


 
 



Ion Beam Polarization in Storage Rings:

Production, Controlling and Preservation

A. Prozorov1, L. Labzowsky1,2, G. Plunien3, D. Liesen4,5, F. Bosch4,
S. Fritzsche4,5,6, A. Surzhykov6

1V.A. Fock Research Institute for Physics,
St. Petersburg State University,
198904 St. Petersburg, Russia

2St. Petersburg Nuclear Physics Institute,
188300 Gatchina, St. Petersburg, Russia

3Institute of Theoretical Physics, Dresden Technical University,
Mommsenstrasse 13, 01062 Dresden, Germany
4Gesellschaft für Schwerionenforschung mbH,
Planckstrasse 1, 64291 Darmstadt, Germany
5Institute of Physics, Heidelberg University,

Philosophenweg 12, 69120 Heidelberg, Germany
6Max-Planck Institut of Nuclear Physics,

Saupfercheckweg 1, 69117 Heidelberg, Germany

March 3, 2008

Abstract

The present paper reports on the actual status of the theoretical concepts
for the production of polarized heavy ion beams in storage rings and for meth-
ods to control online the degree of polarization as well as investigations of the
preservation of the polarization during the ion movement across the magnetic
system of the ring. It is argued that for hydrogen-like ions beam polariza-
tion can be built up efficiently by optical pumping of the Zeeman sublevels of
ground-state hyperfine levels and that the maximal achievable nuclear polar-
ization exceeds 90%. Of special interest are polarized helium-like ions which
can be produced by the capture of one electron, because in selected cases par-
ity nonconservation effects are found to be of unprecedented size in Atomic
Physics. The measurements of these effects require online-diagnostics of the
degree of the ion beam polarization. It is shown that this can be accomplished
by an online-detection of the linear polarization of the x-rays which are emit-
ted with the capture of the electron. In order to investigate the preservation of
the polarization of the ions stored in the ring, the concept of an instantaneous
quantization axis is introduced. The dynamics of this axis and the behaviour
of the polarization with respect to it are explored in detail.
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1 Motivation: parity nonconservation (PNC) ex-
periments in Atomic Physics

During the last few decades, experiments with spin-polarized particles (e.g.electrons
and protons) have stimulated considerably many areas in basic research and applica-
tions [1]. While for electrons, protons and light ions, various techniques are known
to obtain particle beams with a high degree of polarization, polarized beams of
highly charged ions (HCI) are not yet available. However, intensive and polarized
HCI beams are anticipated for the new GSI heavy-ion facility [2] and needed for
many purposes, including tests of fundamental theories like parity nonconservation
(PNC), validity of the Standard Model (SM) in the low-energy limit and particu-
larly the time-reversibility. The latter problem was discussed recently in [3, 4] and
it was argued that beams of heavy, bare polarized nuclei would be necessary for the
observation of the effect. Here, we will concentrate on the applications of polarized
HCI beam techniques for the search of PNC effects.
The search for PNC effects in atomic physics started immediately after the formu-
lation of the Neutral Weak Current Hypothesis [5, 6, 7] which led afterwards to
the foundation of the Standard Model. The first proposals concerned the optical
dichroism in the Cs atom [8] and the optical rotation in Bi atom vapor [9]. The first
successful experiment on the PNC observation in atoms was performed in Novosi-
birsk [10] with Bi atoms and the most accurate results have been obtained by the
Boulder group with Cs atoms [11, 12].
A detailed theoretical description of the PNC effects in atoms can be found in [13].
A comprehensive modern review of the subject is given in [14]. PNC effects in
atoms can be observed as different types of asymmetries in atomic transitions. A
general expression for the one-photon transition probability including PNC effects
reads

w = w0

[
1 +Reξ1(�sp�n) +Reξ2(�γ�n) +Reξ3(�h�n)

]
(1)

Here, w0 is the transition rate for the basic transition without PNC effects (usually
a forbidden magnetic dipole transition M1 for reasons which will be explained in
chapter 1.1), �n the direction of the photon emission, �sp the photon spin, (�sp�n) = ±1
the photon helicity which corresponds to a right (left) circular polarization, �γ the
electron polarization, and �h = �H/| �H|, where �H is an external magnetic field.
In the absence of the PNC effects, the transition probability is a scalar; with the
PNC included it acquires pseudoscalar corrections. The direction of the photon
emission �n is an ordinary (polar) vector. In Eq. (1) �n is combined with all available
pseudovectors (axial vectors) �sp, �γ and �h, to build up the possible pseudoscalar
corrections to the probability with the coefficients ξ1, ξ2, and ξ3. A scalar product of
an ordinary vector and a pseudovector gives a pseudoscalar. The first pseudoscalar
correction to the probability in Eq. (1) always exists, the second one arises only in
the case of polarized electrons (in atoms or ions) and for the third one the presence
of an external magnetic field is necessary.

1.1 PNC effects with circularly polarized photons

The expression (1) arises as a result of the mixing of atomic states with opposite
parity by the effective weak PNC interaction which stems from the existence of the
neutral currents. In the standard approximation where only one neighboring state
with opposite parity and lying closest to the decaying level is taken into account,
the coefficient ξ1 in Eq. (1) is given by
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ξ1 =
−i < Ĥw >

ΔE − i
2Γ

R (2)

Here, < Ĥw > is the non-diagonal (pure imaginary) matrix element of the effec-
tive PNC interaction between the electron and the nucleus. This interaction mixes
levels with opposite parity (usually s and p states). The energy interval ΔE is the
interval between the levels mixed by the PNC interaction and Γ is the sum of both
the level widths; usually, the width Γp is much larger than Γs. The factor R will be
discussed later.
The nuclear-spin-independent part of the effective electron-nucleus interaction Hamil-
tonian within the relativistic (Dirac) theory reads in relativistic units (h̄ = c = 1)

Ĥw = − GF

2
√

2
QwρN(�r)γ5 (3)

where GF is the Fermi constant, Qw the ”weak charge” of the nucleus, ρN (�r) the
nuclear density distribution, and γ5 the relativistic pseudoscalar Dirac matrix.
The Fermi constant is dimensional and equals

GF ≈ 10−5 1
m2

p

(4)

where mp is the proton mass. Actually, 105m2
p ≈ m2

z, where mz is the mass of the
neutral Z-boson according to the Standard Model. The interaction Hamiltonian in
Eq. (3) is the result of the exchange of a Z-boson between the atomic electron and
the nucleus.
In the matrix element < Ĥw > the Fermi constant arrives in the combination
m2GF ≈ 10−5(m/mp)2, where m is the mass of the electron. The smallness of this
combination (∼ 10−11) defines mainly the usual smallness of the PNC effects in
atoms and ions.
The weak charge of the nucleus is defined as

