PHN-ENNA-EXP-04

Alpha Decay of ^{197–199}Fr*

Z. Kalaninová^{†1}, A.N. Andreyev^{2,3,4}, S. Antalic¹, F.P. Heβberger^{5,6}, D. Ackermann⁵, B. Andel¹,
M.C. Drummond⁷, S. Hofmann⁵, M. Huyse⁸, B. Kindler⁵, J.F.W. Lane², V. Liberati², B. Lommel⁵,
R.D. Page⁷, E. Rapisarda⁸, K. Sandhu², Š. Šáro¹, A. Thornthwaite⁷, and P. Van Duppen⁸

¹Comenius University, Bratislava, Slovakia; ²University of the West of Scotland, Paisley, UK; ³University of York, York, UK; ⁴ASRC, JAEA, Ibaraki, Japan; ⁵GSI, Darmstadt, Germany; ⁶Helmholtz Institut Mainz, Mainz, Germany; ⁷University of Liverpool, Liverpool, UK; ⁸K.U. Leuven, Belgium

In order to optimize and test theoretical nuclear-structure models, experimental data is needed for isotopes far from the line of β stability. Especially regions near closed shells provide a possibility to study unique phenomena. In this work we report on a study of nuclei in the vicinity of the Z = 82 shell closure.

We produced very neutron-deficient francium isotopes at the velocity filter SHIP (GSI, Darmstadt) using the fusion-evaporation reaction ${}^{60}\text{Ni} + {}^{141}\text{Pr} \rightarrow {}^{201}\text{Fr}^*$. The irradiations were performed at several beam energies from 262 to 300 MeV. After separation from the primary beam, the evaporation residues were implanted into a positionsensitive silicon detector (PSSD) surrounded by six silicon detectors used to detect α particles escaped from the PSSD.

Prior to this work, the lightest identified francium isotopes were ^{199,198}Fr. The ¹⁹⁹Fr isotope was produced using the fusion-evaporation reaction ³⁶Ar + ¹⁶⁹Tm \rightarrow ²⁰⁵Fr* at the GARIS separator (RIKEN). Five α -decay chains were reported yielding $E_{\alpha} = 7655(40)$ keV and $T_{1/2} = 12^{+10}_{-4}$ ms [1]. The isotope ¹⁹⁸Fr was produced at the RITU separator (JYFL) [2], but no results were published so far.

In our study we detected ~ 60 and ~ 70 α -decay chains of ¹⁹⁹Fr and ¹⁹⁸Fr, respectively. These isotopes have similar half-lives and overlapping α -decay energies. However, a careful measurement of excitation functions for both isotopes enabled us the unambiguous distinction between them. We registered a single peak at 7675(6) keV for ¹⁹⁹Fr in contrast to the wide range of α -decay energies from 7470 to 7930 keV for ¹⁹⁸Fr (see Fig. 1).

In ¹⁹⁵At, the α -decay daughter of ¹⁹⁹Fr, two α -decaying states with different spins and parities are known. We observed the decay of both of these states correlated to the α decay of ¹⁹⁹Fr. We present two scenarios for this observation. The first possibility is that in ¹⁹⁹Fr exists one α -decaying state with $E_{\alpha} = 7675(6) \text{ keV}$, $T_{1/2} = 6.0^{+1.0}_{-0.7} \text{ ms}$ populating ^{195m}At [see Fig. 2(a)]. This state decays with 88(5)-% probability by α decay and with 12(5)-% probability by an E3 IT transition to ^{195g}At. The second possibility is the presence of two α -decaying states in ¹⁹⁹Fr with similar decay properties: the decay with $E_{\alpha} = 7676(6) \text{ keV}$, $T_{1/2} = 6.2^{+1.1}_{-0.8} \text{ ms}$ populating ^{195m}At and the decay with $E_{\alpha} = 7664(11) \text{ keV}$, $T_{1/2} = 4.5^{+3.1}_{-1.3} \text{ ms}$ populating ^{195g}At [see Fig. 2(b)]. Within the limited statistics, we cannot

favour either of the proposed decay patterns.

Figure 1: The α -decay energy spectra of ¹⁹⁹Fr (shaded region) and ¹⁹⁸Fr (black solid line). The isotopes were distinguished using the different beam energies for their production: (262 - 272) MeV for ¹⁹⁹Fr and (282 - 300) MeV for ¹⁹⁸Fr.

Figure 2: Proposed α -decay schemes for ¹⁹⁹Fr. The values for ¹⁹⁵At are from [3]. Alpha-decay energies are in keV.

For the α decay of ¹⁹⁸Fr we identified two components: a shorter-lived one with $T_{1/2} = 1.1(7)$ ms and α -decay energy from 7580 to 7930 keV and a longer-lived one with $T_{1/2} = 15(3)$ ms and α -decay energy from 7470 to 7920 keV. The existence of two α -decaying states in ¹⁹⁸Fr was confirmed by the correlated decay of ¹⁹⁰Bi; we observed decays of ^{190m1}Bi correlated with the 15(3)-ms state in ¹⁹⁸Fr and decays of ^{190m2}Bi correlated with the 1.1(7)-ms state in ¹⁹⁸Fr.

At the highest beam energy we detected one triple- α decay chain attributed to the decay of the new isotope ¹⁹⁷Fr. The identification was based on the correlations of the parent α decay with the known decays of daughter nuclei ¹⁹³At and ¹⁸⁹Bi.

References

- [1] Y. Tagaya et al., EPJ A 5, 123 (1999).
- [2] J. Uusitalo, private communication (2012).
- [3] H. Kettunen et al., EPJ A 16, 457 (2003).

^{*} Supported by FWO-Vlaanderen (Belgium), UK Science and Technology Facilities Council, Slovak Research and Development Agency

[†]Zdenka.Kalaninova@fmph.uniba.sk