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Abstract. We show that photons subject to a spatially inhomogeneous

electromagnetic field can experience quantum reflection. Based on this

observation, we propose quantum reflection as a novel means to probe the

nonlinearity of the quantum vacuum in the presence of strong electromagnetic

fields.
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1. Introduction

The fundamental interaction of light and matter is described by quantum electrodynamics

(QED). In contrast to classical electrodynamics, the QED vacuum is no longer characterized

by the complete absence of any field excitations, but can rather be considered as permeated by

virtual photons and particle–antiparticle fluctuations. As these virtual fluctuations can couple

to real electromagnetic fields or matter, they have the potential to affect the propagation and

interactions of real fields and particles and can be probed accordingly.

The most prominent examples are the Casimir effect [1], revealing fluctuation-induced

matter–matter interactions, and nonlinear self-interactions of the electromagnetic field induced

by electron–positron vacuum fluctuations [2–4]. The latter example gives rise to a variety

of nonlinear vacuum phenomena such as light-by-light scattering [5, 6], vacuum magnetic

birefringence [7–9], photon splitting [10] and even spontaneous vacuum decay in terms of

Schwinger pair-production in electric fields [2, 4, 11]; for recent reviews, see [12–15]. Whereas

the Casimir effect has already been confirmed experimentally [16–18], the pure electromagnetic

nonlinearity of the quantum vacuum though subject to high-energy experiments [19, 20] has not

been directly verified on macroscopic scales so far. Promising routes aim at vacuum magnetic

birefringence measurements such as the polarizzazione del Vuoto con laser (PVLAS) [21] and

biréfringence magnétique du vide (BMV) [22] experiments or proposed setups on the basis of

high-intensity lasers [23].

In this paper our focus is on optical signatures, because modern optical facilities allow for

a huge photon number for probing, while photon detection is possible even on the single-photon

level. As quantum vacuum nonlinearities can effectively be viewed as conferring medium-

like properties to the vacuum, a natural route is to search for interference effects as suggested

in [24–26]. By contrast, in this work we emphasize the viewpoint that strong electromagnetic

fields can modify the quantum vacuum such that the nonlinearly responding vacuum acts as an

effective potential for propagating probe photons.

A highly sensitive probe of the shape of potentials is above-barrier reflection [27],

also called quantum reflection, as—in contrast to classical physics—the barrier need not

be repulsive [28]. Quantum reflection of atoms off a surface typically at grazing incidence

is nowadays commonly used in surface science [29, 30], and has even been applied to

quantitatively measure the fluctuation induced Casimir–Polder force [31].

In this work, we suggest the use of quantum reflection as a new way to explore the

fluctuation-induced nonlinearities of the quantum vacuum in a pump–probe type experiment.

Replacing the atoms by photons (‘probe’) and the surface by a magnetized quantum vacuum

(‘pump’), we obtain a highly sensitive setup. In particular, a classical background in the form

of specular reflections, as is typical for atomic quantum reflection, is completely absent in our

case. There is simply no analogue of a classical repulsive potential independently of the incident

angle. Especially in comparison to standard birefringence setups, where the induced quantum-

vacuum signature has to be isolated from a large background, e.g. by means of high-purity

polarimetric techniques [21, 32], our proposal of quantum reflection inherently allows for a

clear separation between signal and background, facilitating the use of single-photon detection

techniques.

Whereas the standard nonlinear phenomena listed above exist in spatially homogeneous

fields, quantum reflection manifestly requires the external field to feature a spatial

inhomogeneity. Below, we discuss in the main body of the paper, how quantum reflection

is encoded in the quantum Maxwell equation by means of the fluctuation-induced two-point
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correlation function (photon polarization tensor). The relation to the more conventional

language of above-barrier scattering in quantum mechanics is highlighted in the appendix.

Our paper is organized as follows. Section 2 explains the scenario of quantum reflection

in detail. The determination of the photon reflection rate requires insights into the photon

polarization tensor in the presence of spatially inhomogeneous electromagnetic fields. A

strategy to obtain the relevant analytical insights is outlined in section 3. Here we limit ourselves

to purely magnetic fields. Section 4 is devoted to the discussion of explicit examples and results.

We end with conclusions and an outlook in section 5.

2. Quantum reflection

We analyze the scenario of quantum reflection within the effective theory of photon propagation

in a (spatially inhomogeneous) external magnetic field B(x).

The effective theory for soft electromagnetic fields in the quantum vacuum is provided

by the famous Heisenberg–Euler Lagrangian [2] and its generalizations to inhomogeneous

backgrounds (cf, e.g. [33–35]). Its generalization for photon propagation at arbitrary frequencies

is described by the following Lagrangian (cf, e.g. [12]):

L[A] = −1

4
Fµν Fµν− 1

2

∫

x ′
Aµ(x)5µν(x, x ′|B)Aν(x ′), (1)

where 5µν(x, x ′|B) denotes the photon polarization tensor in the presence of the external field,

Fµν the field strength tensor of the propagating photon Aµ and x a spatio-temporal four-vector.