Qw = Z(1 − 4 sin2 Θw) −N (5)

where Z, N are the numbers of protons and neutrons in the nucleus and Θw is the
Weinberg angle, which is the free parameter of the Standard Model. From high-
energy experiments follows the value sin2 Θw � 0.23. Therefore, the contribution
of the neutrons to Qw becomes dominant.
There exists also a nuclear-spin-dependent part Ĥ ′

w of the PNC weak interac-
tion between the electron and the nucleus. This interaction behaves like a parity-
nonconserving hyperfine interaction. It contains another weak interaction constant,
different from Θw and is suppressed by the factor (1− 4 sin2 Θw). However, as was
found in [15], the contribution of Ĥ ′

w is always screened by the electromagnetic
interaction Ĥa of the atomic electron with the anapole moment of the nucleus. The
existence of the anapole moment was predicted in [16] and arises due to the weak
interaction between the nucleons inside the nucleus. The interactions Ĥ ′

w and Ĥa

have exactly the same form and differ only by constants. Since the nucleon-nucleon
interaction is stronger than the electron-nucleon one, the Ĥa interaction dominates
the Ĥ ′

w interaction. The only exception is the hydrogen atom, where the Ĥa inter-
action is absent. In heavy atoms the Ĥa contribution amounts to only about 1 %
of the total Ĥw contribution.
Finally, the factor R in Eq. (2) represents the ratio

R = (
w1

w0
)1/2 (6)
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where w1 is the transition rate for the PNC transition opened due to the admix-
ture of a state with opposite parity (usually a p-state) to the basic decaying state
(usually an s-state). Thus, w1 usually corresponds to an E1 transition and w0 to
an M1 transition. It is assumed that both transitions are going to the ground state
(usually an s-state).
All the correction terms in Eq (1) arise due to the interference between the basic
(M1) and the PNC (E1) amplitudes; this explains the square root in Eq. (6). A con-
tribution proportional to w1, i.e. quadratic in the weak interaction matrix element,
can always be neglected.

1.2 PNC effects in atoms: enhancement factors

Usually, the PNC effects in atoms would never be observable due to the smallness
of the constant m2GF ∼ 10−11. Moreover, the matrix γ5 = −(OI

IO

)
, where I is the

unit 2x2 matrix, mixes the upper and lower components of the Dirac wave func-
tion ψ =

(
ϕ
χ

)
. For low Z, the lower component χ is small compared to ϕ since

χ ∼ (αZ)ϕ, where α � 1/137 is the fine structure constant. In the point-nucleus
limit the nuclear density distribution ρN (�r) in Eq. (3) can be replaced by the delta-
function δ(�r). Then the matrix element < Ĥw > is proportional to |ψ(0)|2. For low
Z, this would finally lead to a negligibly small influence of the PNC effect of the
order α2m2GF ≈ 10−16.
However, several reasons lead to a strong enhancement of the PNC effects in
heavy atoms and particularly in heavy HCI. These reasons were first formulated
in [8, 9]. First, the matrix elements < Ĥw > are strongly dependent on Z. For HCI
< Ĥw >∼ Z5 and this dependence can be explained by the following. The value
of |ψ(0)|2 is proportional to Z3, an additional power of Z comes from the relation
χ ∼ (αZ)ϕ and, finally, Qw is roughly proportional to N and thereby also to Z. In
heavy neutral atoms, only the valence electrons are responsible for the PNC effects.
For these electrons, the electron density at the nucleus is screened by the other elec-
trons so that |ψ(0)|2 ∼ Z. Consequently, for heavy neutral atoms < Ĥw >∼ Z3.
For high Z atoms this enhancement is still essential. Second, the factor R is usually
large (R >> 1) since the transition rate for E1 is larger than for M1 transitions.
In neutral atoms, where the M1 transition is forbidden in the nonrelativistic limit
one has to switch on an additional electric field to open it [8]. In HCI, where M1
transitions are always opened due to strong relativistic effects, the factor R is not
so large.
Third, and most important, it follows from Eq. (2) that the energy denominator
should be made as small as possible. From this point of view, a PNC experiment
with neutral hydrogen where the 2s and 2p levels are almost degenerate and splitted
only by small QED effects (Lamb-shift), would be desirable. The idea of such an
experiment was discussed in [17, 18]. In heavy neutral atoms the s and p levels
are no more degenerate so that the energy denominator is not small. The same
holds true for H-like HCI where the s and p levels are again splitted only by the
Lamb-shift, which exhibits a strong Z dependence (∼ Z4) and, therefore, grows up
very fast. For very high Z values the total enhancement factor converges to Zα−2

which unfortunately is not big enough to compensate the smallness of m2GF .
However, for He-like HCI there is another possibility to profit from a small energy
denominator in order to enhance the PNC effect: This is the ”crossing” of energy
levels with opposite parity. The behavior of the different levels of the first excited
configurations is different with respect to Z. Some levels grow up faster, some slower
within certain Z intervals. This can lead to ”crossings” of the levels and, in particu-
lar, to crossings of levels with opposite parity at certain Z values. These ”crossings”
are not literal since Z takes only integer values, but they may correspond to very
small values of ΔE. The most familiar example is provided by the 21S0 and 23P0
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levels which cross twice: at Z = 64 and at Z = 92. The near-crossing of the 23S1

and 23P0 levels at Z = 32 is also known. The idea to use the level-crossing in He-like
HCI for the search of PNC effects was introduced for the first time already in 1974
[19]. Later, this subject has been investigated theoretically in [20, 21, 22, 23, 24]
and various types of experiments with HCI have been proposed. More details about
the level crossings in He-like HCI in context with PNC effects can be found in [25].

1.3 PNC effects in neutral atoms: present status

In the Cs experiment [11] the 6s-7s excitation by right and left circularly polarized
laser light is employed. The admixture of the 7p to the 7s level and of the 6p to the
6s level produces a PNC effect. The effect is observed via the fluorescence light from
the 7s-6p transition; the transition probabilities are different for the right- and left-
laser excitations due to the difference in the 7s level population. The population
is different because the absorption rates are different for the right- and left-laser
excitation.
The basic 6s-7s transition is a strongly forbidden M1 transition; it opens only due
to relativistic effects of the order α2 in the amplitude, i.e. α4 in the probability. So,
in the experiment it was not possible to observe this basic transition. Therefore,
a weak electric field was applied that opened the 6s-7s M1 transition due to an
admixture of the 6p and 7p levels to 6s and 7s just as in case of a PNC admixture.
Then the PNC effect could be observed as an interference between the electric field-
admixed E1 transition and the PNC-admixed E1 transition. The expected order
of magnitude of the PNC effect observed, namely the asymmetry in the number of
photons for right- and left-laser excitation was

