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The transverse bunch spectrum and the transverse decoherence/recoherence following an initial bunch

offset are important phenomena in synchrotrons and storage rings, and are widely used for beam and

lattice measurements. Incoherent shifts of the particles betatron frequency and of the synchrotron

frequency modify the transverse spectrum and the bunch decoherence. In this study we analyze the

effects of transverse space charge and of the rf nonlinearity on the decoherence signals. The transverse

bunch decoherence and the resulting coherent spectra are measured in the SIS18 synchrotron at GSI

Darmstadt for different bunch parameters. The frequencies of the bunch head-tail modes provide a direct

measure for the self-field space charge tune shift. Particle tracking simulations together with an analytical

model are used to describe the modifications in the decoherence signals and in the coherent spectra due to

space charge and the rf bucket nonlinearity.

DOI: 10.1103/PhysRevSTAB.15.114201 PACS numbers: 29.27.�a, 29.20.dk

I. INTRODUCTION

Transverse coherent oscillations of bunches induced by

a fast kicker magnet are routinely used in synchrotrons or

storage rings to measure, for example, the tune or other

ring parameters, see e.g. [1]. The transverse offset of a

bunch, averaged over the bunch length, can be recorded

every single turn. The spectrum is then concentrated

around the base-band Qf0f0, where Qf0 is the fractional

part of the betatron tune Q0 and f0 is the revolution

frequency. This diagnostics is usually used for time-

resolved and very accurate measurements of the tune Qf0.

Transverse bunch decoherence is a process of a turn-to-

turn reduction of the total bunch offset signal after an

initial bunch displacement. In a linear focusing lattice the

bunch decoherence is a manifestation of the lattice chro-

maticity � where the synchrotron dynamics also plays an

important role, causing the signal recoherence exactly after

the synchrotron period. Other damping mechanisms, as

due to lattice nonlinearities, additionally damp the trans-

verse oscillations. Transverse decoherence is often used as

a machine diagnostics tool. Undesired transverse bunch

oscillations can also appear after the bunch-to-bucket

transfer between synchrotrons. In order to use transverse

decoherence as a diagnostics tool for intense bunches

of arbitrary length and also to control undesired oscilla-

tions of such bunches, it is important to understand the

decoherence in the presence of transverse space charge and

nonlinear synchrotron oscillations.

We demonstrate that the decoherence signal can be

explained in terms of the transverse head-tail bunch

mode spectrum. For finite chromaticity also the k > 0
head-tail modes contribute to the bunch coherent spectrum.

The shift of the head-tail mode frequencies due to space

charge and wall currents can be well explained in terms of

the analytical expressions for an airbag bunch distribution

[2,3]. The head-tail mode frequencies are also modified by

changes in the individual particle synchrotron frequency.

In long bunches, one has to account for the spread of the

synchrotron frequencies. Both transverse space charge and

nonlinear synchrotron oscillations are important to under-

stand the decoherence signals and transverse spectra. We

demonstrate that, once the spectrum and decoherence mod-

ifications are understood, they can be used to extract useful

information about the bunches.

In this paper we describe measurements of transverse

bunch spectra and decoherence signals obtained in the

heavy-ion synchrotron SIS18 at GSI Darmstadt. The ob-

served modification of the head-tail spectrum and of the

decoherence signal caused by transverse space charge and

nonlinear synchrotron oscillations are explained in terms

of our theoretical approach. This approach is based on an

expansion of an analytical theory for head-tail modes in

combination with particle tracking simulations.

In Sec. II we use theoretical and numerical approaches

to analyze the effects of space charge and nonlinear syn-

chrotron motion on the transverse spectra and on the bunch

decoherence signal. We show that a simple model for the

head-tail mode frequencies with fitting parameters can be
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used to explain the numerically obtained spectrum mod-

ifications as well as the bunch decoherence as a function of

the chromaticity. In Sec. III the results of measurements

performed at the SIS18 synchrotron are presented. The

space charge tune shifts determined from the transverse

spectra are summarized, the role of nonlinear synchrotron

motion is demonstrated and transverse bunch decoherence

signals measured for different bunch conditions are pre-

sented and explained. The work is concluded in Sec. IV.

