Observation of Unbound States in 16 Ne / 15 Ne via 1n- / 2n-Knockout on 17 Ne *

F. Wamers^{1,2,3}, J. Marganiec^{2,3,1}, T. Aumann^{2,3}, L. Chulkov^{4,3}, M. Heil³, B. Jonson⁵, R. Plag^{3,6}, H. Simon³, and the R³B Collaboration

¹ExtreMe Matter Institute @ GSI; ²Technische Universität Darmstadt; ³Nuclear Reactions and Astrophysics @ GSI; ⁴NRC Kurchatov Institute, Moscow; ⁵Chalmers Tekniska Högskola, Göteborg; ⁶Goethe Universität, Frankfurt

In recent years, experiments investigating the driplines have unearthed rich evidence on the peculiarities of the nuclear force, in particular those connected to weak binding and large proton-neutron asymmetry. While for very neutron-rich systems, e.g., various manifestations for 1n and 2n halo systems are found, the existence of the dripline is known only up to Z = 8. Quite reversed due to the additional presence of the Coulomb barrier, the proton dripline is sharp and known up to Z = 91, whereas halo formation is suppressed and just a few case exist. In the recent past we have investigated proton-knockout reactions studying the borromean 2p-halo nucleus ¹⁷Ne [1, 2], and here we have used the dataset from the same experiment as a stepping stone to reach beyond the proton dripline and explore yet unknown regions of the nuclear landscape.

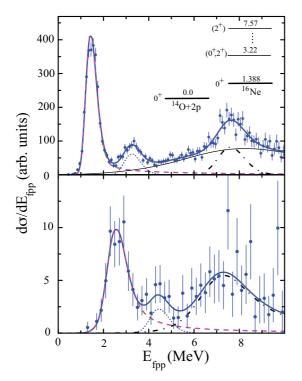


Fig. 1: Relative-energy (E_{fpp}) of ¹⁶Ne (top) and ¹⁵Ne (bottom), after 1n-/2n-knockout from ¹⁷Ne projectiles.

This report presents data of 1n- and 2n- knockout reactions on ¹⁷Ne projectiles in light targets (C, CH₂), populating states in the unbound nuclei ¹⁶Ne and the yet unobserved ¹⁵Ne. In a simple picture, the respective neutrons were removed from the ¹⁷Ne core, ¹⁵O, thus creating $^{14,13}\mathrm{O}$ fragments coupled to the two remaining s^2/d^2 protons, all travelling under forward angles and being detected in coincidence. The data analysis procedure, via 4momentum reconstruction and invariant-mass technique, is equivalent to the description in [1]. The excitation spectra, in terms of f-2p relative-energy spectra, of the ¹⁶Ne and ¹⁵Ne systems are shown in Fig. 1. The shown data (full dots with errorbars) have been corrected for experimental acceptance, and the peaks have been fitted by Coulomb-Breit-Wigner functions (dashed, dotted lines) folded with the experimental resolution, and in the case of ¹⁶Ne in addition by a non-resonant background (full line). The experimental acceptance and the E_{rel} calibration and resolution have been obtained from R3BROOT-based simulations [2] in combination with the width and position of the known $5/2^{-}$ state in the ¹⁵O+2p continuum of ¹⁷Ne as a reference.

For ¹⁶Ne (¹⁴O+2p) we have extracted the positions and widths of the ground state and the first two excited states as $E_r(g.s.) = 1.388(15)$ MeV, $\Gamma_r(g.s.) = 0.082(15)$ MeV; $E_r(1.x.) = 3.22(5)$ MeV, $\Gamma_r(1.x.) \le 0.05$ MeV; $E_r(2.x.) =$ 7.57(6) MeV, $\Gamma_r(2.x.) \le 0.1$ MeV. These values are in good agreement with previous publications on ¹⁶Ne, e.g. [4], and confirm the validity of our technique and calibrations.

For the first time, the unbound isotope ¹⁵Ne has been observed, as coincidences between ¹³O and two beam-like protons (see Fig. 1(bottom)). The same type of analysis as for the ¹⁶Ne case has been performed for the ¹⁵Ne (E_{fpp}) spectrum. We identified the ground state and the first excited state with parameters of $E_r(g.s.) = 2.522(66)$ MeV, $\Gamma_r(g.s) = 0.59(23)$ MeV; $E_r(1.x.) = 4.42(4)$ MeV, $\Gamma_r(1.x.)$ ≤ 0.1 MeV. The observed position of the ¹⁵Ne ground state at $S_{2p} = -2.522(66)$ MeV is in good agreement to a recent model prediction [5].

References

- [1] F. Wamers and the R³B collab., GSI Scientific Report 2010
- [2] F. Wamers and the R³B collab., GSI Scientific Report 2011
- [3] F. Wamers and the R³B collab., GSI Scientific Report 2012
- [4] I. Mukha et al., Phys. Rev. C 79, 061301(R) (2009)
- [5] H.T. Fortune, Phys. Lett. B 718, 1342 (2013)

^{*} Work supported by the Spanish research agency CICYT under project FPA2009-07387,by the Helmholtz Alliance EMMI, by HIC for FAIR, by the GSI-TU Darmstadt cooperation agreement, and by the BMBF under contract number 05P12RDFN8. (B. J.) is a Helmholtz International Fellow.