ξ1 � 10−4

and was finally measured with an accuracy of about 0.5 %. This accuracy allows
the separation of the contribution of the anapole moment.
However, the experiment is not direct. To extract the information about the weak
interaction constants (the weak charge Qw and the anapole moment of the nucleus)
from the experimental data, the theoretical calculation of the PNC effect in the
neutral Cs atom is necessary. This calculation presents a very difficult task and the
results of the calculations changed many times as a consequence of the inclusion
of new corrections (see the history of these calculations which covers nearly one
decade in [14]). First of all, a very accurate calculation of the wave functions
for the Cs atom is necessary which takes into account the electron correlation at
the accuracy level of 0.1 % . Such functions, obtained by different theoretical
methods (Multiconfigurational Dirac-Hartree-Fock Expansion, Relativistic Many-
Body Perturbation Theory, Relativistic Coupled Cluster Expansion) are presently
available. Still the situation remains very precarious, since the PNC effect is caused
by the valence 6s electrons, and the size of the effect is proportional to the density
of these electrons at the nuclear surface. Thus, all 55 electrons of the Cs atom are
involved in the screening of the nuclear charge.
It was found that the relativistic Breit interaction also plays an important role in this
screening. The inclusion of the Breit interaction into any theoretical method for the
evaluation of the electron correlation makes it much more cumbersome. Moreover,
it appeared that the result is sensitive to the inclusion of radiative QED corrections,
since the operators corresponding to these corrections are singular in the vicinity of
the nucleus and, hence, give an unexpectedly large contribution. The most accurate
up-to-date calculation [26] together with the experimental result yields

Q(AP )
w = −72.65(29)exp(36)theor (7)
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This Atomic Physics (AP) result should be compared with the High Energy (HE)
result

Q(HE)
w = −73.19(13) (8)

Unlike the AP results, the HE results are direct and do not require complicated
calculations.
At the moment, the AP and HE results seem to be compatible. However, the
theoretical part of Q(AP )

w still cannot be considered as fully reliable. Therefore,
experiments with atomic systems of a much simpler structure (e.g. He-like HCI)
are highly desirable. The direct measurement of the constant ξ1 with the heaviest
HCI is not possible at the moment due to the lack of detectors for circularly polarized
photons in the energy region of ∼ 100 keV.

1.4 PNC effects with polarized HCI

PNC effects with polarized ion beams were considered in [23, 24]. In [23], an exper-
iment was proposed for the determination of Qw in He-like Eu and in [24] a similar
experiment was discussed where the anapole moment of the nucleus using He-like
Gd ions could be measured.
In case of the Eu experiment, the constant ξ2 = 3λ

I+1ξ1 would be measured, where
λ is the degree of the beam polarization, and I the nuclear spin. This measurement
consists of registrating the asymmetry of the photon emission with respect to the
direction of the ion beam polarization. The idea of the experiment is based on the
near-crossing of the 21S0 and 23P0 levels.
The level scheme for the first excited configurations in 151

63 Eu
61+ ions (Z = 63, I =

5/2) is shown in Fig. 1.
The basic transition is the hyperfine quenched (HFQ) one-photon transition 21S0 →
11S0 + γ namely 1s2s1S0 + (HF mixing) 1s2s3S1 → (1s2)1S0 + γ(M1). The PNC-
admixed transition is 1s2s1S0 + (PNC mixing) 1s2p3P0 + (HF mixing) 1s2p3P1 →
(1s2)1S0 + γ(E1).
The calculated asymmetry in the photon emission with respect to the ion beam
polarization is:

ξ2 � λ · 10−4 (9)

The level crossing actually occurs for Gd (Z = 64) where the spacing between
the 21S0 and 23P0 levels is very small [27]: ΔE = (0.004 ± 0.74) eV. In this
case, according to Eq. (2) Re 1

ΔE− i
2 Γ

= ΔE
ΔE2+ 1

4Γ2 where Γ is the 23P0 level width

with Γ23P0 = 0.0016 eV. The minimum value of Re 1
ΔE− i

2 Γ
corresponds to ΔE

= 0.078 eV which gives ξmin
2 � λ · 10−3, i.e. 10 times larger than in Eu. The

maximum value, corresponding to ΔE = Γ = 0.0016 eV is ξmax
2 = 0.052. The

latter result is unprecedented for PNC effects in atoms and ions, though the big
deviation between ξmin

2 and ξmax
2 does not allow to draw definite conclusions about

the weak interaction constants. However, the experimental situation in Gd62+ is
not so favorable as in Eu61+. The reason is that in Gd62+ the lifetime of the 21S0

level defined by the 2E1 two-photon transition to the ground state is about one
order of magnitude smaller than the lifetime of the 23P0 level, which is determined
by the HFQ E1 transition to the ground state. This supplies a strong background
from 23S0 → 11S0 +γ transitions in experiments with Gd62+: the HFQ E1 23P0 →
11S0+γ(M1) transition rate is 5 orders of magnitude larger than the basic HFQ M1
21S0 → 11S0 + γ(M1) transition rate and both transitions are not distinguishable
due to their almost equal frequencies.
In Eu61+, the situation is different. The weak asymmetry effect is smaller, but the
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Figure 1: Energy level scheme of the first excited states of heliumlike europium.
Numbers on the right-hand side indicate the ionization energies in eV. The partial
probabilities of radiative transitions are given in s−1. Numbers in parentheses in-
dicate powers of 10. The large radiative width of the 1s2p 3P1 state is indicated as
a bold line. The double lines denote two-photon transitions.
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21S0 level lives significantly longer than the 23P0 level. The 21S0 lifetime equals
about 1.19 ps and corresponds to a typical decay length of about 0.1 mm in the
laboratory. This enables one to ”burn off” the 23P0 level and to get rid of the
parasitic 23P0 → 11S0 + γ transitions.

2 Production of ion beam polarization: selective
laser excitation of hyperfine sublevels

2.1 Polarization of one- and two-electron ions

The polarization of He-like ions in states with the total electron angular momentum
equal to zero (21S0, 23P0) is actually nuclear polarization.
Due to the relatively strong hyperfine interaction (the HF splitting is of the order
of 1 eV for Z ≥ 50), the nuclei in one-electron ions with polarized electrons will be
polarized within 10−15 s. This follows from the energy-time Heisenberg uncertainty
relation

ΔEΔt ≥ h̄ (10)

The capture of a second electron into the states 21S0, 23P0 will not destroy the nu-
clear polarization, since it occurs via the Coulomb interaction between the electron
and the nucleus. Hence, the capture process is much faster than the HF interaction
between the second electron and the nucleus.
The amplitude of the destruction process is of the order (VHF S

VCoul
), where VHFS is

the hyperfine interaction and VCoul is the Coulomb interaction between the elec-
tron and the nucleus. Then the probability for destruction is of the order (VHF S

VCoul
)2.

