yields some extra consistency conditions
that need to be satisfied. For example, it must be possible to
find a probability density ν�λ� over some space of real states
that can be decomposed into probability densities x�λ�, X �λ�
that are disjoint, because jxi and jX i are orthogonal.
Denoting by Sμ the support of the probability density
μ�λ� we have that

Sν � Sx [ SX � Sy [ SY : (3)

In the original EPR argument, the scenario considered in-
volves steering of B between the ensembles of position and mo-
mentum, and then analysis of the conclusions that can be
drawn if a subsequent position/momentum measurement is
performed on B. Similarly, here we analyze the restrictions
that the incomplete description of reality must obey if
measurements of the projectors onto the ensemble—i.e.,
fjxihxj; jX ihX jg or fjyihyj; jY ihY jg—are performed. Such
consideration shows that we must also obey consistency con-
ditions of the formZ

Sx
dλy�λ� � jhxjyij2 � α; (4)

to conform with the probability of obtaining the outcome
jxihxj if a measurement in the basis jxi; jX i is performed
on B after the quantum state has been steered to jyi.

It is useful to identify four disjoint regions of the space of
real states: S1 � Sx \ Sy, S2 � Sx \ SY , S3 � SX \ Sy, and
S4 � SX \ SY , and to use the notation

μj �
Z
Sj
dλμ�λ�; j � 1;… ; 4: (5)

Since jhxjyij2�jhX jY ij2�α and jhxjY ij2�jhX jyij2�
1−α, from equations of the form of Eq. (4) we must have

x1 � y1 � X 4 � Y 4 � α;

x2 � y3 � X 3 � Y 2 � 1 − α;

with all other values 0 or 1.
By integrating Eq. (2) over the appropriate regions we

identify a final set of consistency conditions:

νj �
1

2
xj �

1

2
X j �

1

2
yj �

1

2
Y j; j � 1;… ; 4: (6)

These are satisfied by taking ν1 � ν4 � α∕2, while
ν2 � ν3 � �1 − α�∕2.

So far, then, all of these essentially trivial consistency
conditions—which any local incomplete description of reality
must obey—are easily complied with.
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In Section 5 we will show that, if we add the possibility of an
extra measurement on A being used to steer to a third ensemble
of orthogonal states we find a contradiction, indicating any real-
istic theory explaining quantum theory must be nonlocal—
Bell’s theorem. However, we now turn to a proof that yields
the same conclusion, but uses steering between only two en-
sembles, one of which contains a pair of nonorthogonal states.

4. STEERING BETWEEN TWO ENSEMBLES,
ONE OF WHICH CONTAINS NONORTHOGONAL
STATES, IMPLIES THE UNTENABILITY OF
LOCAL REALISM

To show that incompleteness cannot save local realism, we now
consider the possibility of steering a qubit between two ensem-
bles, where one of the ensembles contains nonorthogonal
states. Most probably Einstein, but certainly Schrödinger, knew
that this was possible—it is consistent with Einstein’s calcula-
tion summarized in Endnote [6] and is mentioned explicitly in
Schrödinger’s proof of the steering theorem (he limits only to
ensembles wherein the states are linearly independent).

Consider then steering the state ρ depicted in Fig. 1(a) either
to its eigen-ensemble fjxi; jX ig or to the ensemble fjai; jbig
that is an equal mixture of nonorthogonal states jai �
cos θ

2 jxi � sin θ
2 jX i and jbi � cos θ

2 jxi − sin θ
2 jX i, where

θ ∈ �0; π2�. In the incomplete theory these quantum states
correspond to preparation of real physical states according

to probability distributions μ�λ�, μ � x; X ; a; b, which
have support on sets labeled Sμ. Local realism implies
Sx [ SX � Sa [ Sb; moreover, because jxi and jX i are
orthogonal, Sx \ SX � ∅, while Sa and Sb can overlap.
This is depicted in Fig. 1(b) where a convenient labeling for
various regions of support is shown.

Once again, using the notation in Eq. (5), we have some
simple consistency conditions; for example, normalization
imposes

X 4 � X 5 � X 6 � 1: (7)

Consider the case that the system has been steered to the
quantum state jX i, and we wish to compute the probability
of obtaining a measurement outcome jaihaj or alternatively
of jbihbj. A quick glance at Fig. 1 leads naturally to the
constraints

X 4 � X 5 � jhajX ij2 � sin2
θ

2
;

X 5 � X 6 � jhbjX ij2 � sin2
θ

2
; (8)

and for θ ∈ �0; π∕2� these are readily seen as incompatible
with Eq. (7). For example, summing these two equations
and inserting the normalization constraint implies
1� X 5 � 2 sin2 θ∕2 � 1 − cos θ, implying X 5 < 0. As X 5

is the integral of a probability density it must be positive; in
the face of this it is clear that the assumption of local realism,
upon which the whole discussion is premised, must be false—
this is Bell’s theorem.