We use the metric convention gµν = diag(−, +, +, +), such that the momentum four vector

squared reads k2 = k2 − (k0)2. Moreover, c = h̄ = 1. Our conventions for the Fourier transform

are 5µν(x, x ′) =
∫

k

∫

k′ e−ikx 5µν(k, k ′) e−ik′x ′
and Aµ(x) =

∫

k
eixk Aµ(k).

In momentum space, the equation of motion (‘quantum Maxwell equation’) associated

with equation (1) reads

(

k2 gµν − kµkν
)

Aν(k) = −
∫

k′
5̃µν(−k, k ′|B)Aν(k

′), (2)

where we introduced the symmetrized polarization tensor 5̃µν(k, k ′|B) = [5µν(k, k ′|B) +

5νµ(k ′, k|B)]/2.

Equation (2) is well suited to study the phenomenon of quantum reflection. The basic idea

is to interpret the right-hand side of equation (2) as source term for the reflected photons. In this

sense, the photon field on the right-hand side of equation (2) corresponds to the incident photon

field, while the one on the left-hand side describes outgoing photons.

Equation (2) is a tensor equation of rather complicated structure. Fortunately, it can

be simplified substantially by imposing additional constraints: firstly, we limit ourselves to

inhomogeneities of the form B(x) = B(x)B̂, such that the direction of the magnetic field is

fixed and only its amplitude is varied. This defines a global spatial reference direction B̂, with

respect to which vectors can be decomposed into parallel and perpendicular components,

kµ = k
µ

‖ + k
µ

⊥, k
µ

‖ = (k0, k‖), k
µ

⊥ = (0, k⊥) (3)

with k‖ = (k · B̂)B̂ and k⊥ = k − k‖. In the same way tensors can be decomposed, e.g. gµν =
g

µν

‖ + g
µν

⊥ . For photons with four momentum kµ, it is then convenient to introduce the following
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projectors [12]:

P
µν

‖ (k) = g
µν

‖ −
k

µ

‖ kν
‖

k2
‖

, P
µν

⊥ (k) = g
µν

⊥ − k
µ

⊥kν
⊥

k2
⊥

. (4)

As long as k ∦ B, the projectors (4) have an intuitive interpretation. They project onto photon

modes polarized parallel and perpendicularly to the plane spanned by k and B̂. Together with a

third projector defined as follows:

P
µν

0 (k) = gµν − kµkν

k2
− P

µν

‖ (k) − P
µν

⊥ (k), (5)

P
µν

‖ (k) and P
µν

⊥ (k) span the transverse subspace. For k ‖ B only one externally set direction is

left, and we encounter rotational invariance about the magnetic field axis. Here, the modes 0

and ⊥ can be continuously related to the two zero-field polarization modes [36].

Secondly, we use that the field inhomogeneity can only affect momentum components

pointing along the inhomogeneity, i.e. those (anti)parallel to ∇B, while translational invariance

holds for the perpendicular directions. Correspondingly, we can identify two situations where

equation (2) turns out to be particularly simple. (i) If the magnetic field vector and the direction

of the inhomogeneity are orthogonal to each other (or k‖ = 0),

k‖ ·∇∇∇ B = 0 → P
µν

‖ (k ′) = P
µν

‖ (k) ≡ P
µν

‖ , (6)

equation (2) can be simplified straightforwardly for the ‖ polarization mode. Contracting

equation (2) with the global projector P‖ and introducing photons Ap,µ(k) = Pp,µν Aν(k)

polarized in mode p ∈ {‖, ⊥}, the equation of motion loses any nontrivial Lorentz index

structure. Dropping the trivial Lorentz indices of the photon fields, Ap,µ(k) → Ap(k), we obtain

the scalar equation

k2 A‖(k) = −
∫

k′
5̃‖(−k, k ′|B)A‖(k

′). (7)

To arrive at equation (7), we also used the above reasoning for the photon polarization tensor,

which for B = const. is of the following structure [12]:

5µν(k, k ′|B)|B=const. = δ(k + k ′)
∑

p=‖,⊥,0

5p(k|B)Pµν
p (8)

with scalar coefficients 5p(k|B), carrying the entire field strength dependence.

(ii) If the perpendicular component of the photon wave vector and the direction of the

inhomogeneity are orthogonal to each other (or k⊥ = 0), an analogous simplification holds for

the ⊥ polarization mode. The corresponding equations follow from equations (6) and (7) by

replacing ‖→ ⊥. We limit ourselves to the discussion of the special cases (i) and (ii), since

other configurations are more subtle as the inhomogeneity genuinely induces mixings between

the different polarization modes.