Assuming VHFS � 1eV and VCoul � 60 keV (binding energy for Z � 63), we obtain

(
VHFS

VCoul

)2

∼ 3 · 10−10 (11)

Thus, the probability of the nuclear polarization destruction during the capture
process of the second electron is fully negligible.
Since the direct polarization of the nuclei seems to be a more difficult problem, we
come to the idea of producing the polarization first in one-electron ions and then
obtain nuclear-polarized He-like ions in the states 21S0, 23P0 via the capture of a
second electron, for example in an appropriate capture foil. In the subsequent sec-
tions we will discuss the problems of production and preservation of the polarization
of one-electron ion beams in storage rings.

2.2 Radiative polarization: simple estimates

Radiative polarization of electrons arises via radiative transitions between Zeeman
sublevels (spin-flip transitions) in an external magnetic field. This was predicted in
[28] and realized in practice in Novosibirsk [29].
The transition rate for a spin-flip transition in the rest frame of a particle with spin
s = 1/2 is:

W↑↓ =
4

3h̄c3
| <↑ |�μ| ↓> |2w3 =

64
3h̄4c3

μ5
0H

3 (12)

where <↑ |�μ| ↓> is the spin-flip matrix element, �μ the magnetic moment operator,
w the transition frequency, μ0 Bohr’s magneton, and H the external magnetic field.
In the laboratory system
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W↑↓ =
64

3h̄4c3
|μ0|5H3γ5 (13)

where γ is the relativistic enhancement factor

γ =
(

1 − v2

c2

)−1/2

(14)

with the particle velocity v. The polarization time is Tp = W−1
↑↓ . For the electrons

in the Novosibirsk experiments the parameters in Eq. (13) were: H = 1 T, γ = 105.
Then the polarization time was about Tp � 1 h.
However, it is impossible to use the same method for heavier particles like protons
or bare heavy ions. For protons, the magnetic moment is small and the polariza-
tion time becomes huge: Tp ∼ 1020 h even with the same relativistic enhancement
factor.
In principle, the spin-flip mechanism could work for the polarization of H-like heavy
ions, since they possess a large magnetic moment of the order of μ0 (the magnetic
moment of an electron). Still, even for the future GSI storage ring with the param-
eters H = 6T, γ = 23 [2] one obtains a polarization time Tp � 103 h, which is too
long.
Looking at Eq. (12) one can see that there is a way to enhance the spin-flip proba-
bility for highly charged ions. Unlike the elementary particles (electrons, protons),
HCI possess excited states and, depending on the nuclear spin, also a hyperfine
structure, and one can use transitions between the Zeeman sublevels of the excited
and ground hyperfine states, thus greatly enlarging the value of transition frequency
ω. This idea was introduced in [30].

2.3 Selective laser excitation of the hyperfine sublevels

In [30] the idea of selective laser excitation of the hyperfine sublevels of the H-like
151
63 Eu ion with a nuclear spin I = 5/2 and the electronic ground state hyperfine
sublevels with F = 2 and F’ = 3 (F is the total angular momentum of the ion) was
exploited. The schematic picture of the ground and excited hyperfine levels for the
ground electronic state 1s1/2 in an external magnetic field is shown in Fig. 2.
The solid vertical lines denote the absorption transitions and the dashed lines show
the decay channels for the different Zeeman sublevels. The 1s1/2 F’ = 3 state is
excited by a laser with the frequency w = ΔEhfs +2μ0H , where ΔEhfs = 1.513(4)
eV is the hyperfine splitting [31] and 2μ0H is the Zeeman splitting in the external
magnetic field. For the experimental scheme proposed in [30] it is not necessary to
resolve the Zeeman structure.
The transition probability between the hyperfine sublevels are essentially of M1
type and are given by the expression

W (F ′M ′
F → FMF ) = AF

(
F ′ F 1
M̄ ′

F MF M ′
F −MF

)2

(15)

where the standard notation for the 3j-symbol is used, M̄F ≡ −MF and the con-
stant AF is independent of MF and M ′

F .
The selective excitation of the 1s1/2 F’ = 3 magnetic sublevels leads to the polariza-
tion of the 1s1/2 F’ = 3 state. The decay of the excited sublevels to the 1s1/2 F =
2 ground state with the selection rule M ′

F −MF = 0,± 1 polarizes also the ground
state. The population of the magnetic sublevels of the F = 2 state is shifted towards
increasing values of MF : this is the radiative polarization. An evaluation of the M1
1s1/2F

′ = 3 → 1s1/2F = 2 transition rate according to Eq. (15) yields a lifetime
of 10.9 ms for the excited F’ = 3 level. Thus, the equilibrium polarization for one
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Figure 2: Schematic picture of the Zeeman splitting of the hyperfine sublevels of
the ground electronic state for a hydrogenlike 151

63 Eu ion. The solid vertical lines
denote M1 transitions at the laser frequency ω = ΔEhfs + 2μ0H . The dashed lines
show the decay channels for the different Zeeman sublevels.

laser shot is achieved after 10.9 ms, then the process of laser excitation should be
repeated.
In [32, 33] resonant laser excitation measurements of the HFS in H-like 207

82 Pb and
209
83 Bi of ions were performed. It follows from the results of these measurements
that during one laser pulse (∼ 50 ns) an equilibrium between the excited and the
ground hyperfine levels is established and the occupation numbers for the ground
and excited states are equal. In [30] a scenario similar to the one used in [32, 33]
was assumed: a laser beam with the proper wavelength is travelling parallel to the
ion beam.

2.4 Description of the polarization

The spin-polarized state of an ion is described by the density matrix

ρF =
∑
MF

nFMF
ψ∗

FMF
ψFMF

(16)

with the normalization condition ∑
MF

nFMF
= 1 (17)

where nFMF
are the occupation numbers. We define the degree of polarization as

λF =
1
F

∑
MF

nFMF
MF (18)
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For nonpolarized ions, the distribution of the occupation numbers is uniform nFMF
=

1
2F+1 and λF = 0. In the case of full polarization nFF = 1 and λ = 1. For the full
opposite polarization, nF,−F = 1 and λ = −1.

2.5 The dynamics of the polarization

Each laser shot and the time afterwards until the next shot will be denoted as
”cycle”. Then the population (occupation) numbers for the excited sublevels n(i)

F ′M ′
F

in the i-th cycle under equilibrium conditions are

n
(i)
F ′M ′

F
=

1
2
n

(i−1)
FMF

δM ′
F

MF+1 (19)

where n
(i−1)
FMF

are the population numbers of the sublevels of the groundstate in

the (i-1)the cycle (see Fig. 2). The initial distribution n
(0)
FMF

is determined by
the conditions of the beam preparation; however, it turns out that the final result
depends very weakly on these conditions.
The population of the groundstate magnetic sublevels in the ith cycle will be

n
(i)
FMF

=
∑

M ′
F =MF ,MF ±1

W (F ′M ′
F → FMF )

Γ(F ′M ′
F )

n
(i)
F ′M ′

F
(20)

where W (F ′M ′
F → FMF ) is defined by Eq. (15) and

Γ(F ′M ′
F ) =

∑
MF

W (F ′M ′
F → FMF ) (21)

is the total width of the excited sublevel F ′M ′
F .

