
Flexible data transport for the online analysis in a particle physics experiment.∗

D. Klein1,2 and M. Al-Turany1

1GSI, Darmstadt, Germany; 2University of Applied Sciences, Darmstadt, Germany

Motivation

The next generation of experiments at GSI/FAIR share
the common software framework FairRoot[1] which pro-
vides the building blocks for offline analysis. The software
is well-suited for batch-processing.

Online analysis processes the data on-the-fly, filters the
interesting physics data and it needs to reduce the raw data
rates by three orders of a magnitude.

The FairRoot framework must be extended to support
the continuous pipeline-processing scenario of the online
analysis.

During prototyping it is very important to be able to
often change data paths and processing elements in the
pipeline. The inter-process data transport must be reliable
and efficient within one node and over the network between
nodes.

The Data Transport Framework

A data transport framework has been proposed and im-
plemented[3]. Each framework component, a so-called de-
vice, runs in its own operating system process. A device
has a variable number of inputs and outputs which can be
flexibly interconnected to each other. The data transport
of each connection is built upon a highly efficient mes-
sage queuing library (ZeroMQ[2]). The message queuing
technology itself is reliable by definition. For inter-node
connections the transport relies on the Linux TCP/IP stack
which works over Ethernet and Infiniband. Intra-node con-
nections are realized on Unix’ named pipes.

The framework provides a basic set of devices: sampler,
processor, splitter, and merger.

A sampler device starts any pipeline during simulation.
It feeds simulated data from root files into the pipeline. The
current implementation supports control over the sending
speed in events per second.

Processors are devices which operate on the contents of
the messages (events) - they constitute the actual process-
ing instance in the pipeline. The current implementation
features a plugin system for processing algorithms via Pro-
cessorTask similar to the FairTask class in FairRoot.

Splitters and mergers are devices to de/multiplex the data
path. Whenever a processing instance must be distributed
over serveral nodes/processes due to bandwidth and/or cpu
limitations data paths can be splitted and merged before
and after processor devices.

∗ thanks to the KoSI program

Let n, m ∈ N, then a many-to-many mesh of n splitters
to m mergers serves as a transposing engine (with n in-
puts and m outputs) of signals from n subdetector links to
an over m nodes/processes distributed processing instance.
Fig. 1 illustrates an example which was successfully run
with the current implementation, monte-carlo data gener-
ated with PandaRoot[1] and a dummy processor task.

Sampler A Splitter A

Merger 1

Merger 2

Merger 3

Proc AB1

Sampler B Splitter B

Proc AB2

Proc AB3

Figure 1: 3-way distributed processor fed from two
sources.

TCP throughput
A bandwidth utilization of 99.7% of the theoretical max-

imum for TCP over GigabitEthernet has been seen. In the
test a sampler was connected to a processor on two identi-
cal nodes - CPU load was 25% of one core (2.13 GHz Intel
Xeon) per device.

Next Steps
• Integration into FairRoot repository,

• configuration management via directory service,

• adding support for time-series simulated data,

• improving the user interface,

• reducing latency even more by using shared memory
transport of ZeroMQ between processor tasks each
running in their own thread,

• collecting runtime monitoring information.

References
[1] http://fairroot.gsi.de

[2] http://www.zeromq.org

[3] D. Klein, “Flexible data transport for the online analysis in a
particle physics experiment”, Feb 2013, Bachelor thesis.

GSI SCIENTIFIC REPORT 2012 IT-03

495