Without loss of generality we subsequently assume the field inhomogeneity in x direction,

i.e. ∇B ∼ ex, and limit ourselves to incident photons with wave vector k′ = k ′
xex + kyey (cf

figure 1). This implies that the momentum component ky is conserved, and thus also inherited

by the reflected photons, whose wave vector correspondingly reads k = kxex + kyey. The scalar

equations derived for cases (i) and (ii) (cf equation (7)) are then of the following structure:

(

k2
x −(ω2−k2

y)
)

Ap(k)=−
∫

dk ′
x

2π
5̃p(−kx, k ′

x)Ap(k
′), (9)
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Figure 1. Schematic depiction of quantum reflection. The incident probe photons

with wave vector k′ propagate towards a one-dimensional field inhomogeneity

of amplitude B(x) which asymptotically falls off to zero for large values of |x|.
The inhomogeneity is infinitely extended in the transversal directions. The angle

between k′ and ex is denoted by β.

where ω is the photon frequency. To keep notations simple, we have removed any reference to

the magnetic field as well as the conserved momentum components ky and ω in the argument

of the photon polarization tensor. Instead, its argument now only includes the momentum

components affected by the inhomogeneity, kx and k ′
x. Noteworthy, for the above reasoning it is

not necessary to explicitly specify the direction of B̂, which is however implicitly constrained

by demanding compatibility with either case (i) or (ii).

Introducing partial Fourier transforms

Ap(x) ≡ Ap(x; ky, ω) =
∫

dkx

2π
eikxx Ap(k), (10)

5̃p(x, x′) =
∫

dkx

2π

∫

dk ′
x

2π
e−ikxx 5̃p(kx, k ′

x)e
−ik′

xx′
(11)

equation (9) can alternatively be written as

(

∂2
x + ω̃2

)

Ap(x) =
∫

dx′ 5̃p(x, x′)Ap(x
′), (12)

with ω̃2 ≡ ω2 − k2
y . This representation is particularly suited for the study of quantum reflection,

as it directly allows for an intuitive physical approach to tackle the phenomenon in position

space. Here our focus is on a ‘localized’ inhomogeneity B(x) of typical width w which falls off

to zero sufficiently fast for large values of |x|.
We moreover assume all reflected photons to be detected independently of the particular

value of ky. Formally, this amounts to detectors spanning the entire y-axis. However, photon

reflection only takes place in a limited interval of typical diameter w where B(x) deviates from
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zero. For this assumption to hold with regard to an actual experimental realization we therefore

just have to demand detector sizes compatible with the length scale of the inhomogeneity. An

inhomogeneity of width w requires a detector size of the order of weff = 2wtanβ in y direction

(cf figure 1).

In order to handle this theoretically, we assume the probe photons, emitted by a photon

source located at x = −L with B(−L) = 0, to be purely right-moving, i.e. Ain
p (x′) = a(ω̃)eiω̃x′

.

Here we have made use of the light-cone condition k2
x − ω̃2 = 0, neglecting subleading light

cone deformations inside the magnetic field. We then look for outgoing left-moving (=̂
reflected) photons at detector positions x′′ < −L .

On the level of equation (12), we identify the photon field Ap(x
′) on its right-hand side

with the incident photon field Ain
p (x′). In turn, equation (12) may be interpreted as the equation

of motion for the outgoing photons in the presence of the photon source jp(x),
(

∂2
x + ω̃2

)

Aout
p (x) = jp(x), (13)

with jp(x) =
∫∞

−L
dx′ 5̃p(x, x′)Ain

p (x′). The propagation of the outgoing photons arising from

the interaction is assumed to be well-described by the free Green function, satisfying
(

∂2
x + ω̃2

)

G(x, x′) = δ(x − x′), (14)

the solution of which reads

G(x, x′) = − i

2ω̃

{

e+iω̃(x−x′) for x − x′ > 0,

e−iω̃(x−x′) for x − x′ < 0.
(15)

Asymptotically, the upper line (together with the incoming photons) is associated with the

transmitted photons, whereas the lower line corresponds to the reflected photons Aref
p which

we straightforwardly obtain from

Aref
p (x′′ < −L) = − i

2ω̃

∫ ∞

−L

dx jp(x) e−iω̃(x′′−x). (16)

The photon reflection coefficient can be defined via the ratio of reflected to incident photons.