Inserting the expression for W (F ′M ′
F → FMF ) from Eq. (15) and using Eq. (19)

we obtain a recurrence relations between n(i)
FMF

and n(i−1)
FMF

which can be used for nu-
merical evaluations. These evaluations give the following results: with the uniform
initial population n(0)

FMF
= const the first cycle gives λ(1)

F = 0.1667. After 40 cycles

the polarization becomes λ(40)
F = 0.9993. Actually, one obtains the same result for

the case of the opposite initial polarization n(0)
F,−F = −1. Then λ(1)

F = −0.6667 and

λ
(40)
F = 0.9986. Thus, the building-up time for a degree of polarization at the λ =

0.999 level equals the time of 40 cycles and Tp � 0.44 s. Choosing the alternative
selective excitation with frequency ω = ΔEHFS − 2μ0H , a negative polarization
would be obtained within the same time interval.
Unlike the situation in [32, 33] we assume that the magnetic field is oriented lon-
gitudinally (along the beam direction). Then, since the quantization axis for the
laser photons is parallel to the ion beam and hence to the magnetic field, one can
use circularly polarized light for the excitation of the transitions shown in Fig. 2
without resolving the Zeeman structure.

2.6 Nuclear polarization

We define the nuclear polarization density matrix as the density matrix of a sub-
system

ρI =< ψFMF |ρF |ψFMF >el (22)

by integration over the electron variables.
The wave function ψFMF is expressed by the Clebsch-Gordan expansion
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ψFMF =
∑

MIMJ

CIJ
FMF

(MIMJ)ψIMIψJMJ (23)

where ψIMI is the nuclear wave function, ψJMJ is the electron wave function, and
CIJ

FMF
(MIMJ) are the Clebsch-Gordan coefficients. The integration in Eq. (22)

yields

ρI =
∑
MI

nIMI
ψ∗

IMI
ψIMI

(24)

with

nIMI
=

∑
MJ MF

nFMF
(CIJ

FMF
(MIMJ))2 (25)

We define the degree of the nuclear polarization similar to Eq. (18) as

λI =
1
I

∑
MI

nIMI
MI (26)

In case of full electron polarization (nFF = 1) Eq. (25) results in

nIMI
=
∑
MJ

(CIJ
FF (MIMJ))2 (27)

For H-like 151
63 Eu ions in the ground hyperfine state with F = 2 only two possibilities

are left regarding the condition MF = MI +MJ = 2, namely MI = 5/2,MJ = −1/2
and M1 = 3/2, MJ = 1/2. Inserting these values into Eq. (27) and evaluating the
Clebsch-Gordan coefficients, we obtain n 5

2
5
2

= 5
6 , n 5

2
3
2

= 1
6 . With these occupation

numbers the maximum possible value of the nuclear degree of polarization according
to Eq. (26) appears to be λmax

I = 0.93.

3 Diagnostics of the ion spin-polarization

3.1 Radiative electron capture as a probe process

The spin polarization of heavy ions in storage rings by optical pumping or any
another technique is of little help for future studies if the degree of ion polarization
λF cannot be controlled experimentally. For such a control, it is necessary to find a
physical process which is sensitive enough to the spin states of high-Z ions and which
can be measured easily and online. Based on the detailed theoretical analysis, we
have recently suggested to employ radiative capture of a free (or quasi-free) electron
by the projectile as a “probe” process [34]. The radiative electron capture (REC),
which is the time-reversed photoeffect and hence is accompanied by the emission of
photons, is efficient as it is the dominant process in relativistic collisions of high-Z
projectiles with electronic and atomic targets.
In the past, the REC of highly-charged ions has been explored in great details
in a number of experiments [35, 36, 37]. For example, by making use of recent
advances in the design of x-ray detection techniques, first measurements of the linear
polarization of the recombination photons have been performed for the capture of
an electron into the K-shell of bare uranium ions [38]. When compared with theory,
such polarization measurements are quantitatively well described by means of the
density matrix formalism, based on Dirac’s relativistic equation [39, 40]. Apart from
the explanation of the available experimental data, the density matrix treatment of
the REC also predicts that the linear polarization of the emitted photons is strongly
influenced by the spin-polarization of the (incident) ions [34]. Such a polarization
transfer, therefore, opens a way for determining the spin properties of the ion beam.
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Figure 3: Definition of the polarization ellipse; its principal axis is characterized by
the angle χ0 with respect to the reaction plane which is formed by the directions of
incoming ion beam and emitted photons.

3.2 The Stokes parameters and the polarization ellipse of the
emitted photons

In order to understand how the polarization transfer in the radiative electron cap-
ture may help with the diagnostics of the ion spin-polarization, we have first to agree
how the polarization for both the incoming hydrogen-like ions and the emitted x-ray
photons is described. While the spin states of ion polarization is characterized by
an (averaged) parameter defined in Eq. (18), the polarization of the recombination
photons is described most conveniently in terms of the Stokes parameters. These
parameters are determined by the intensity if Iχ of the linear polarized light mea-
sured at different angles χ with respect to the reaction plane which is as formed by
the directions of the incident ion beam and the emitted photons. While the first
Stokes parameter

P1 =
I0 − I90
I0 + I90

(28)

is derived from the intensities parallel and perpendicular to the reaction plane,
the parameter P2 follows from a similar ratio, taken at χ = 45◦ and χ = 135◦,
respectively:

P2 =
I45 − I135
I45 + I135

(29)

The Stokes parameters are very convenient not only for an experimental but also
for a theoretical analysis of the light polarization since they are directly related to
the photon spin-density matrix in the helicity representation:

〈
kλ |ρ̂ γ |kλ′〉

=
1
2

(
1 + P3 P1 − iP2

P1 + iP2 1 − P3

)
, (30)

where k denotes the wave vector and λ = ± 1 the helicity of the recombination
photons, that is their spin projection onto the direction of propagation. A third
Stokes parameter P3, finally, reflects the degree of the circular polarization of the
light.
The two Stokes parameters P1 and P2 specify the linear polarization of the radiation
completely, i.e., both the degree of the polarization as well as its direction in the
plane perpendicular to the photon momentum k. Instead of the Stokes parameters,
however, we may represent the linear polarization of the emitted x rays also in
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terms of a polarization ellipse which is defined in the plane perpendicular to k.
This ellipse is characterized by the relative length PL =

√
P 2

1 + P 2
2 of the principal

axis as well as the angle χ0 with respect to the reaction plane [cf. Figure 3]. When
expressed in terms of the Stokes parameters, this angle is given by the ratio

tan 2χ0 =
P2

P1
(31)

and thus can be used as a single parameter for analyzing the direction of the polar-
ization of the emitted light. In the next subsection we will show how the angle χ0

of the polarization ellipse of recombination photons is related to the spin states of
the incoming hydrogen-like ions.