II. THEORYAND NUMERICAL SIMULATIONS

The Fourier transformation of the transverse bunch sig-

nal provides peaks at frequencies which represent the

bunch eigenmodes, also called head-tail modes. For short,

low-intensity bunches (the synchrotron frequency fs ¼
Qsf0 does not depend on the amplitude, no collective

effects), the transverse spectrum has peaks at �Q ¼ Q�
Qf0 ¼ 0 for k ¼ 0, �Q ¼ �Qs for k ¼ �1, �Q ¼ �2Qs

for k ¼ �2, and so forth. Collective effects, like transverse
space charge or ring impedances, change the bunch eigen-

frequencies and thus shift the peaks in the transverse

spectrum.

Transverse space charge effects are described by the

characteristic tune shift,

�Qsc ¼
�0rpR

�3�2"?
; (1)

where R is the ring radius, � and � are the relativistic

parameters, rp ¼ q2ion=ð4��0mc2Þ is the classical particle

radius, �0 is the peak line density (at the bunch center), and

"? is the transverse total emittance. This tune shift corre-

sponds to a round cross section with a transverse K-V

distribution, with the dispersion zero, and is defined as

the modulus of the negative shift. In a rms-equivalent

bunch with the Gaussian transverse profile, i.e., the trans-

verse rms emittance is "x ¼ "?=4, the maximum space

charge tune shift is twice this value, �Qmax
sc ¼ 2�Qsc. In

the case of an elliptic transverse cross section with the rms

emittances "y, "x, the parameter "? in Eq. (1) should be

replaced by

"? ¼ 2

�

"y þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

"y"x
Q0y

Q0x

s
�

; (2)

here for the vertical (y) plane, for the horizontal plane

correspondingly. The tune ratio Q0y=Q0x stems from the

average along the ring of the beta function ratio, variations

of which should be taken into account for a more accurate

tune shift calculation for a specific lattice. The parameter

for the effect of space charge in a bunch is defined as a ratio

of the characteristic space charge tune shift Eq. (1) to the

small-amplitude synchrotron tune,

q ¼ �Qsc

Qs0

: (3)

A. Longitudinal dipole frequency

An important parameter for head-tail bunch oscillations

in long bunches [4–6] is the effective synchrotron fre-

quency which will be different from the small-amplitude

synchrotron frequency in short bunches. We will show that

in long bunches the longitudinal dipole frequency Qdipf0
can be chosen as a substitute for the small-amplitude

incoherent synchrotron frequency Qs0f0. The longitudinal
coherent dipole frequency can be accurately measured

from the bunch signal, as we will show in the experimental

part of this paper. It should be however mentioned that

other choices for the characteristic synchrotron frequency

in long bunches are possible and can be useful depending

on the consideration contents. The frequency of small-

amplitude dipole oscillations can be calculated as [4,6]

Q2
dip

Q2
s0

¼ 2R

Nph

Z �max

0

Vrf

V0

�0ð�Þd�; (4)

where for the single rf the voltage form is Vrf ¼ V0 sinð�Þ,
h is the rf harmonic number,Np is the particle number, � ¼
zh=R is rf bucket radian, and � is the line density. The

small-amplitude bare synchrotron tune is given by

Q2
s0 ¼

qionV0hj�j
2�m��2c2

; (5)

where � is the machine slip factor. The dependence ofQdip

on the rms bunch length 	z for a Gaussian bunch is shown

(red curve) in Fig. 1. The bunch length 	z is dimensioned

in radians of the rf bucket, i.e. 	z ¼ Lrmsh=R, where Lrms

is the rms bunch length in meter.

In a realistic bunch in experiment, the bunch profile is

normally different from an analytic model, thus we con-

sider here another bunch form for comparison. For a para-

bolic longitudinal distribution (or elliptic bunch) with the

total half-length �p ¼
ffiffiffi

5
p

	z one obtains the analytic ex-

pression [6],
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FIG. 1. The longitudinal dipole oscillation frequency as a

function of the rms bunch length. The red curve is obtained

using Eq. (4) for a Gaussian bunch, the blue dashed curve is

given by Eq. (6), and the back chain curve is given by Eq. (7).
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Q2
dip

Q2
s0

¼ 2�p � sinð2�pÞ
4 sinð�pÞ � 4�p cosð�pÞ

; (6)

which can be approximated in the case of a short bunch as

Qdip

Qs0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 	2
z

2

s

: (7)

From the comparison in Fig. 1, it follows that for short

bunches with 	z & 0:6 rad the approximation Eq. (7) is

sufficient. For long bunches with 	z * 1 rad the dipole

frequencies for Gaussian and parabolic bunches start to

differ.