Inserting the explicit expressions for the photon fields it can be represented in a particularly

concise form

Rp = lim
L→∞

∣

∣

∣

∣

∣

Aref
p (x′′ < −L)

Ain
p (x′)

∣

∣

∣

∣

∣

2

=
∣

∣

∣

∣

∣

5̃p(ω̃, ω̃)

2ω̃

∣

∣

∣

∣

∣

2

. (17)

The formal limit L → ∞ is well-justified for ‘localized’ inhomogeneities. Thus, the reflection

coefficient can be expressed entirely in terms of the photon polarization tensor in momentum

space 5̃(kx, k ′
x), evaluated at kx = ω̃, k ′

x = ω̃ and made dimensionless by dividing by the

momentum transfer kx + k ′
x = 2ω̃. In particular note that this result is compatible with the light-

cone condition for both incident and reflected photons, k2
x − ω̃2 = k ′2

x − ω̃2 = 0.

Finally, we recall equation (6) and emphasize again that the result (17) for p =‖ is

associated with the particular alignment (i), while that for p = ⊥ belongs to situation (ii).

3. Photon polarization in spatially inhomogeneous fields

In a next step, we aim at analytical insights into the photon polarization tensor for spatially

inhomogeneous magnetic fields, being intimately related to the photon reflection coefficient
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via equation (17). Whereas the corresponding expression in the presence of a homogeneous

(electro)magnetic field is explicitly known at one-loop accuracy [12, 37–39], no analytical

results are available for generic, spatially inhomogeneous fields. Numerical insights are

available from worldline Monte Carlo simulations [36, 40].

Here our strategy is to focus on a situation sufficiently close to the constant field limit,

such that the photon polarization tensor for homogeneous magnetic fields can serve as a starting

point for our considerations. This should be true for field configurations that may be locally

approximated by a constant: in position space, the photon polarization tensor probes distances

of the order of the virtual particles’ Compton wavelength λc = 1/m, where m corresponds to the

electron mass in QED. For inhomogeneities with a typical scale of variation w much larger than

the Compton wavelength of the virtual particles, w ≫ λc, using the constant-field expressions

locally is well justified. For electrons, λc ≈ 2 × 10−6 eV−1 ≈ 3.9 × 10−13 m.

We aim at the momentum space representation of the photon polarization tensor locally

accounting for a one-dimensional field inhomogeneity B(x). This involves several steps, which

can be represented schematically as follows:

5µν(k ′
x) (2π) δ(kx + k ′

x)
FT−→ 5µν(x − x′)

B→B(x)−−−−→ 5µν(x, x′)
FT−1

−−→ 5µν(kx, k ′
x), (18)

where FT(−1) refers to an (inverse) Fourier transform, and we have again only focused on

components affected nontrivially by the inhomogeneity.

The photon polarization tensor for B = const. in momentum space is explicitly

known at one-loop accuracy [41, 42]: 5µν(kx). Translational invariance dictates its Fourier

transform to depend on the relative coordinate x′ − x only: 5µν(x − x′). Switching to a

spatially inhomogeneous field by substituting B → B(x) this invariance is broken: 5µν(x, x′).
Transforming back to momentum space, the resulting polarization tensor 5µν(kx, k ′

x) mediates

between two distinct momenta.

For B = const. the photon polarization tensor has the following infinite series expansion:

5µν(k ′
x) =

∞
∑

n=0

5
µν

(2n)(k
′
x)(eB)2n, (19)

which—as a consequence of Furry’s theorem—is in terms of even powers of eB only. The

expansion coefficients 5
µν

(2n)(k
′
x), with n ∈ N0 can be read off from a Taylor expansion of the

photon polarization tensor for B = const. to the desired order. In principle, each term 5
µν

(2n)(k
′
x)

can be given in closed form. As these terms are rather lengthy—even for n = 1 –, we do

not provide explicit expressions here. Implementing the steps outlined in equation (18) for

equation (19), we obtain

5µν(kx, k ′
x) =

∞
∑

n=0

5
µν

(2n)(k
′
x)

∫

dx ei(k′
x+kx)x[eB(x)]2n, (20)

and upon symmetrization (cf equation (2)),

5̃µν(kx, k ′
x) =

∞
∑

n=0

1

2

[

5
µν

(2n)(k
′
x) + 5

µν

(2n)(kx)

]

∫

dx ei(k′
x+kx)x[eB(x)]2n. (21)

As the photon polarization tensor at zero field vanishes on the light cone, 5
µν

(0)|k2=0 = 0, the

leading contribution to the photon reflection coefficient in the perturbative limit, eB

m2 ≪ 1, thus
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reads (cf equation (17))

Rp =
∣

∣

∣

∣

cp

π
ω̃

∫

dx ei2ω̃x

(

eB(x)

m2

)2∣
∣

∣

∣

2

+O
(

( eB

m2 )
6
)

(22)

with
{

c‖
c⊥

}

= α

180

[

sin2 θ + sin2 θ ′]
(ω

ω̃

)2
{

7

4

}

, (23)

where the angles θ ′ = �(k′, B) and θ = �(k, B) (θ ′, θ ∈ 0 . . . π ) can differ for the kinematics

of case (ii), even though they are still related by momentum conservation. An alternative

derivation of the reflection coefficient (22) á la quantum mechanics is given in the appendix.