3.3 The polarization transfer in electron capture

We are now prepared to study the influence of an initially polarized ion beam
on the Stokes parameters and, thereby, on the polarization ellipse of the emitted
recombination photons. In order to start such a polarization analysis, we note
that the Stokes parameters can be expressed in terms of the (matrix) elements of
the photon spin-density matrix given by Eq. (30). For the radiative capture of a
free unpolarized electron with asymptotic momentum p and spin projections ms

= ± 1/2 into the hyperfine bound state
∣∣∣F̃ M̃F

〉
of the subsequently helium-like

projectile, the matrix elements are obtained by standard techniques [34]

〈
kλ | ρ̂ γ |kλ′ 〉

=
1
2

∑
MF ms

∑
F̃ M̃F

M∗
p(ms,MF ;λ, F̃ , M̃F )

× Mp(ms,MF ;λ′, F̃ , M̃F )nFMF (32)

They indicate that the spin state of the emitted photons depends both on the
amplitudes Mp(ms,MF ;λ, F̃ , M̃F ) for the capture of the electron as well as on
the (relative) population nFMF of the hyperfine sublevels |FMF 〉 of the initially
hydrogen-like ions.
Inserting the spin-density matrix (32) into Eq. (30), we are able to express the
Stokes parameters for the recombination photons in terms of the (reduced) tran-
sition matrix elements. For the sake of brevity, we omit here the details of this
derivation and just discuss the final results which predict for the K-shell electron
capture that the two Stokes parameters P1 and P2 behave in rather different ways
with respect to the spin-polarization of hydrogen-like projectile ions. While the
parameter P1 does not depend on beam polarization and, hence, can not be used
for polarization studies, the second Stokes parameter P2 appears to be proportional
to the degree of the beam polarization defined in Eq. (18):

P2 ∼ λF =
1
F

∑
MF

nFMFMF (33)

The Stokes parameter P2 may serve, therefore, as a valuable tool for measuring the
polarization properties of the heavy ion beams at storage rings.
Instead of analyzing a single parameter P2, it is even more convenient to study the
overall rotation of the linear polarization of the recombination photons out of the
reaction plane. As discussed already, such a rotation is characterized by the angle
χ0. For the electron recombination into the K-shell of polarized hydrogen-like ions
this angle can be obtained from Eqs. (31) and (33):

tan 2χ0 ∼ λF (34)
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Figure 4: Rotation angle χ0 of the polarization ellipse of the emitted photons follow-
ing the capture of unpolarized electrons into the K-shell of hydrogen-like europium
ions (with nuclear spin I = 5/2). Calculations are presented for completely polar-
ized projectile ions (λF = 1) and in the laboratory frame.

As can be seen from Eq. (34), the capture of electrons by unpolarized hydrogen-like
ions, λF = 0, always leads to an emission of light which is polarized either within or
perpendicular to the reaction plane (χ0 = 0◦ or χ0 = 90◦), while any contribution
from a nonzero λF parameter will rotate the polarization ellipse (χ0 �= 0◦ and χ0 �=
90◦) out of the reaction plane. The measurement of the rotation angle χ0 therefore
provide a direct access to the degree λF of the polarization of the incoming ions
without a detailed analysis of the Stokes parameters or the shape of the polarization
ellipse needs to be analyzed in detail.
Figure 4 displays the rotation angle χ0 as calculated, for example, for radiative cap-
ture of electrons into the ground state of completely polarized (λF = 1) hydrogen-
like europium ions with energies in the range 100 MeV/u ≤ Tp ≤ 400 MeV/u. As
can be seen from this figure, the effect of the ion polarization becomes particularly
remarkable for the forward emission of the recombination photons. Note, however,
that χ0 is not defined at the emission angle θ = 0◦ (or θ = 180◦), because pho-
ton emission in either the forward or backward direction does not break the axial
symmetry for the collision system. For the angle θ = 0◦, therefore, the linear po-
larization of the light must always be zero. At larger angles of, say 10◦ < θ < 60◦,
however, the degree of linear polarization becomes large enough for experiments
and preferable for first investigations of the polarization of ion beams.

4 Preservation of the polarization in storage rings

4.1 Depolarization mechanisms

One of the possible depolarization mechanisms of polarized ion beams in storage
rings is the influence of the quickly changing fields when the ions meet the magnetic
system of the ring. In principle, shake-off processes could occur, which would de-
stroy the polarization. These effects are absent in the classical field limit, when the
nonstationary Schrödinger equation is applied for the description of the spin motion
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in a time-dependent magnetic field. This equation describes the spin behavior in the
rest-frame of a particle moving in a storage ring. If this equation has a well-defined
solution, the shake-off processes are absent. The criteria for the existence of such
a solution are the standard mathematical criteria of the ”smoothness” of the field
functions, the absence of discontinuities etc.
Physically, these criteria are fulfilled for example by the exponentially dropping
fringe fields of the bending magnets in the GSI storage ring ESR.
Another possible depolarization mechanism relates to spin resonances. The polar-
ization of the ion beam can be destroyed by any external periodic force if the period
of this force coincides with the period of the spin precession of a polarized state. In
a storage ring, the role of this external periodic force can be played by the Lorentz
force which enables the revolution of a particle around the ring. If the revolution
frequency coincides with the Larmor frequency of the spin precession (or with one
of its lower harmonics), a spin resonance can occur.
Spin resonances are unavoidable when the particles are accelerated (like electrons
in a synchrotron) but can be avoided when the particles have a fixed energy, like
ions in a storage ring.
Therefore, we will neglect both mechanisms of depolarization. However, even in the
absence of these mechanisms the preservation of the polarization of the ion beam
in the storage ring remains to be a severe problem. In the following we treat this
problem applying the procedure adopted in Ref. [41]

4.2 Instantaneous quantization axis

Aiming for a quantum-mechanical description of the motion of a hydrogen-like heavy
ion in a magnetic field, we consider the dynamics of a particle with total angular
momentum �s, which will be called in the following as spin. For nuclei with nonzero
nuclear spin I, s = I ± 1/2 = F with ms = -s, ..., +s. Since this investigation is
oriented at the presently existing ion storage rings like the ESR with the relativistic
factor γ ≈ 1, we need neither the relativistic wave equation nor the Bargmann-
Michel-Telegdi equation [42] for the description of the spin motion.
The Schrödinger equation for the spin wave function χs(t) reads[

ih̄
∂

∂t
+ μ �H(t) · �s

]
χs(t) =

[
ih̄
∂

∂t
+ μ · ŝH(t)

]
χs(t) = 0 (35)

where �s is the spin operator, ŝH(t) = �s �H, μ is the magnetic moment of the bound
electron of the order 2μ0, where μ0 = eh̄