B. Spectrum of a long bunch with space charge

We use particle tracking simulations [7,8] in order to

investigate the combined effect of space charge and non-

linear synchrotron motion on transverse head-tail oscilla-

tions. The numerical codes have been validated [9] using

analytic results [2]. For the transverse space charge force, a

frozen electric field model is used, i.e., a fixed potential

configuration which follows the center of mass for each

bunch slice. This approach is justified in the rigid-slice

regime and can be considered as a reasonable approach for

moderate and strong space charge [10,11]. The applicabil-

ity for complicated processes as Landau damping, espe-

cially for the weak/moderate space charge, should be

studied in further papers. A round transverse cross section

and a Gaussian transverse beam profile were used in the

simulations in this work.

Figure 2 demonstrates differences in the transverse

mode frequencies for bunches of different lengths, and

with all the other parameters kept identical, including the

space charge parameter q ¼ 8. The three lowest-order

modes can be seen very well; the modes of the longer

bunch are shifted closer to the bare betatron tune than those

of the shorter bunch. In order to describe the bunch spec-

trum for arbitrary bunch length and space charge strength,

simulation scans over different parameters have been per-

formed. Our simulation results suggest that the airbag

bunch model [2] can be applied to the head-tail modes in

a long Gaussian bunch,

�Qk

Qs0

¼ �q

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2

4
þ k2q2�

s

; (8)

where q� ¼ Qs�=Qs0 is a characteristic parameter depend-

ing on the bunch length and the nonlinear synchrotron

oscillations. In our case q� is used as a fitting parameter.

Keeping the space charge parameter constant, the bunch

length has been varied and the resulting eigenfrequencies

analyzed, see Fig. 3 for a scan with q ¼ 8. We observe

substantial changes in the bunch mode frequencies with

increasing bunch length. The parameter q� has been ob-

tained from these simulation scans. Figure 4 shows a

comparison between simulation results and the model

Eq. (8) for a fixed bunch length and for different space

charge parameters. The plot demonstrates that the model

Eq. (8) is fairly accurate over the parameter range of the

interest. As we additionally show in Fig. 4, there is a small

difference between transverse Gaussian bunch profiles

(with nonlinear transverse space charge) and transverse

K-V distributions (with linear space charge). In our simu-

lations we use the more realistic Gaussian profile.

The chain curves in Fig. 3 show that it would be not

correct to use the longitudinal dipole tune Qdip for the

parameter Qs�. An interesting observation is that the type

of the dependence of the mode frequencies on the bunch

length is similar to Qdip, being however slightly different.

Also, the scale factor betweenQdip and the real�Q is quite

different for k ¼ 1 and k ¼ 2. The bare synchrotron tune,
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FIG. 2. Example transverse spectra of long bunches from

particle tracking simulations, with space charge and nonlinear

synchrotron motion taken into account. Bunches with two differ-

ent rms length 	z are assumed, the space charge parameter

q ¼ 8 and the bare synchrotron tune Qs0 is kept constant. The

spectra clearly show the head-tail modes k ¼ 0, k ¼ 1, and k ¼
2. The tune shift �Q is related to the bare betatron tune as �Q ¼
Q�Qf0.
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FIG. 3. Results of a simulation scan (circles) over the rms

bunch length for a bunch with space charge parameter q ¼ 8.
Red corresponds to the k ¼ 1 head-tail mode and blue to k ¼ 2
modes. For comparison, the chain curves show an estimation

using Eq. (8) with q� ¼ Qdip=Qs0.
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which would mean q� ¼ 1, is not an adequate value, too,

�Q would then be a constant for changing bunch length

and it would correspond to the value of the chain curve at

small 	z.

Simulation results for practical usage are presented in

Fig. 5. These q� values can be included in Eq. (8) in order

to estimate the space charge tune shift of the bunch eigen-

frequencies for a given bunch length. The chain line dem-

onstrates again the difference betweenQs� which describes
the tune shift and the longitudinal dipole frequency.