As expected, the structure of equation (22) is similar to quantum mechanical scattering in the

Born approximation.

Recall that the first component, R‖, corresponds to the result associated with situation (i),

while the second component, R⊥, provides the result for (ii). We emphasize that equation (22)

is valid for arbitrary profiles B(x) of a ‘localized’ field inhomogeneity of width w ≫ λc. It is

completely capable to deal with the field strengths attainable in present and near future laser

facilities, and will form the basis of our subsequent considerations. For completeness, we note

that the photon polarization tensor for B = const. can be cast into the form [12]

5µν(k ′
x) ∼ Nµν(k ′

x)e
−i

f (k′
x)

eB , (24)

i.e. its entire B dependence occurs in the phase. Employing equation (18) in equation (24), we

find

5µν(kx, k ′
x) ∼ Nµν(k ′

x)

∫

dx ei(kx+k′
x)x e−i

f (k′
x)

eB(x) . (25)

Thus, for inhomogeneities of the form B(x) = B

1+(x/w)2 the integration in equation (25) is of

Gaussian type and can be performed explicitly. Correspondingly, the full one-loop photon

polarization tensor in the presence of such an inhomogeneity can eventually be written in

terms of a double parameter integral of similar complexity as for B = const. This opens

up the possibility to study also manifestly nonperturbative effects in the presence of a field

inhomogeneity. This is, however, outside the scope of the present paper and subject of an

ongoing study.

4. Results and discussion

It is now straightforward and instructive to analytically determine the photon reflection

coefficient for various forms of the field inhomogeneity B(x). To keep notations compact, we

subsequently only state the contribution due to the term written explicitly in equation (22)

and omit any explicit reference to the neglected corrections, which are of O(( eB

m2 )
6). While,

of course, a plethora of interesting field inhomogeneities is conceivable, here we exemplarily

discuss only three generic shapes. Let us first consider two elementary shapes, which do not

exhibit any substructure and whose spatial form is solely characterized by a width parameter w:

a Lorentz profile is conventionally characterized by its full width at half maximum (FWHM).

For a magnetic field of this type,

B(x) = B

1 +
(

2x

w

)2
, (26)
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which decreases power-like for large values of | x

w
|, i.e. lim|x/w|→∞B(x) = (2x/w)−2,

equation (22) results in

Rp =
∣

∣

∣

cp

4

(eB

m2

)2

ω̃w(1 + ω̃w)e−ω̃w

∣

∣

∣

2

, (27)

which becomes maximal for w = 1+
√

5

2ω̃
≈ 1.61

ω̃
. The reflection coefficient is exponentially

suppressed with ω̃w. Conversely, for a field inhomogeneity of Gaussian type—characterized

by its full width at 1/e of its maximum –,

B(x) = Be−(2x/w)2

, (28)

which falls off exponentially for large | x

w
|, we encounter an exponential suppression with (ω̃w)2,

Rp =
∣

∣

∣

1

2

cp√
2π

(eB

m2

)2

ω̃w e− 1
8
(ω̃w)2

∣

∣

∣

2

, (29)

and find a maximum at w = 2

ω̃
.

Next we turn to a more complicated field profile B(x), which besides its width w, is

characterized by a modulation frequency ωm (wavelength λm) and a phase ϕ. As an example

we consider the modulated Gaussian

B(x) = Be−(2x/w)2

cos (ωmx + ϕ) , (30)

which results in the following photon reflection coefficient:

Rp =
∣

∣

∣

1

8

cp√
2π

(eB

m2

)2

ω̃w

[

2 e− 1
8
(ω̃w)2

+
(

e− 1
8
w2(ω̃−ωm)2−2iϕ + e− 1

8
w2(ω̃+ωm)2+2iϕ

)]
∣

∣

∣

2

. (31)

In the limit ωm = 0, ϕ = 0 this expression reduces to equation (29). Most notably, for large

values of {ω̃w, ωmw} ≫ 1, but ω̃ ≃ ωm, equation (31) becomes independent of ϕ, and is well

approximated by

Rp ≈
∣

∣

∣

1

8

cp√
2π

(eB

m2

)2

ω̃w e− 1
8
w2(ω̃−ωm)2

∣

∣

∣

2

, (32)

i.e. the exponential suppression of the reflection coefficient can be overcome by matching the

(reduced) frequency of the probe photons ω̃ with the modulation frequency, setting ω̃ = ωm.