2mc is the Bohr magneton, h̄ is the Planck
constant, e, m are the electron charge and mass, c is the speed of the light and �H(t)
is the time-dependent magnetic field experienced by the ions in their rest frame.
We introduce the time-dependent instantaneous quantization axis (IQA) �γ with
respect to which the degree of polarization remains constant. The existence of the
IQA is actually equivalent to the existence of a definite polarization. The IQA
presents also a convenient tool for the investigation of depolarization effects.
To prove the existance of the IQA we introduce first the spin projection operator
onto the IQA

ŝγ(t) = �̂s�γ (36)

This operator is Hermitian, and at a given time moment it possesses a complete set
of eigenfunctions in the spin space with real eigenvalues obtained from the solution
of

ŝγ(t)χsms(t) = msχsms(t) (37)
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The arbitrary solution of the nonstationary equation can be expanded in the com-
plete set χsms(t)

χs(t) =
∑
ms

asms(t)χsms(t) (38)

The IQA is defined by the equation

∂

∂t
< χs(t)|ŝγ(t)|χs(t) >= 0 (39)

Using Eq. (35) for the differentiation yields

∂

∂t
< χs(t)|ŝγ(t)|χs(t) >=< χs(t)|iμ

h̄
[Hk(t)ŝkŝiγi(t) − ŝiγi(t)Hk ŝk] + ŝi

∂γi

∂t
|χs(t) >

where we adopted Einstein’s rule for summation over repeating indices. With the
help of the commutation relation

ŝiŝk − ŝkŝi = iεiklŝl (40)

where εikl is the fully antisymmetric unit tensor and the definition of the vector
product

(�a×�b)l = εiklaibk (41)

we arrive at the equality

∂

∂t
< χs(t)|ŝγ(t)|χs(t) >=< χs(t)|

[
∂�γ(t)
∂t

− μ

h̄

(
�H(t) × �γ(t)

)]
�̂s|χs(t) > (42)

Then Eq. (39) is fulfilled if the IQA satisfies the equation

∂�γ(t)
∂t

=
μ

h̄
( �H(t) × �γ(t)) (43)

In principle, the solution of Eq. (43) with the given initial condition should exist
for any physically reasonable function �H(t). This proves the existence of the IQA.
Eq. (43) coincides with the equation for the classical angular momentum motion.
In this sense the existence of a IQA means simply the existence of polarization
and the direction of the polarization coincides always with the direction of the
IQA. However, for our purposes we need to prove the more delicate statement of
the constancy of the degree of polarization with respect to the IQA. This is not a
classical but a quantum-mechanical property. As far as we know this statement has
never been proved before.
Insertion of the expansion Eq. (38) into Eq. (39) results in

∂

∂t

∑
ms

|asms(t)|2ms = 0 (44)

The matrix elements in Eq. (39) can be presented also in another way via the spin
density matrix. We employ the spin density matrix from [30]

ρs(t) =
∑
ms

nsms(t)χ
∗
sms

(t)χsms(t) (45)

where nsms(t) are the occupation numbers with respect to the IQA. These occupa-
tion numbers nsms(t) are connected to the amplitudes asms(t) via
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nsms(t) = |asms(t)|2 (46)

Then

< χs(t)|ŝγ(t)|χs(t) >= Tr(ρs(t)ŝγ(t)) =
∑
ms

msnsms(t) (47)

From the definition of the degree of polarization λs ([30])

λs =
1
s

∑
ms

msnsms(t) (48)

we find from Eq. (48) and Eq. (39)

λs =
1
s

∑
ms

msnsms(t) =
1
s
< χs(t)|ŝγ(t)|χs(t) >= const (49)

We note that only the degree of polarization λs remains constant, while the occu-
pation numbers of the magnetic sublevels nsms(t) have a general time dependence.

4.3 Conservation of the polarization in the spontaneous de-
cay process

The mechanism of polarization proposed in [30] implies a selective laser excitation
of hyperfine levels and a spontaneous decay from the excited hyperfine levels to
the ground state. The fact that only the degree of polarization λs, but not the
occupation numbers of the magnetic sublevels nsms(t) remains constant necessitates
to prove the conservation of the degree of polarization in the spontaneous decay
process.
It has been argued in Ref. [30] that the connection between the occupation numbers
ns+1ms+1 of the magnetic sublevels of the excited hyperfine level and the occupation
numbers nsms of the magnetic sublevels of the ground hyperfine level in process of
spontaneous decay is given by (cf. Eq. (20)).

nsms =
∑

ms+1

W (s+ 1,ms+1 → s,ms)
Γs+1,ms+1

ns+1ms+1 (50)

where W (s+ 1,ms+1 → s,ms) is the probability of the M1-transition between the
(s + 1,ms+1) and (s,ms) magnetic sublevels of the excited and ground hyperfine
levels and Γs+1,ms+1 is the width of the excited sublevel (cf. Eq. (21)).

Γs+1,ms+1 =
∑
ms

W (s+ 1,ms+1 → s,ms) (51)

According to Ref. [30]

W (s+ 1,ms+1 → s,ms) = A

(
s+ 1 s 1
−ms+1 ms ms+1 −ms

)2

(52)

where A is a constant. Then using the expressions for the 3j-symbols (see [43])

(
s+ 1 s 1
−ms+1 ms+1 0

)2

=
2(s+ 1 +ms+1)(s+ 1 −ms+1)

(2s+ 1)(2s+ 2)(2s+ 3)
(53)

(
s+ 1 s 1
−ms+1 ms+1 − 1 1

)2

=
(s+ms+1)(s+ 1 +ms+1)
(2s+ 1)(2s+ 2)(2s+ 3)

(54)
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(
s+ 1 s 1
−ms+1 ms+1 + 1 −1

)2

=
(s−ms+1)(s+ 1 −ms+1)
(2s+ 1)(2s+ 2)(2s+ 3)

(55)

the width is given by

Γs+1,ms+1 =
∑
ms

W (s+ 1,ms+1 → s,ms) =
∑
ms

A

•
(

s+ 1 s 1
−ms+1 ms ms+1 −ms

)2

=
A

2s+ 3
(56)

Thus, the magnetic sublevel widths for the excited hyperfine level are all equal to
each other.
To prove the conservation of polarization in the process of spontaneous decay we
insert Eq. (51) into Eq. (49) and change the order of summation

λs =
1
s

∑
ms

msnsms =
1
s

∑
ms

ms

∑
ms+1

W (s+ 1,ms+1 → s,ms)
Γs+1,ms+1

ns+1ms+1 =

1
s

∑
ms+1

ns+1ms+1

∑
ms

ms
W (s+ 1,ms+1 → s,ms)

Γs+1,ms+1

=
1
s

∑
ms+1

ns+1ms+1Cms+1 (57)

Direct evaluation of the coefficient Cms+1 using Eqs. (53)-(56) yields

Cms+1 =
∑
ms

ms
W (s+ 1,ms+1 → s,ms)

Γs+1,ms+1

= (2s+ 3)
∑
ms

ms

•
(

s+ 1 s 1
−ms+1 ms ms+1 −ms

)2

= ms+1
s

s+ 1
(58)

Inserting the result of Eq. (58) into Eq. (57) one obtains:

λs =
1

s+ 1

∑
ms+1

ns+1ms+1ms+1 = λs+1 (59)

This equivalence proves that the degree of polarization is conserved in the process
of spontaneous decay.

