The *g* Factor of Lithiumlike Silicon ²⁸Si^{11+*}

A. Wagner^{†1}, S. Sturm^{1,3}, F. Köhler^{1,2}, W. Quint², G. Werth³, and K. Blaum¹

¹MPI für Kernphysik, D-69117 Heidelberg; ³Institut für Physik, Johannes Gutenberg-Universität, D-55099 Mainz; ²GSI, D-64291 Darmstadt

The relativistic electron-electron interaction can be stringently tested by high-precision measurements of the gyromagnetic factor (g factor) of the valence electron bound in many-electron systems. Especially three-electron ions allow for a highly-sensitive test since they can be theoretically predicted to a high accuracy. To this end the g factor of the 2s valence electron bound in lithiumlike silicon ²⁸Si¹¹⁺ has been determined with an uncertainty of $\delta g/g = 1.1 \cdot 10^{-9}$ [1], which is the most precise g factor measurement of a three electron system to date.

The g factor measurement

For the g factor measurement a single ion was stored in a cryogenic triple Penning trap setup for several months [2]. To determine the g factor via

$$g = 2\frac{\nu_L}{\nu_c} \frac{q}{M_{ion}} \frac{m_e}{e} \tag{1}$$

the Larmor frequency ν_L and the free cyclotron frequency ν_c of the ion have to be measured, while the mass of electron m_e and ion M_{ion} are known from other high-precision experiments. The free cyclotron frequency can

Figure 1: g-factor resonance of a single ²⁸Si¹¹⁺-ion.

be determined by measuring the three eigenfrequencies of the ion in a first Penning trap. Simultaneously, microwaves close to the expected Larmor frequency are irradiated into the trap to induce spin flips. To determine the spin orientation with the continuous Stern-Gerlach effect, the ion is transported to a second Penning trap, where a magnetic inhomogeneity couples the spin orientation to the axial motion. Comparing the spin orientation to the orientation determined in the last cycle reveals if a spin flip was successfully induced. After several hundred cycles the spin flip probability as a function of the measured frequency ratio $\Gamma = \nu_L/\nu_c$ yields a g factor resonance as shown in Fig. 1.

We have recorded three resonances with different microwave powers to check for related systematic shifts. The experimental result $g_{exp}=2.000\ 889\ 889\ 9(21)$ is in excellent agreement with the theoretical value $g_{exp}=2.000\ 889\ 909(51)$. The comparison between experimental and theoretical g factor confirms the many-electron contribution on the level of 10^{-4} , which is the most stringent test of relativistic many-electron calculations to date. Since the experimental value is by more than one order of magnitude more precise than the theoretical value, any improvement of the theoretical g factor will immediately improve this test.

Outlook

For highly sensitive tests of quantum electrodynamics with heavy ions the achievable theoretical precision is limited by unknown nuclear parameters. A measurement of both lithium- and hydrogenlike ions allows to cancel the contributions of the nuclear parameters to a large extent, hereby significantly increasing the stringency of the test [3]. Moreover, if combined with a measurement of the boronlike charge state, the fine structure constant α can be determined with a comparable uncertainty as the current value [4].

Having finished the g factor measurement of lithiumlike silicon, a g factor measurement of hydrogenlike carbon was started, aiming for an improvement of the precision of the electron mass by one order of magnitude.

References

- [1] A. Wagner et al., Phys. Rev. Lett. 110, 033003 (2013)
- [2] B. Schabinger et al., Eur. Phys. J. D 66, 71 (2012)
- [3] V.M. Shabaev et al., Phys. Rev. A 65, 062104 (2002)
- [4] V.M. Shabaev et al., Phys. Rev. Lett. 96, 253002 (2006)

^{*}Work supported by Helmholtz Alliance HA216/EMMI, Max Planck Society and EU (ERC Grant No. 290870-MEFUCO).

[†] ankewag@uni-mainz.de