To achieve a sizable reflection rate, the magnetic field strength, which enters the reflection

coefficient as provided in equation (22) in the fourth power ∼ ( eB

m2 )
4, has to be large. On a

laboratory scale, field strengths of sufficient size are presently only attainable within the focal

spots of high-intensity laser systems. This suggests to probe the phenomenon of quantum

reflection in an all optics pump–probe setup: while the field inhomogeneity is generated in

the focal spot of one high-intensity laser of wavelength λpump, it is probed with another high-

intensity laser (wavelength λprobe). A purely magnetic field inhomogeneity could, e.g. be realized

by superimposing two counter propagating laser beams.

For given laser parameters (wavelength λ ↔ photon energy ω = 2π/λ; pulse energy E and

pulse duration τ ) the mean intensity I = E/(τσ ) in the focus, and thus the mean field strength

B ≈
√

2I , can be maximized by minimizing the focus cross-section area σ = π(d/2)2, where

d is the beam diameter. In generic high-intensity laser experiments σ cannot be chosen at will,

but is limited by the diffraction limit. Assuming Gaussian beams, the effective focus area is
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conventionally defined to contain 86% of the beam energy (1/e2 criterion for the intensity). The

minimum value of the beam diameter in the focus, i.e. twice its waist spot size, is then given by

d = 2 f #λ [43], with f # the so-called f -number, defined as the ratio of the focal length and the

diameter of the focusing aperture; f -numbers as low as f # = 1 can be realized experimentally.

Thus, within the focus of the pump laser field strengths of the order of

Bpump ≈
√

0.86
2

π

Epump

τpumpλ2
pump

(33)

are attainable.

Let us for the moment assume the effect of quantum reflection to be insensitive to the actual

longitudinal profile of the pump laser pulse, such that we may approximate its longitudinal

profile by its envelope, and for τpump ≫ λpump as roughly constant. With these oversimplifying

assumptions which will be critically examined below, we discuss two particular settings.

(a) In the most straightforward experimental setting to imagine, the pump laser beam

propagates along the y-axis, while its transversal profile, parameterized by the coordinate

x, evolves along the well-defined envelope of a Gaussian beam. In its focus the

transversal profile of the pump beam indeed matches a Gaussian field inhomogeneity (28).

Correspondingly, the width w of the field inhomogeneity can be identified with the focus

diameter dpump, such that for f # = 1, we have w ≈ 2λpump.

Assuming that the diffraction spreading of the pump beam about its waist is sufficiently

small, or equivalently, its Rayleigh range is large enough, the beam diameter in the vicinity

of the waist remains approximately constant and an experimental setting resembling

figure 1 is conceivable: the probe beam hits the pump beam under an angle β (cf figure 1),

and the reflected photons are detected with a photon counter placed accordingly.

Most noteworthy, this implies a setup inherent geometric separation of the reflected photons

from both the photons of the pump laser and the transmitted part of the probe beam, such

that the background is expected to be very low. The clear geometric signal to background

separation makes quantum reflection a particularly interesting candidate to probe the

quantum vacuum nonlinearity.

(b) Along the same lines, we can imagine a somewhat more involved experimental setting

to induce a modulated inhomogeneity resembling equation (30): suppose we have two

identical Gaussian beams with the above properties propagating—within their confocal

parameters—parallel to each other along the y direction. By means of a relative phase

shift of λpump/2, the two lasers can be adjusted such that the direction of the magnetic

field in the focus of the first laser beam points exactly in the opposite direction as for

the second one. De-tuning their beam axes by a distance of λpump, their foci overlap and a

modulated inhomogeneity of width w ≈ 2λpump and wavelength of modulation λm ≈ 2λpump

is generated.

Let us emphasize, that there is no compelling reason to motivate that the longitudinal, and

thus in particular the temporal profile of the laser pulse should be irrelevant for the effect of

quantum reflection. In particular, note that the time needed for probe photons to traverse the

inhomogeneity, t = cw ≃ 2cλpump, already corresponds to two temporal cycles of the pump,

and thus does not justify to approximate the inhomogeneity as stationary. The stationarity

assumption rather holds for inhomogeneities of width w ≪ λpump, i.e. requires focusing beyond

the diffraction limit and f # . 1. For a quantitative prediction of the photon reflection rates for
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realistic laser experiments, also the temporal variation of the field inhomogeneity has to be

accounted for.

As our study is the first to propose quantum reflection as a signature of the nonlinearity of

the quantum vacuum, we will nevertheless insert some realistic laser parameters in the derived

formulae. The intention is to provide a first estimate of the magnitude of the effect considered

here.