C. Transverse decoherence

1. Linear decoherence

First, we discuss the linear transverse decoherence due

to chromaticity, i.e., the only source of the tune shift is the

linear dependence of the betatron tune shift on the mo-

mentum shift �Q�=Q ¼ ��p=p. As a result of an initial

transverse displacement xð�Þ ¼ A0, a bunch oscillates in

the corresponding plane (here x). As we consider the linear
case, all the particles have the identical synchrotron fre-

quency Qsf0. The betatron phase shift related to the bare

tune Q0 has a harmonic dependency along a synchrotron

period. Hence, after one synchrotron oscillation, the beta-

tron phase shift is exactly compensated and the transverse

amplitude is equal to the initial displacement A0. Assuming

the Gaussian momentum distribution, the amplitude of the

bunch offset evolves with the turn number N as [12]

AðNÞ ¼ A0 exp

�

�2

�
�Q0
p

Qs

sinð�QsNÞ
�
2
�

; (9)

here 
p is the normalized rms momentum spread. Figure 6

shows an example for bunch decoherence after a rigid kick.

It demonstrates that a higher chromaticity provides a faster

decoherence, and that after the synchrotron period Ns ¼
1=Qs the initial offset amplitude appears again, which is

called recoherence.

2. Decoherence with space charge

Transverse space charge causes a betatron frequency

shift, which depends on the particle transverse amplitude

and on the longitudinal particle position in the bunch. The

decoherence behavior is thus very different from the linear

decoherence at low bunch intensities Eq. (9). Figure 7

shows examples of the bunch oscillations after a rigid

kick for three different values of the space charge parame-

ter. The chromaticity corresponds to �b ¼ 4:5, where

�b ¼ Q0�Lb=ð�RÞ is the chromatic phase shift over the

full bunch length Lb; the bunch rms length is 	z ¼
1:06 rad. We observe the periodic recoherence with the

periodicity 770 turns (q ¼ 7, top), 1270 turns (q ¼ 12,
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after an offset kick �xð�Þ ¼ const without space charge and for a
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evolution of the bunch offset for the chromaticities �Q0 ¼ �4:3
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summarized in Fig. 5.
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middle), and 1640 turns (q ¼ 16, bottom), while the low-

intensity recoherence would have a periodicity of 100 turns

for the same parameters.

The key in understanding the decoherence for a bunch

with transverse space charge is the representation of the

initial kick as a superposition of the bunch head-tail eigen-

modes,

A0 ¼
X

k

ak exp

�

�i
�b�

�b
þ i�k

�

�xkð�Þ; (10)

where we have extracted the chromatic phase shift along

the bunch with the corresponding phase �k for each ei-

genfunction. The second key is the fact that the different

eigenmodes are prone to Landau damping mechanisms, but

with different intensity thresholds and damping rates.

Landau damping due to the space charge tune spread along

the bunch [11,13,14] is the most important mechanism in

the beam parameter regime considered in the simulations

of this work. In the presence of space charge especially the

negative and the high-k eigenmodes present in the initial

kick Eq. (10) are quickly suppressed, so that after a tran-

sition period a mixture of the survived eigenmodes con-

tinues to oscillate.

In Ref. [15] we have discussed in detail the case q ¼ 1,
where all the head-tail modes k � 1 are strongly sup-

pressed by Landau damping such that the mode k ¼ 0 is

left alone. For stronger space charge, as in Fig. 7, the

modes k � 2 are damped and the resulting oscillation is

the mixture of the k ¼ 0 and k ¼ 1 modes. The recoher-

ence periodicity seen in Fig. 7 corresponds exactly to the

frequency difference between these two modes, as it is the

case for the wave beating. In a real machine there are often

nonlinear damping mechanisms which would further sup-

press the k ¼ 0 and k ¼ 1 modes, but in the simulation we

only have the space charge induced Landau damping

which is zero for the k ¼ 0 mode and is very weak for

the k ¼ 1 mode at these q parameters.

It is obvious, and can be seen in Eq. (10), that the

composition of the eigenmodes after a rigid kick depends

on the chromaticity. This is also demonstrated in Fig. 8

which shows a comparison of the bunch decoherence for

three different chromaticities. The bunch parameters cor-

respond to Fig. 7; the space charge parameter is chosen as

q ¼ 7. We see that the periodicity of 770 turns does not

change. It corresponds to the frequency difference �Q ¼
Qk¼1 �Qk¼0 ¼ 0:13Qs0. The reason for the different os-

cillation amplitudes in Fig. 7 is the increasing contribution

of higher-order modes k � 2 with growing � in the eigen-

mode mixture of the initial rigid bunch offset [see Eq. (10)

]. Recall that these modes are quickly suppressed for the

parameters of the bunch and the resulting recoherence is a

beating of the remaining k ¼ 0 and k ¼ 1 modes.

