CORE

Inhomogeneous condensation in nuclear matter*

Achim Heinz, Francesco Giacosa, and Dirk H. Rischke
ITP, Frankfurt am Main, Germany

Introduction

Spontaneous breaking of chiral symmetry is a nonperturbative phenomenon in the QCD vacuum as well as at low temperature and densities. Hadronic theories of the low energy regime have to take this into account [1]. Chiral symmetry breaking appears in the hadron spectrum as a mass splitting of so-called chiral partners.

A re-occurring topic in the literature is the possibility that the order parameter for the chiral transition is a function of spatial coordinate [2]. A fruitful Ansatz to describe inhomogeneous condensation is the chiral-density wave (CDW).

We re-investigate the question of inhomogeneous condensation at nonzero density in the extended Linear Sigma Model (eLSM) where the baryons are introduced as parity doublets [3, 4]. The eLSM successfully describes hadron vacuum phenomenology both in the meson and baryon sector, it is therefore a natural choice for non-zero density studies including the CDW [5].

Non-zero density study

In the two-flavor case, $N_{f}=2$, the scalar and pseudoscalar mesons are described by the matrix

$$
\Phi=\left(\sigma+\imath \eta_{N}\right) t_{0}+\left(\vec{a}_{0}+\imath \vec{\pi}\right) \cdot \vec{t}
$$

and the vector and axial-vector mesons by

$$
V^{\mu}=\omega^{\mu} t_{0}+\vec{\rho}^{\mu} \cdot \vec{t}, \quad A^{\mu}=f_{1}^{\mu} t_{0}+\vec{a}_{1}^{\mu} \cdot \vec{t}
$$

where $\vec{t}=\vec{\tau} / 2$, with the vector of Pauli matrices $\vec{\tau}$, and $t_{0}=\mathbf{1}_{2} / 2$. The model is invariant under the chiral group $S U(2)_{R} \times S U(2)_{L}$. The chiral condensate $\phi=\langle\sigma\rangle=Z f_{\pi}$ emerges upon spontaneous chiral symmetry breaking in the mesonic sector, where $f_{\pi} \simeq 92.4 \mathrm{MeV}$ is the pion decay constant and $Z \simeq 1.67$ is the wave-function renormalization constant of the pseudoscalar fields.

We now make the following Ansatz for the condensates, which is of the form of a chiral-density wave:

$$
\begin{equation*}
\langle\sigma\rangle=\phi \cos (2 f x),\langle\pi\rangle=\phi \sin (2 f x), \tag{1}
\end{equation*}
$$

In the limit $f \rightarrow 0$ we obtain the usual homogeneous condensation.

The baryons are introduced as two parity doublets Ψ_{1} and Ψ_{2}, which transform according to the mirror assignment:

$$
\begin{array}{ll}
\Psi_{1, R} \rightarrow U_{R} \Psi_{1, R}, & \Psi_{1, L} \rightarrow U_{L} \Psi_{1, L} \\
\Psi_{2, R} \rightarrow U_{L} \Psi_{2, R}, & \Psi_{2, L} \rightarrow U_{R} \Psi_{2, L} \tag{3}
\end{array}
$$

[^0]The mirror assignment allows for an additional chirally invariant mass term [6]:
$m_{0}\left(\bar{\Psi}_{1, L} \Psi_{2, R}-\bar{\Psi}_{1, R} \Psi_{2, L}-\bar{\Psi}_{2, L} \Psi_{1, R}+\bar{\Psi}_{2, R} \Psi_{1, L}\right)$.

Figure 1: The condensates ϕ and $\bar{\chi}$ are shown as functions of μ.

In Fig. 1 the condensates ϕ and $\bar{\chi}$ are shown as functions of μ. For $\mu=923 \mathrm{MeV}$ a first-order phase transition to the nuclear matter ground state takes place and at $\mu=973 \mathrm{MeV}$ a transition to the CDW phase occurs. In terms of density, the onset of inhomogeneous condensation is at $2.4 \rho_{0}$. Then, a mixed phase is realized between $2.4 \rho_{0}$ to $10.4 \rho_{0}$. However somewhere in the mixed phase the deconfinement phase transition should occur.

Outlook

Further studies of the model at zero and non-zero densities should be performed to test for general forms of inhomogeneous condensation. The eLSM should be extended to $N_{f}=3$ in the baryon sector.

References

[1] S. Gasiorowicz et al. Rev. Mod. Phys. 41, 531 (1969).
[2] A. B. Migdal, Rev. Mod. Phys. 50, 107 (1978).
[3] D. Parganlija et al. Phys. Rev. D 82, 054024 (2010);
[4] S. Gallas et al. Phys. Rev. D 82, 014004 (2010).
[5] A. Heinz et al. arXiv: 1312.3244 [nucl-th].
[6] C. DeTar et al. Phys. Rev. D 39, 2805 (1989).

[^0]: * Work supported by HGS-HIRe and HIC4FAIR.