4.4 Rotation of the IQA in the magnetic system of a storage
ring

In case of the radiative polarization of the ion beam it was assumed in [30] that
the polarization occurs via selective laser excitation of certain magnetic sublevels of
the hyperfine levels of an ion in a longitudinal magnetic field. The other possibility,
also considered in [30], was to employ for the excitation a circularly polarized laser
beam oriented along the ion beam direction in the absence of the magnetic field.
In both cases, the radiative decay of the upper excited hyperfine level would lead
to the polarization of the lower hyperfine level during the ion’s revolutions around
the ring. The decay time for the upper hyperfine level is about 10 ms (Z ≥ 50)
and after this time the laser shot should be repeated. The existence of the IQA
ensures that the polarization will grow up during the decay time and, in case of
151
63 Eu ions will reach the value λ = 0.167, provided that the initial polarization
value was λ = 0. After approximately 40 shots the polarization becomes close to
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100%. This occurs independent of the instantaneous direction of the IQA during
the many ion’s revolutions around the ring. However, at the moment of the second
laser shot the IQA should be oriented again longitudinally.
To study this problem we will consider the solutions of Eq. (43) for a few simple
examples. In case of a constant magnetic field �H with initial condition �γ(0) ‖ �H, Eq.
(43) has the evident solution �γ ‖ �H. In particular, �γ coincides with the direction of
the longitudinal magnetic field when the polarization arises in the cooler magnet due
to the mechanism as described in [30]. In general, for a time-dependent magnetic
field �H(t) the direction of �γ(t) does not coincide with �H(t).
Even for a constant magnetic field but with the initial condition for Eq. (43)
different from �γ(0) ‖ �H, the IQA does not coincide with the direction of �H. As
an example we consider the simplest case of a magnetic field directed along the
x (vertical) axis. The initial polarization we assume to be oriented along the z
axis which is the direction of the ion velocity. Then the solution of Eq. (43) with
magnetic field Hx = H, Hy = Hz = 0 and with the initial conditions for the unit
vector �γ = (γx, γy, γz) = (0, 0, 1) results in γx = 0, γy = sinωt, γz = cosωt. Thus
the IQA rotates in the yz plane, perpendicular to the direction of magnetic field,
with the time-independent frequency ω = 1

h̄μH.
In a more general case, when Hx = H(t), Hy = Hz = 0, i.e. when the magnetic
field is changing its magnitude but not the direction, the solution of Eq. (43) reads
with the same initial conditions γx = γy = 0, γz = 1

γx = 0 (60)

γy = sinϕ(t) (61)

γz = cosϕ(t) (62)

ϕ(t) =
μ

h̄

∫ t

0

H(t′)dt′ (63)

This corresponds to the real situation where the longitudinally polarized ion (lon-
gitudinal direction corresponds to the z axis) meets the magnetic field of a bend-
ing magnet. The latter field has a vertical orientation (along the x axis). The
IQA again rotates in the yz (horizontal) plane with the time-dependent frequency
ω(t) = ϕ(t)/t.
The problem arises since the bending magnet rotates the beam trajectory due to
the Lorentz force. The ion velocity changes its direction according to the equation
of motion

v̇ = − Ze

Mc
( �H× �v) (64)

where �v is the ion velocity, Z is the charge of the nucleus, and M is the mass of the
nucleus. Roughly we can write the rotation angle α for the ion trajectory as

α = μN

∫ t

0

H(t′)dt′ (65)

where

μN =
2Zm
M

μ0

h̄
. (66)

For 151
63 Eu ions μN = 4, 54 · 10−4 μ0

h̄ .
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Comparing Eq. (65) and Eq. (63) we conclude that the rotation angle for the IQA
after passing only one bending magnet of 600 (π/3) will be of the order 104π. Thus,
it will be extremely difficult to fix the direction of the IQA parallel to the ion beam
direction at the moment of the next laser shot.

4.5 Further depolarization effects and conclusions

A serious problem arises also due to the velocity spread Δv of the stored ions. The
relative velocity spread Δv

v leads to a spread Δϕ ≈ α Δv
v in the rotation angle.

Then, with Δv
v ≈ 10−5 and a revolution frequency of 1 MHz which correspond to

the conditions in the GSI ring, one obtains an angle-spread Δϕ ≈ 20π (for α = π/3)
after 1 sec. This actually means the full depolarization of the beam.
The situation can be improved by the use of ”Siberian snakes”, i.e. of special mag-
nets which rotate the direction of the polarization of particles. These snakes were
first used in Novosibirsk [29, 44], for the rotation of the electron polarization, and
in the Indiana proton storage ring for the rotation of the proton polarization [45].
In the case of the GSI storage ring, the first rotating snake should be placed in
front of the first bending magnet behind the longitudinal polarizing magnet and
should rotate the polarization by an angle π/2 to the vertical direction. Then the
IQA will coincide with the direction of the magnetic field of the bending magnet
and the latter will not rotate the IQA. Field inhomogenouities in the direction of
the bending magnet will produce an uncertainty in the determination of the beam
polarization. To achieve an accuracy of the order of 0.5% for PNC experiments
with HCI, these inhomogenuities should be kept at a level of 10−3. In front of the
longitudinal magnet an another rotating snake should be placed which would rotate
the IQA back by an angle π/2 so that the direction of the polarization will become
again longitudinal.
The use of the snakes, however, dos not help to avoid the problem with focussing
(quadrupole) magnets and other external magnetic fields, among them the magnetic
field of the earth (∼ 0.5 × 10−4 T) and the unknown magnetic fields of various
metallic parts of the ring equipment.
Another depolarization factor is the cooling magnet. Due to its longitudinal field,
this magnet can be used in principle as a polarization magnet. However, the cooling
electrons, co-propagating with one-electron ions in the beam, can produce also
depolarization. The most simple solution of the problem would be switching off the
electron source for the polarization time (about 0.5 s).
In order to overcome these problems it seems to be unavoidable to build a heavy-
ion storage ring which is especially devoted to the preservation of the polarization
of highly-charged ions. As a minimum requirement, this ring should be screened
from external magnetic fields. Finally, it should be noted that almost all of the
polarization-destroying effects are negligibly small, if polarized bare nuclei are in-
jected, stored and accumulated in the ring.
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[37] J. Eichler and Th. Stöhlker, Physics Reports 439, 1 (2007).
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