In order to maximize the effect, in equation (23) we set θ = θ ′ = π

2
, i.e. probe propagation

direction and B field are orthogonal, and adopt w = 2λpump (cf the discussion above). For the

other parameters we exemplarily adopt the design parameters of the two high-intensity laser

systems to be available in Jena4: JETI 200 [44] (λprobe = 800 nm ≈ 4.06 eV−1, Eprobe = 4J ≈
2.50 × 1019 eV, τprobe = 20 fs ≈ 30.4 eV−1) and POLARIS [45] (λpump = 1030 nm ≈ 5.22 eV−1,

Epump = 150 J ≈ 9.36 × 1020 eV, τpump = 150 fs ≈ 228 eV−1). The magnetic field strength of the

pump is obtained from equation (33) and reads eBpump/m2 = 3.33 × 10−4. The number of

photons per pulse follows from N = E/ω, implying Nprobe = 1.61 × 1019, and Npump = 7.80 ×
1020.

Equations (27), (29) and (31) share the overall factor
{

c‖
c⊥

}

(eB

m2

)2

ω̃w → 2πα

45 cos β

{

7

4

}

λpump

λprobe

(eBpump

m2

)2

, (34)

encoding the full field strength dependence, but differ in the exponential terms. In the following

discussion, our focus is on the field inhomogeneities discussed in (a) and (b), which are roughly

compatible with the Gaussian beam scenario outlined above. More specifically, we only adopt

equation (29) and the approximate expression for the modulated inhomogeneity, equation (32),

in this context now valid for λprobe ≃ λm cosβ. Correspondingly, equation (32) can be written as

Rp = πα2

64800 cos2 β

{

49

16

}

(λpump

λprobe

)2(eBpump

m2

)4

e
−(2π)2

(

λpump
λprobe

cos β− λpump
λm

)2

. (35)

The result for the Gaussian inhomogeneity (28), follows from equation (35) by multiplication

with a factor of 16 and sending λm → ∞ (cf equations (29) and (32)).

To obtain the actual experimental observable, namely the number Np of reflected photons

polarized in mode p, the reflection coefficient has to be multiplied with the number of incident

probe photons. This implies that the number of reflected photons per shot can be estimated as

Np = Rp fint Nprobe, (36)

where we have introduced a factor fint = min{1,
τpump

τprobe
}, providing a first estimate of the fraction

of the number of incident probe photons interacting with the inhomogeneity.

For given laser parameters, the only free parameter in case of the Gaussian

inhomogeneity (28) is the angle β. The condition for equation (29) to become maximum

translates into cos β = 1

2π

λprobe

λpump
. Inserting the maximum condition in equation (35) with λm → ∞

and multiplying with the factor of 16, we obtain

Rp = 2π 3α2e−1

2025

{

49

16

}

(λpump

λprobe

)4(eBpump

m2

)4

, (37)

4 Cf the homepage of the Helmholtz Institue Jena: http://www.hi-jena.de.
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and, for the explicit values of the laser systems given above, β ≈ 82.9◦ and

Rp =
{

9.94

3.24

}

10−19 → Np ≈
{

16.00

5.22

}

. (38)

For completeness, let us remark that analogous considerations for the Lorentz profile

inhomogeneity (26), plugging in the same parameters, yield angles and rates of the same order

of magnitude.

Conversely, for the modulated Gaussian (31) the modulation wavelength λm provides

an additional handle. To overcome the exponential suppression, we aim at matching λprobe =
λmcosβ. Assuming a modulation with λm = 2λpump as discussed in (b), the matching condition

implies cos β = 1

2

λprobe

λpump
, such that equation (35) becomes

Rp = πα2

16200

{

49

16

}

(λpump

λprobe

)4(eBpump

m2

)4

. (39)

For the explicit laser parameters given above we obtain β ≈ 67.2◦, as well as

Rp =
{

1.71

0.56

}

10−20 → Np ≈
{

0.28

0.09

}

. (40)

Note that the values encountered for the angles are rather large (cf figure 1). Smaller angles are

accessible with stronger modulations.

One might wonder why the explicit values given in equation (40) are smaller than those in

equation (38) as the modulation was initially motivated as a means to overcome the exponential

suppression. Recall, however, that we have effectively managed to overcome the exponential

suppression in both of our examples by also allowing for an adjustment of the angle parameter

β to maximize the respective reflection coefficient. Correspondingly, the absolute size of the

reflection coefficient and thus the number of reflected photons is governed by the numerical

prefactors. These turn out to be favorable in the first example.

Finally, we emphasize again that the explicit values given in equations (38) and (40) are

first estimates, as for the moment we have completely ignored the longitudinal evolution of the

pump laser pulse. They rather amount to a first guess of the order of magnitude of the reflection

coefficients and the absolute numbers of quantum reflected photons per shot. Based on these

numbers, quantum reflection might be within reach with state of the art high-intensity laser

systems. Definitive statements require to account for the longitudinal variation—and thus in

particular the temporal structure and evolution—of field inhomogeneities.

5. Conclusions and outlook

In this paper, we have studied quantum reflection as a new signature of the nonlinearity of

the quantum vacuum in strong electromagnetic fields. In contrast to the traditional signatures,

quantum reflection manifestly requires an inhomogeneous field configuration.

