HBOM method for Event-Background Fluctuations in Pb-Pb Collisions at the LHC*

M. Zimmermann¹, J. Anielski¹, B. Bathen¹, T. Dietel¹, S. Dyba¹, L. Feldkamp¹, M. Heide¹, C. Klein-Bösing^{1,2}, M. Kohn¹, A. Passfeld¹, E. Sicking¹, M. Tegeder¹, M. Wilde¹, J.P. Wessels¹, and U. Westerhoff¹ for the ALICE Collaboration¹

¹Institut für Kernphysik, University of Münster, Germany; ²ExtreMe Matter Institute EMMI, GSI Darmstadt, Germany

With the measurement of jets and their modification in heavy-ion collisions the quark-gluon plasma can be investigated tomographically. However, the determination of the jet momentum in Pb–Pb-collisions is complicated by the background of the underlying event and its fluctuations. The fluctuations of the jet momentum scale can be described by the distribution of residuals (δp_T) after background subtraction of the momentum in a cone placed randomly in φ and η in real Pb–Pb events. The standard deviation $\sigma(\delta p_T)$ of the resulting distribution is used to classify these fluctuations [1].

The measured fluctuations depend on the correlations within the heavy-ion event as well as on the detected particle number. The correlations in the event are a-priori unknown, which is the motivation for a data-driven correction of detector effects on the width of the fluctuations. This is done here with the so called Hit Backspace Once More (HBOM) method [2] for the 10% most central heavy ion events measured in Pb-Pb collisions at 2.76 TeV with AL-ICE. It is a model independent method to back-extrapolate the data to no detector effect (truth) [3].

The method works as follows. First the $\sigma(\delta p_T)$ is determined for the measured events as usual. Then the efficiency is applied again to all particles in the event by a Monte Carlo method that only accepts a particle, if a random number is lower than the p_T and φ dependent detection efficiency. Doing this once for all particles is called one detector hit. After the detector hit the $\sigma(\delta p_T)$ is determined again. This is done up to five times. The fit to 0–4 detector hits is back-extrapolated to -1 detector hits which corresponds to the efficiency-corrected value of the standard deviation [3].

The method has been validated in simulations that emulate the generic features of heavy-ion collisions such as the multiplicity, the p_T spectrum, and flow (v_2, v_3) . In Fig. 1 the back-extrapolation is shown. Since the *truth* value is known in the simulation the number of fit points and its functional form can be optimized. With the best configuration, a corrected $\sigma(\delta p_T) = (9.43 \pm 0.02(stat) \pm 0.05(syst))$ GeV/c is achieved and the *truth* value $\sigma(\delta p_T) = (9.458 \pm 0.005)$ GeV/c is reproduced [3].

After the validation, the method has been applied to measurements of 2010 and 2011 Pb–Pb collisions as shown in Fig. 2 and a value of $\sigma(\delta p_{\rm T}) = (11.85\pm0.14)\,{\rm GeV/c}$ is

Figure 1: HBOM back-extrapolation for $\sigma(\delta p_{\rm T})$ in simulated Pb–Pb events. The point at zero detector hits corresponds to the measured spectrum [3].

Figure 2: HBOM back-extrapolation for $\sigma(\delta p_T)$ in Pb–Pb collisions from 2010. The red point at minus one shows the corrected value [3].

obtained consistently in both Pb–Pb data sets. A comparison with the simulated value is not meaningful because the simulation does not consider all correlations [3].

References

- [1] Abelev, Betty and others. JHEP, 1203:053, 2012.
- [2] Monk, James W. and Oropeza-Barrera, Cristina. *Nucl.Instrum.Meth*, A701:17-24, 2011.
- [3] M. Zimmermann. Master Thesis, Westfälische Wilhelms-Universität Münster, 2012.

^{*} Work supported by BMBF and Helmholtz Alliance HA216/EMMI