Measurement of the Dipole Polarizability of ⁶⁸Ni^{*}

D. M. Rossi^{1,2,3}, P. Adrich², F. Aksouh⁴, H. Alvarez-Pol⁵, T. Aumann^{2,6}, J. Benlliure⁵, M. Böhmer⁷, K. Boretzky², E. Casarejos⁸, M. Chartier⁹, A. Chatillon¹⁰, D. Cortina-Gil⁵, U. Datta Pramanik¹¹, H. Emling², O. Ershova¹², B. Fernandez-Dominguez^{5,9}, H. Geissel², M. Gorska², M. Heil², H. T. Johansson¹³, A. Junghans¹⁴, A. Kelic-Heil², O. Kiselev^{2,3}, A. Klimkiewicz^{2,15}, J. V. Kratz³, R. Krücken⁷, N. Kurz², M. Labiche^{16,17}, T. Le Bleis^{2,7}, R. Lemmon¹⁷, Yu. A. Litvinov², K. Mahata^{2,18}, P. Maierbeck⁷, A. Movsesyan⁶, T. Nilsson¹³, C. Nociforo², R. Palit¹⁹, S. Paschalis^{6,9}, R. Plag^{2,12}, R. Reifarth¹², D. Savran²⁰, H. Scheit⁶, H. Simon², K. Sümmerer², A. Wagner¹⁴, W. Walus¹⁵, H. Weick², and M. Winkler²

¹NSCL/MSU, USA; ²GSI Darmstadt, Germany; ³University of Mainz, Germany; ⁴King Saud University, Saudi Arabia; ⁵University of Santiago de Compostela, Spain; ⁶Technische Universität Darmstadt, Germany; ⁷Technische Universität München, Germany; ⁸University of Vigo, Spain; ⁹University of Liverpool, United Kingdom; ¹⁰CEA
Bruyères-le-Châtel, France; ¹¹SINP Kolkata, India; ¹²Goethe University Frankfurt, Germany; ¹³Chalmers University of Technology, Göteborg, Sweden; ¹⁴Helmholtz-Zentrum Dresden-Rossendorf, Germany; ¹⁵Jagiellonian University of Krakow, Poland; ¹⁶University of the West of Scotland, Paisley, United Kingdom; ¹⁷STFC Daresbury Laboratory, United Kingdom; ¹⁸BARC Mumbai, India; ¹⁹TIFR Mumbai, India; ²⁰Extreme Matter Institute/GSI Darmstadt, Germany

The Equation of State (EOS) of nuclear matter is at the center of many current research axes in nuclear science, ranging from nuclear structure considerations, over heavyion collisions to the physics of neutron stars. When dealing with radioactive nuclei with a large proton-neutron imbalance, one component of the nuclear EOS is of particular importance: the symmetry energy. Especially its density dependence is of interest, since this parameter has been shown to correlate strongly with nuclear properties such as the neutron-skin thickness or the amount of low-lying electric dipole (E1) strength [1]. Previously, measurements of low-lying E1 strength have been used to determine the parameters of the symmetry energy [2]. It has, however, been shown that the measurement of the dipole polarizability α_D is a more robust and less model-dependent observable to extract this information [3].

In an experiment performed at the R³B-LAND setup at GSI, Coulomb excitation of ⁶⁸Ni was measured in inverse kinematics. By measuring the invariant mass of the ⁶⁸Ni(γ^* ,n)⁶⁷Ni and ⁶⁸Ni(γ^* ,2n)⁶⁶Ni decay channels, the excitation energy distribution of this nucleus was reconstructed in an energy window ranging from its 1n threshold and covering the regions of low-lying E1 strength and of the IVGDR. The latter was quantitatively measured at a centroid energy of $E_m = 17.1(2)$ MeV, with a width of $\Gamma = 6.1(5)$ MeV and exhausing 98(7)% of the energyweighted sum rule (EWSR) [4]. Low-lying E1 strength described by a Gaussian function was also observed at $E_m = 9.55(17)$ MeV, with a width of $\sigma = 0.51(13)$ MeV and 2.8(5)% of the EWSR. Based on this observed E1 strength, a polarizability of $\alpha_D = 3.40(23)$ fm³ was mea-

Figure 1: Correlation between the dipole polarizability α_D and the neutron-skin thickness $\Delta R_{n,p}$ of ⁶⁸Ni [4].

sured from the 1n threshold to the upper integration limit of 28.4 MeV. Relativistic RPA calculations using the FSUGold parametrization [5] provided the correlation between the observable α_D and the neutron-skin thickness $\Delta R_{n,p}$ of ⁶⁸Ni, as shown in Fig. 1. The extrapolation to the measured value of α_D provides a neutron-skin thickness of 0.17(2) fm, which is in good agreement with the value obtained from the measurement of low-lying E1 strength [1]. This new method for the extraction of neutron-skin thicknesses will also be applied to more exotic systems, thus constraining the symmetry energy further.

References

- [1] A. Carbone, et al., Phys. Rev. C 81, 041301(R) (2010).
- [2] A. Klimkiewicz, et al., Phys. Rev. C 76, 051603(R) (2007).
- [3] P.-G. Reinhard and W. Nazarewicz, Phys. Rev. C 81, 051303 (2010).
- [4] D. M. Rossi, et al., Phys. Rev. Lett. 111, 242503 (2013).
- [5] J. Piekarewicz, Phys. Rev. C 73, 044325 (2006).

^{*} This work was supported in part by the Helmholtz International Center for FAIR (HIC for FAIR), the Alliance Program of the Helmholtz Association (HA216/EMMI), the GSI-TU Darmstadt cooperation agreement, the Helmholtz-CAS Joint Research Group HCJRG-108, and BMBF Grants No. 06MZ222I, No. 05P12RDFN8, and No. 06MT9156.