A. The Subtlety of Deficiency

The steering-based proof of Bell’s theorem we have just pre-
sented has actually made a subtle assumption. Let us reconsider
the case wherein the system has been steered to the quantum
state jX i and we wish to compute the probability of obtaining a
measurement outcome jaihaj. Above we assumed this imposes
X 4 � X 5 � jhajX ij2 � sin2 θ∕2. However, while it is cer-
tainly the case that all real states λ in Sa must deterministically
yield the outcome jaihaj, any real states in Sb can potentially
also yield this outcome, because jai and jbi are not orthogonal.
Within regions 3 and 6 they need not even do so determinis-
tically, because 0 < jhajbij < 1. That is, the incomplete real-
istic theory may have a property defined in [14] as deficiency. In
fact, for the case of three- and higher-dimensional quantum
systems, it follows [14] from the Kochen–Specker theorem that
any realistic theory (local or otherwise) must be deficient, that
is, it must be the case that the set of real states that a system,
prepared in quantum state jai, may actually be in, is necessarily
strictly smaller than the set of real states that would reveal the
measurement outcome jaihaj with some finite probability.

To see that allowing the local realistic theory to be deficient
does not save it from Bell’s theorem, we formally capture the
possibility of deficiency by defining a response function or indi-
cator function ξa�λ�, which for every λ is simply the probability
that a particular real state yields the jaihaj outcome. Since
0 ≤ ξa�λ� ≤ 1, we must have

0 ≤ X �a�
6 �

Z
S6
dλξa�λ�X �λ� ≤

Z
S6
dλX �λ� � X 6; (9)

Fig. 1. (a) Two ensembles of ρ. (b) The space of real states,
with disjoint regions of support labeled 1–6 such that Sx �
S1 [ S2 [ S3, SX � S4 [ S5 [ S6, Sa � S1 [ S2 [ S4 [ S5, and
Sb � S2 [ S3 [ S5 [ S6.
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and so we obtain generalizations of Eq. (8):

X 4 � X 5 � X �a�
6 � sin2

θ

2

X �b�
4 � X 5 � X 6 � sin2

θ

2
: (10)

Once again, Eqs. (7) and (10) cannot be simultaneously
satisfied. For example, substituting Eq. (7) into Eq. (10) gives

X 6 � X �a�
6 � cos2

θ

2
; (11)

X 4 � X �b�
4 � cos2

θ

2
; (12)

and so

X 4 � X 6 ≥ 2 cos2
θ

2
> 1; for θ ∈ �0; π∕2�; (13)

which violates normalization.

5. STEERING BETWEEN THREE ENSEMBLES
OF ORTHOGONAL STATES

We now return to the steering of Section 3, and show that
steering among three ensembles of orthogonal states can
sometimes violate the consistency conditions. For simplicity
presume for the moment that the third ensemble of
orthogonal states fjzi; jZ ig is such that the state
jzi � �jxi � jyi�∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�1� α�

p
, i.e., jzi “bisects” the states

jxi, jyi. Then

jhzjxij2 � jhzjyij2 � jhZ jX ij2 � jhZ jY ij2 � 1� ffiffiffi
α

p
2

� β;

the last term being the quantum mechanical Born-rule predic-
tion. For the same regions of support Si defined in Section 3,
we now deduce consistency conditions

z1 � z2 � z1 � z3 � Z 3 � Z 4 � Z 2 � Z 4 � β; (14)

z3 � z4 � z2 � z4 � Z 1 � Z 2 � Z 1 � Z 3 � 1 − β: (15)

Clearly z2 � z3 and Z 2 � Z 3. We must also have

νj �
1

2
zj �

1

2
Z j j � 1;…; 4: (16)

There is no way to satisfy all these equations, subject to the
requirement zj; Z j ≥ 0. For example, an independent set of the
above equations is

z1 � z2 � Z 2 � Z 4 � β; (17)

z2 � z4 � Z 1 � Z 2 � 1 − β; (18)

z1 � Z 1 � α: (19)

From these we obtain

Z 1 � α − z1 � α − �β − z2� � α − β� �1 − β − z4�
� 1 − 2β� α − z4;

which, using β � 1
2
�1� ffiffiffi

α
p �, gives Z 1 � α −

ffiffiffi
α

p
− z4. This

is manifestly negative for any 0 < α, z4 < 1.

Once again, the failure to keep the incomplete realistic mod-
els consistent indicates the initial assumption of local realism is
unviable.

