Photon-fusion reactions from chiral dynamics with vector fields

I. V. Danilkin^{1,3}, *M. F. M. Lutz*¹, *S. Leupold*², and *C. Terschlüsen*² ¹GSI, Darmstadt, Germany; ²Uppsala Universitet, Sweden; ³ITEP, Moscow, Russia

Photon-fusion reactions $\gamma \gamma \rightarrow PP$ (with $PP = \pi^0 \pi^0$, π^- , $K^0 \bar{K}^0$, $K^+ K^-$, $\eta \eta$ and $\pi^0 \eta$) play an important role in our understanding of non-perturbative QCD. As a systematic approach chiral perturbation theory (χ PT) is applied to describe these reactions at low energies [1]. An extension of χ PT to the resonance region can be achieved by recently proposed novel scheme [2], which implements constraints from micro-causality and coupled-channel unitarity.

The cross sections of fusion processes are very sensitive to hadronic final-state interactions. Therefore, a crucial input is a proper description of the Goldstone boson scattering. This study has been performed in [3] within the novel unitarization scheme. The scalar resonances $f_0(980)$ and (980) are dynamically generated from coupled-channel $PP \leftrightarrow PP$ interactions. An important ingredient of these calculations is the chiral Lagrangian supplemented with light vector-meson degrees of freedom. The latter plays a crucial role in the hadrogenesis conjecture [4].

In the case of photo-fusion reactions, the chiral Lagrangian has five unknown parameters [5]. They parameterize the strength of interaction terms involving two vector meson fields. These parameters are fitted to $\gamma\gamma \rightarrow \pi^0\pi^0$, $\pi^-, \pi^0\eta$ data and to the decay $\eta \rightarrow \pi^0\gamma\gamma$, which is linked to $\gamma\gamma \rightarrow \pi^0\eta$ by crossing symmetry. For the decay amplitude we use the tree-level result, while for the reaction amplitudes we use the full rescattering formalism outlined in [2]. The results are depicted in Figs. 1 and 2.

The photon-fusion cross sections for the two-pion final states are in good agreement with the existing experimental data from threshold up to about 0.9 GeV. The $a_0(980)$

Figure 1: The single-differential invariant-mass distribution of the decay $\eta \to \pi^0 \gamma \gamma$.

Figure 2: Total cross sections for the reactions $\gamma \gamma \rightarrow \pi^+ \pi^-$, $\pi^0 \pi^0$, $\pi^0 \eta$, $K^+ K^-$, $K^0 \bar{K}^0$ and $\eta \eta$.

meson in the $\pi^0 \eta$ channel is dynamically generated and an accurate reproduction of the $\gamma \gamma \rightarrow \pi^0 \eta$ data is achieved up to 1.2 GeV. Based on our parameter sets we predict the $\gamma \gamma \rightarrow K^0 \bar{K}^0$, $K^+ K^-$, $\eta \eta$ cross sections (see Fig. 2).

References

- J. Gasser, M. A. Ivanov and M. E. Sainio, Nucl. Phys. B 728 (2005) 31; Nucl. Phys. B 745 (2006) 84
- [2] A. Gasparyan and M. F. M. Lutz, Nucl. Phys. A 848, 126 (2010)
- [3] I. V. Danilkin, L. I. R. Gil and M. F. M. Lutz, Phys. Lett. B 703 (2011) 504
- [4] M. F. M. Lutz and E. E. Kolomeitsev, Nucl. Phys. A 730 (2004) 392; Nucl. Phys. A 700 (2002) 193
- [5] I. V. Danilkin, M. F. M. Lutz, S. Leupold and C. Terschlusen, arXiv:1211.1503 [hep-ph].