The airbag [2] eigenmodes �xkð�Þ ¼ A cosðk��=�bÞ can
be taken as a reasonable approximation [14] of the

eigenfunctions in a Gaussian bunch. The rigid offset

decomposition Eq. (10) can then be solved and the

resulting mode coefficients are a0 ¼ 2=�b sinð�b=2Þ,

FIG. 8. Transverse bunch decoherence for a bunch with space

charge parameter q ¼ 7 from particle tracking simulation for

different chromaticities. The black curve: �b ¼ 3, the red curve:

�b ¼ 4:5, and for the blue curve: �b ¼ 6. The recoherence

results from a mixture of the k ¼ 0 mode and k ¼ 1 mode,

�Qk¼1 ¼ 0:13Qs0 (periodicity 770 turns).

FIG. 7. Transverse bunch decoherence from particle tracking

simulations for a Gaussian bunch after a rigid kick �xð�Þ ¼ const
for different space charge parameters. Top plot: q ¼ 7, middle

plot: q ¼ 12, and for the bottom plot: q ¼ 16. The bare syn-

chrotron tune is Qs0 ¼ 0:01, i.e., the low-intensity recoherence

has a periodicity of 100 turns. After the transition period of

higher-order mode damping, the periodicity always corresponds

to the frequency difference �Q ¼ Qk¼1 �Qk¼0. Top plot:

�Qk¼1 ¼ 0:13Qs0 (periodicity 770 turns), middle plot:

�Qk¼1 ¼ 0:079Qs0 (periodicity 1270 turns), and for the bottom

plot �Qk¼1 ¼ 0:061Qs0 (periodicity 1640 turns).
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a1 ¼ 4�b=j�2
b � �2j cosð�b=2Þ, and a2 ¼ 4�b=j�2

b �
4�2j sinð�b=2Þ. The negative modes have the same coef-

ficients but can be disregarded in the case of a bunch with

space charge [11,14], because of their large damping rates.

These coefficients are plotted in Fig. 9, where we see that

for the chromaticity range of interest the relative part of the

k ¼ 2 mode increases with growing �b. The higher-order

modes follow this trend. The contribution of the k ¼ 0 and
k ¼ 1 modes thus decreases as we also can observe in the

simulations, see Fig. 8. A perfect agreement with the

coefficients in Fig. 9 cannot be expected, since the analyti-

cal model is for an airbag [2] bunch.

III. MEASUREMENTS

Transverse decoherence experiments have been per-

formed in the heavy-ion synchrotron SIS18 [16] at GSI

Darmstadt. Bunches of Ar18þ40 ions were stored at the

energy of 100 MeV=u and kicked transversally with a

kick duration of one turn. The rf harmonic number was

h ¼ 4 and all the four bunches had generally an identical

behavior. The beam position monitors (BPMs) provide a

higher quality signal in the vertical plane than in the

horizontal one due to a smaller plate gap, thus we use the

vertical BPM signals in the results presented here. The

vertical bare tune was around Q0 ¼ 4:31 although it could

vary for different intensities and machine parameters.

SIS18 general parameters are R ¼ 34:492 m, �t ¼ 5:45,
and � � �1:4.

Similar to the theory section, first we discuss the longi-

tudinal coherent dipole frequency. Figure 10 demonstrates

the bunch spectrum obtained from the sum BPM signal.

The satellites of the central frequency are well resolved;

the peaks are equidistant which provides the longitudinal

dipole frequency. The longitudinal dipole frequency deter-

mined in this way is Qdip ¼ 2:5� 10�3; the peak rf volt-

age was V0 ¼ 9 kV here. The bare synchrotron tune can

also be accurately determined using Eq. (5) and it isQs0 ¼
3:24� 10�3 in this case. Note the large difference between

the bare synchrotron frequency and the dipole frequency.

Using the curves from Fig. 1 we can obtain the rms bunch

length 	z ¼ 1:0 rad, which is a typical length in the ex-

periments at SIS18.