It is interesting to note that, if the states fjxi; jyi; jzig had
been chosen to be the eigenstates of the Pauli operators σx , σy,
σz , then α � β � 1∕2 and the consistency conditions would be
satisfiable. Contrast this with the fact that the inconsistency
obtained when jzi bisects jxi, jyi holds regardless of how close
these latter two (distinct) states are. As such, we see that “how
far apart” the triples of states are does not capture the difficulty
or otherwise of reproducing their steering properties in an
incomplete model of physical reality.

To investigate this further we have analyzed the possible tri-
ples of overlaps

α � jhxjyij2; β � jhxjzij2; γ � jhyjzij2; (20)

which do or do not allow for a proof of the untenability of local
realism by violating (or otherwise) the consistency conditions
above. A mix of analytical and numerical evidence makes us
confident that the answer takes the particularly pleasing form
given by Conjecture 1.

Conjecture 1. The triple of overlaps α; β; γ demonstrate a vio-
lation of local realism if and only if the point �α; β; γ� does not lie
in the convex hull of the four points �1; 0; 0�, �0; 1; 0�,
�0; 0; 1�, �1; 1; 1�.

We have also performed some preliminary forays into the
question of how steering among four ensembles may differ.
One thing we noticed in this regard is that, if we look at
steering performed on a Werner state (mixture of maximally
entangled and maximally mixed state), then the lowest prob-
ability of the maximally entangled state for which violation
of local realism can still be demonstrated is 4/5 when steering
among three ensembles and 1∕

ffiffiffi
2

p
when steering among four

ensembles.

6. OUTLOOK

In deriving Bell’s theorem from steering, a number of observa-
tions crop up that merit further investigation.

One intriguing feature is that we never make use of the
assumption μ�λ� ≥ 0; rather, positivity was required only for
integrals of the distributions over certain regions within the
space of real states. Thus the proof rules out certain options
for quasi-representations of the quantum state, as well.

A second observation concerns the deficiency property
introduced in Section 4. It has been shown [14] that
measurement-outcome contextuality [13] manifests itself in in-
complete models of reality via deficiency. This in turn makes it
strictly impossible for such a model to obey conditions of the
form in Eq. (4)—i.e., all the nonorthogonality of quantum
states cannot be attributed to classical nonorthogonality of their
associated probability distributions. Perhaps combining this
observation with steering of entangled systems of dimension
three or higher can yield different steering-type proofs that local
realism is untenable.

Finally, the proof in Section 4 did not require an equation of
the form

ν�λ� � px�λ� � �1 − p�X �λ� � 1

2
a�λ� � 1

2
b�λ� (21)
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to hold. Not only did the probabilities with which elements of
the ensemble appear play no role, the proof would have still
gone through even if

px�λ� � �1 − p�X �λ� ≠ 1

2
a�λ� � 1

2
b�λ�; (22)

as long as the supports of the distributions satisfied
Sx [ SX � Sa [ Sb. Thus, only a weaker assumption than
preparation noncontextuality as defined by Spekkens [15] is
needed. It may be interesting, therefore, to consider further
a weaker version of preparation contextuality, one defined
solely in terms of the equivalence, or otherwise, of the supports
of distributions that convexly combine to the same mixed state,
and not an exact equivalence of the convexly combined prob-
ability densities themselves. In this regard we should mention
that Barrett has shown [23] that standard bipartite proofs of
Bell’s theorem can be converted into a proof of preparation
contextuality.

7. CONCLUSIONS

Before concluding, let us mention some relevant work. The
proof in Section 4 is readily extended to show nonlocality
for all nonmaximally entangled pure states, reproducing the
conclusions of Gisin, Popescu, and Rohrlich [16, 17].
Although our proofs are algebraic and thus reminiscent of
Greenberger–Horne–Zeilinger (GHZ) [18] and Hardy [19]
type arguments against local realism, the proof in Section 5
would seem closest to Mermin’s exposition of Bell inequalities
in [20]. Harrigan and Spekkens [21] perform a more careful
and thorough exposition of Einstein’s argument above for
incompleteness and the relationship to locality. In [22],
Werner presents an alternative route that could have led
Einstein to Bell’s argument.

Finally, one may wonder whether the quantum state can still
be argued to be incomplete in Einstein’s sense above even when
separability is given up. While it is in fact possible to obey all
consistency conditions generalizing those above for such an in-
complete realistic theory [24], it turns out that an assumption
of separability for product quantum states leads to the exact
opposite conclusion, namely, that the quantum state must
be complete [25].

In conclusion, if Einstein and Schrödinger had probed only
a little further into whether an incomplete description of physi-
cal reality can actually fully explain the gedanken experiment
that they had used to rule out completeness of quantum theory,
perhaps the tension among locality, realism, and quantum
theory would have been brought to the fore significantly earlier.
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