Theoretical Predictions of Properties and Gas-Phase Behaviour of Carbonyl Complexes of Group-6 Elements Cr, Mo, W, and Element 106, Sg

V. Pershina¹ and J. Anton²

¹GSI, Darmstadt, Germany; ²Institut für Elektrochemie, Universität Ulm, Germany.

Up to now, experimental gas-phase chemical studies were performed for elements 104 (Rf) through 108 (Hs), 112 (Cn) and 114 (Fl) [1]. A search for a new class of volatile species suitable for gas-phase chromatography studies resulted in the idea to synthesize carbonyl complexes of the heaviest elements. Accordingly, carbonyl complexes of Mo, W and Os, homologs of Sg and Hs, respectively, were synthesized and studied on their volatility by using both the isothermal (IC) and thermochromatography (TC) techniques [2].

Theoretical predictions of gas-phase properties and chromatography behaviour of the heaviest elements and their homologs has been a subject of our long-term research [3]. In the present work, we predict properties of group-6 M(CO)₆ (M = Cr, Mo, W, and Sg) and their adsorption behaviour on quartz for future gas-phase chromatography experiments. For calculations, we used our 4-component, fully relativistic, Density Functional Theory method developed within the non-collinear spin-polarized formalism [4]. For calculations of the adsorption energy of the molecules on a neutral (quartz) surface, the following model for a molecule-slab interaction was used [5]:

$$E(x) = -\Delta H_{ads} = -\frac{3}{16} \left(\frac{\varepsilon - 1}{\varepsilon + 2}\right) \frac{\alpha_{mol}}{\left(\frac{1}{IP_{slab}} + \frac{1}{IP_{mol}}\right) x^3}$$

Here, ε is the dielectric constant of the surface material, IP_{mol} and IP_{slab} are ionization potentials of the molecule and surface material, respectively, α_{mol} is molecular polarizability and *x* is the molecule - surface interaction distance estimated using molecular bond lengths.

Results of the calculations of molecular properties (also in comparison with other calculations [6]) needed for predictions of adsorption are given in Tables 1 and 2.

Table 1. Calculated and experimental bond lengths, R_e (in Å), of M(CO)₆ (M = Cr, Mo, W, and Sg)

	Method	$R_{\rm e}({\rm M-C})$	$R_{\rm e}({\rm C-O})$	
$Cr(CO)_6$	4 <i>c</i> -DFT	1.913	1.152	
	exp.	1.918	1.141	
$Mo(CO)_6$	4 <i>c</i> -DFT	2.067	1.152	
	RECP CCSD(T) ^a	2.076	1.147	
	exp.	2.063	1.145	
$W(CO)_6$	4 <i>c</i> -DFT	2.062	1.153	
	RECP CCSD(T) ^a	2.065	1.148	
	exp.	2.058	1.148	
$Sg(CO)_6$	4 <i>c</i> -DFT	2.123	1.154	
	RECP CCSD(T) ^a	2.112	1.150	
^a Ref. [6].				

Table 2. Ionization potentials, IP (in eV), average polarizabilities, α (in a.u.), molecule-surface adsorption distances, x (in Å), and adsorption enthalpies, $-\Delta H_{ads}$ (in kJ/mol) of M(CO)₆ (M = Cr Mo W and Sg) on quartz

$KJ/mol)$, of $M(CO)_6$ ($M - Cl$, Mo , w , and Sg) on quartz						
	IP	< 0 >	x	$-\Delta H_{\rm ads}$		
Cr(CO) ₆	9.07	133.24	2.695	45.4 ± 2.5		
$Mo(CO)_6$	9.003	156.41	2.784	48.1 ± 2.5		
				42.5 ± 2.5^a		
$W(CO)_6$	8.925	151.54	2.781	46.5 ± 2.5^{b}		
$Sg(CO)_6$	8.631	159.43	2.82	46.2 ± 2.5		
arc .	. [0]	h m a				

^a IC experiment [2]; ^b TC experiment [2].

The data show that the electronic structure of Sg(CO)₆ is very similar to those of the Mo and W homologs. Accordingly, its volatility should also be very similar to those of the lighter homologs (Table 2). Fig. 1 shows that, indeed, all the homologs will have similar, within the error bars, $\Delta H_{ads}(M)$ on quartz.

Fig. 1. Predicted (solid line) and measured (dashed line: the open rhomboid is the IC measurements; the open square is the TC ones [2]) adsorption enthalpies of $M(CO)_6$ (M = Cr, Mo, W, and Sg) on quartz.

References

- [1] A. Türler and V. Pershina, Chem. Rev., in print
- [2] J. Even, et al. Inorg. Chem. 51, 6431 (2012).
- [3] V. Pershina, Radiochim. Acta 99, 459 (2011).
- [4] J. Anton, et al., Phys. Rev. A 69, 012505 (2004).
- [5] V. Pershina and T. Bastug, Chem. Phys. 311, 139 (2005)
- [6] C. N. Nash, B. E. Bursten, J. Am. Chem. Soc., 121, 10830 (1999).