The first example for the decoherence measurements

is presented in Fig. 11 and 12. Figure 11 shows the turn-

per-turn transverse bunch offset after the kick. Figure 12

demonstrates the spectrum of these bunch oscillations;

the frequency on the horizontal axis is normalized by

the bare synchrotron tune. The red line is for the spec-

trum of the whole bunch and shows mainly peaks of two

modes which we can identify as the k ¼ 0 mode and the

k ¼ 2 mode. If we calculate a Fourier transform for the

bunch head, its spectrum (the blue line) clearly reveals

other peaks, so that we can identify five head-tail

modes, see Fig. 12. The spectrum is very different

from the case without collective effects: the lines are

not equidistant, the negative modes (k < 0) are sup-

pressed. The fact that the mode tune shifts are consistent

with the space charge model can be proved by calculat-

ing the space charge parameter,
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plane at SIS18 after a transverse kick. The recoherence period-

icity corresponds to the mix of the dominating head-tail modes

k ¼ 0 and k ¼ 2 with �Qk¼2 ¼ 1:35� 10�3, giving the peri-

odicity of 740 turns.
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q ¼ k2q2� � ð�Qk=Qs0Þ2
�Qk=Qs0

; (11)

which corresponds to the model Eq. (8). The synchro-

tron oscillation parameter q� for the modes k ¼ 1 and

k ¼ 2 is obtained from the results given in Fig. 5. �Qk

is the tune shift of the bunch mode from the measured

spectrum. Here and for the examples to follow we

summarize the space charge parameters q obtained

from the different eigenfrequencies of the spectra in

Fig. 13. The relevant bunch parameters are summarized

in Table I. The values for the modes from Fig. 12 are

shown in Fig. 13 with the blue circles, q � 10. Since
this was a rather short bunch, 	z ¼ 0:66 rad, the q�

parameter was close to 1.0 and thus it was possible to

estimate the space charge parameter for the k ¼ 3 mode

as well.

Figure 13 demonstrates a certain consistency between

different head-tail modes for the space charge parameter,

that, however, cannot be expected to be perfect. The model

Eq. (8) is based on the airbag [2] bunch which is reason-

able, but still an approximation, for a Gaussian bunch [14].

The bunch spectra are also weakly affected by the facility

impedances, image charges, and nonlinear field compo-

nents neglected in our analysis. Finally, in our simulations

Gaussian bunch profiles in the transverse and in the longi-

tudinal plane have been assumed. It is a good, but not

exact, description for the bunches in the machine

experiments.

The space charge parameter q ¼ �Qsc=Qs0 can be addi-

tionally estimated using Eq. (1) and the measured bunch

parameters. The particle number and the bunch length

could be measured with a reasonable accuracy. The trans-

verse beam radius, which enters the space charge tune shift

as squared ("y ¼ a2yQ0y=R, ay is the vertical rms radius)

and is thus especially important, could not be determined

with a satisfactory precision, as it was also the case in

the previous coasting-beam measurements [17] at SIS18.
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FIG. 13. Summary for the space charge parameter determined

from the coherent head-tail spectra of different Ar18þ40 bunched

beams in the SIS18 synchrotron. The method is given by Eq. (11)

, with the coefficients q� corresponding to Fig. 5. The spectra are
shown in Fig. 12 (blue circles), Fig. 15 (red squares), Fig. 18

(black crosses), and in Fig. 20 (cyan triangles).

TABLE I. Bunch parameters for the signals shown in this

paper and the space charge parameter q obtained from the

transverse spectra. The q values from the different head-tail

modes for every bunch are summarized in Fig. 13. In the

first case the rf voltage was V0 ¼ 14 kV; in the last three cases

V0 ¼ 9 kV.

Signals

Symbols in

Fig. 13

	z,

rad

�b Qdip,

10�3

Qs0,

10�3 q

Figs. 11 and 12 Blue circles 0.66 � 3 3.63 4.0 � 10

Figs. 14 and 15 Red squares 1.15 � 5 2.35 3.24 � 9

Figs. 17 and 18 Black crosses 1.2 � 5 2.28 3.24 � 4:5

Figs. 19 and 20 Cyan triangles 1.0 � 0 2.5 3.24 � 4
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FIG. 14. Time evolution of the bunch offset in the vertical

plane at SIS18 after a transverse kick. The recoherence period-

icity corresponds to the mix of the dominating head-tail modes

k ¼ 0 and k ¼ 2 with �Qk¼2 ¼ 0:91� 10�3, giving the peri-

odicity of 1100 turns.
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FIG. 12. Transverse coherent spectrum for the bunch from

