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Double-sided silicon strip detectors (DSSSD) are a
widely used type of detector in nuclear and particle
physics experiments for position and energy measure-
ments. This report describes an automatic method that
allows to gain-match all strips of DSSSD detectors with-
out the need of dedicated in-beam calibration.

Introduction

DSSSD detectors are constructed as large area silicon
diodes with electrically segmented p and n-side contacts.
Signals are read out on both, p and n-side simultaneously.
The segmentation is usually such that there are unique in-
tersection points of opposite side’s contacts, the measure-
ment of one p and on n-side signal allows to reconstruct
the two dimensional spatial position of an event inside the
detector.

Method

In the following, it will be assumed that the deposited
energyE = s · A , in the detector is proportional to the
amplitude, i.e. there are no offsets or nonlinearities in the
electronics.A is the measured amplitude of the detected
signal ands the slope factor for calibration.

Given a DSSSD detector withN strips on each side,
each event that is registered in a given pixel will create a
signal with amplitudeAp in the strip numberp on the p-
side and a signal with amplitudeAn in strip numbern on
the n-side (n, p = 1 . . .N ) . Assuming that both strips
measure the same energyE deposited in the active area of
the detector, one can write

Ep = sp Ap , En = sn An and Ep = En = E ,
(1)

with sp andsn being the calibration coefficients (slopes)
for thep-th p-side strip andn-th n-side strip, respectively.

For each pixel of the detector, the values ofAp andAn

for various values of energy depositions∆E are assumed
to be linearly related. For each pixel, the relation between
the amplitudes is

Ap = Spn An , (2)

with the slope parameterSpn which can be determined
from the data (see below). The set ofN2 slope parameters
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can be used to deduce a set of2N calibration coefficients
{sp, sn} by minimizing the expression

χ2 =
∑

p,n

(
Spn − sn

sp

∆Spn

)2

, (3)

that follows directly from Eqs. (1,2).

Implementation

There are two independent steps: First, the determina-
tion of the coefficientsSpn. Second, finding a set of cal-
ibration coefficients{sp, sn} based onSpn. The former
is done using a Bayesian approach, updating the poste-
rior probability distribution of the quantity of interest for
each detected event. The latter is done by a nonlinear least
squares fit algorithm.

Determination ofSpn: The posterior probability dis-
tribution of the quantity of interest is in this case
p (Spn| {dpn}), with {dpn} being the set of all measured
data points, i.e. the ratio of amplitudesdpn = Ap/An.
Knowing this distribution allows to get the most likely
value for each slope parameterSpn and its variance∆Spn.
Starting with an initial guess for this distribution, i.e. uni-
form within reasonable limits, one can refine it by iterating
over the measured data points, each time applying Bayes’
theorem [4, 5]

p (Spn |dpn ) =
p (Spn) p (dpn|Spn)

p (dpn)
, (4)

with the commonly used terminology [6]:p (Spn |dpn ) is
called posterior distribution,p (Spn) is the prior distribu-
tion, L (dpn|Spn) the likelihood function andp (dpn) the
evidence of the measured data. After each treated data
point the normalized posterior distribution becomes the
prior for the next data point.

The likelihood function is chosen to be a Lorentzian-
shaped distribution with widthw

L (dpn|Spn) ∝ 1
w2 + (log dpn − log Spn)2

. (5)

Such a distribution makes the result less sensitive to abun-
dant background events as it would be the case with a
Gaussian-shaped likelihood function. It depends on the
logarithm of the slope parameter, because the slope is a
scale parameter with a possible range inside[0,∞[.
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While iterating over the data, the posterior distribution
is represented as a discrete numberNp of points between
the limits Smin andSmax. The density of points depends
on the desired accuracy of the final result and can be in
the order of a few thousands. After all data is processed,
the best estimates for all slopesSpn and their uncertainties
∆Spn are determined from the mean and variance of the fi-
nal posterior probability distribution. For the example data
shown here, the set of values was:Np = 1000, Smin = 0.3,
Smax = 3 andw = 0.1

Computing a set of calibration coefficients:Minimizing
(3) is done using the implementation of a nonlinear least
squares fit provided by [2]. The set of fit parameters is
{sp, sn}, and the data is the complete set of measured slope
parameters{Spn}. The algorithm performs the minimiza-
tion of (3). After convergence is reached, the parameter set
describes the best calibration coefficients for the data seton
a common arbitrary scale.

Results

The described procedure was applied to data from the
PreSPEC-AGATA setup [7]. The DSSSD detector was
mounted close to the position of the secondary target and
had2×32 strips, read out with two 32-channel ADCs. It is
part of the Lund-York-Cologne CAlorimeter (LYCCA) [1]
that is tracking and identifying heavy ions.

The result of the procedure is best summarized in a two-
dimensional sum histogram of all p-side vs. all n-side am-
plitudes, without and with calibration coefficients as deter-
mined by the described method. In a correctly calibrated
detector, each event should have equal calibrated ampli-
tudes for both sides of the detector. That is confirmed by
the Fig. 1.
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Figure 1: Sum histogram of the p and n-side amplitude
distributions before (top) and after (middle) the calibration
procedure. The picture on the bottom shows the difference
of p and n-side amplitude before and after calibration.
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