Limiting ourselves to a spatially inhomogeneous, but stationary magnetic field, we have

obtained first insights into this new phenomenon. We have devised a strategy to obtain analytical

insights for field inhomogeneities close enough to the constant field limit, as to justify the slowly

varying field approximation for the quantum correlations. As the underlying approximation

holds for inhomogeneities whose typical scale of variation is much larger than the Compton
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wavelength of the electron, many field inhomogeneities available in the laboratory can be dealt

with within this framework.

Looking for reflected photons in the field free region, we expect to achieve a clear

geometric signal to background separation, rendering quantum reflection a particularly

interesting candidate to probe the quantum vacuum nonlinearity in strong laser fields. Let us also

emphasize that the effect has a huge potential to be enhanced and optimized, e.g. by modeling

particularly suited field inhomogeneities that maximize the reflection coefficient by exploiting

constructive interferences. Also ‘two-color’ laser setups as will become available at Jena will

be helpful to suppress background noise by suitable filtering.

First estimates of the magnitude of the effect for present day laser parameters are

promising. However, in order to allow for solid quantitative predictions of the effect for realistic

laser experiments, we will eventually have to explicitly account for the temporal structure of

the pump laser pulse. This question is currently under investigation and will be addressed in a

follow up study.
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Appendix. Determination of the reflection coefficient à la quantum mechanics

Let us briefly outline an alternative way to arrive at the result (22). For clarity and to avoid

further complications we stick to a magnetic field oriented orthogonal to the direction of photon

propagation, i.e. �(k, B) = π

2
, and assume β = �(k, ex) = 0. The basic idea is to first derive

the equations of motion for photons in the presence of a weak homogeneous magnetic field, i.e.

keeping terms up to O(( eB

m2 )
2), and to implement the transition from B = const. to a spatially

inhomogeneous magnetic field B(x) on this level only.

Employing the photon dispersion relation for weak electric fields, k2 = 0 +O(( eB

m2 )
2),

for photons polarized in mode p the equations of motion in momentum space can be

straightforwardly approximated as follows:
(

k2 + 5p(k|B)
)

Ap(k) = 0 (A.1)

with
{

5‖
5⊥

}

= − α

45π

{

7

4

}(

eB

m2

)2

ω2. (A.2)

Thus only two polarization components p ∈ {‖, ⊥} exhibit a nontrivial dependence on the

external field amplitude (cf also [12, 36]).

For these modes, a Fourier transform to position space results in the following one-

dimensional Schrödinger equation:
[

− d2

dx2
− ω2

(

1 + 2
cp

π

(

eB

m2

)2
)]

Ap(x; ω) = 0 (A.3)
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with c‖ = 7α/90 and c⊥ = 4α/90 (cf equation (23)), and after the replacement B → B(x),
(

− d2

dx2
+ V (x)

)

Ap(x; ω) = ω2 Ap(x; ω), (A.4)

where we introduced the spatially localized potential

V (x) = −2
cp

π
ω2

(

eB(x)

m2

)2

. (A.5)

The quantum mechanical scattering problem as posed by equation (A.4) can be conveniently

solved in the transfer matrix formalism, discretizing the spatial coordinate as xn = n1x with

n ∈ N, and correspondingly the potential as Vn = V (n1x), such that the dispersion relation for

the nth step reads kn =
√

ω2 − Vn.

In the determination of the transfer matrix for the infinitesimal step 1x from xn to

xn+1—and analogously for the multiplication of the transfer matrices for subsequent steps—we

assume the ratio 1k

1x
as finite and keep only terms up toO(1x). Reverting to the continuum limit

the components of the transfer matrix for macroscopic distances can eventually be written in

terms of integrals. Assuming left and right moving contributions at x = −∞, but just a right-

moving component at x = ∞, we can straightforwardly derive an expression for the quantum

mechanical reflection coefficient

Rp =

∣

∣

∣

∣

∣

∣

∫ +∞
−∞ dx ei2xk(x) k′(x)

2k(x)

1 +
∫ +∞

−∞ dx
(

k′(x)

2k(x)
+ ixk ′(x)

)

∣

∣

∣

∣

∣

∣

2

(A.6)

with k(x) =
√

ω2 − V (x) and k ′(x) = d

dx
k(x). For the potential (A.5), equation (A.6) results in

Rp =
∣

∣

∣

∣

∣

cp

π
ω

∫

dx ei2ωx

(

eB(x)

m2

)2
∣

∣

∣

∣

∣

2

+O
(

(

eB

m2

)6
)

, (A.7)

which is fully compatible with equation (22). Of course, also equation (A.7) yields well-defined

results only when either condition (i) or (ii) discussed in the main text (cf equation (6)) is met.
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