Fig. 11, Qs0 ¼ 4:04� 10�3. The red spectrum is obtained

from a frequency analysis of the complete bunch offset, while

the blue spectrum is a result of a frequency analysis for the

bunch head. In the complete bunch spectrum the mode k ¼ 2
dominates, and the bunch head spectrum reveals the uneven

modes k ¼ 1, k ¼ 3 but also the mode k ¼ 4. The frequencies

of the head-tail modes provide the space charge parameter q �
10, see blue circles in Fig. 13. The bunch length corresponds to

	z ¼ 0:66 rad, �b � 3.
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As an example, here we provide an estimation for the

bunch presented in Figs. 11 and 12. The transverse rms

emittances were �y ¼ 6:2 mmmrad, �x ¼ 8:4 mm rad,

number of ions per bunch was 5:1� 109. Using these

parameters, the bunch length, and the bare synchrotron

tune (see Table I), we obtain from Eqs. (1) and (2)

qest � 7. In this work we make no claim on a perfect

agreement of the q values obtained from the transverse

spectra with the q estimations provided by the bunch

parameters and Eq. (1), mainly due to the uncertainty in

the transverse beam size measurements at SIS18.

In the next example we show a longer bunch, 	z ¼
1:15 rad, due to a lower rf voltage, see Table I. The

transverse bunch oscillations after the kick are shown in

Fig. 14 and the corresponding spectrum is shown in Fig. 15.

In comparison to the previous example (Figs. 11 and 12),

the bunch here is longer, but the particle number is higher

and the synchrotron tune is larger, thus the space charge

parameter is similar, q � 9. As we can see in Fig. 15, the

spectrum is dominated by two modes, the k ¼ 0 mode at

the bare tune, and another one at �Q ¼ 0:91� 10�3,

which gives the periodicity of the bunch recoherence, see

Fig. 14. The mode k ¼ 1 is suppressed as is the case in the
previous example, and it is to be expected that here we have

the k ¼ 2 mode again. Additionally, this could be proved

as follows. Plotting the bunch vertical traces and subtract-

ing the total bunch offset, thus reducing the contribution of

the k ¼ 0 mode, we observe a clear two-knot structure of

the k ¼ 2 modes, see Fig. 16. The frequencies of the

further peaks in Fig. 15 correspond rather well to the space

charge model with q � 9.
In the next example we demonstrate a bunch decoher-

ence dominated by a mixture of the k ¼ 0 mode with the

k ¼ 1 mode; the bunch oscillations are shown in

Fig. 17, the spectrum is shown in Fig. 18. The horizontal

chromaticity was partly compensated, by a half of the

natural value, the associated nonlinearities probably

contributed to establishing of the longer bunch and to a
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FIG. 16. Traces of the transverse bunch signal for 100 con-

secutive turns for the bunch from Figs. 14 and 15. This result

proves that the mode k ¼ 2 dominates during the process of

bunch decoherence.
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FIG. 17. Time evolution of the bunch offset in the vertical

plane at SIS18 after a transverse kick. The recoherence period-

icity corresponds to the mix of the dominating head-tail modes

k ¼ 0 and k ¼ 1 with �Qk¼1 ¼ 0:68� 10�3, giving the peri-

odicity of 1470 turns.
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FIG. 18. Transverse coherent spectrum for the bunch from

Fig. 17, Qs0 ¼ 3:24� 10�3. The mode k ¼ 1 dominates, the

spectrum shows clearly the mode k ¼ �1, with the eigenfre-

quency corresponding well to the model Eq. (8). The frequencies

of the head-tail modes provide the space charge parameter

q � 4:5, see black crosses in Fig. 13. The bunch length corre-

sponds to 	z ¼ 1:2 rad, �b � 5.
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FIG. 15. Transverse coherent spectrum for the bunch from

Fig. 14, Qs0 ¼ 3:24� 10�3. Head-tail modes up to k ¼ 5 are

well seen, except for the modes k ¼ 1. The frequencies of the

head-tail modes provide the space charge parameter q � 9, see
red squares in Fig. 13. The bunch length corresponds to 	z ¼
1:15 rad, �b � 5.
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stronger damping of the k ¼ 2 mode. The recoherence is

thus quite slower, nearly one and a half thousand turns (see

Fig. 17), which is given by the frequency of the k ¼ 1
mode in good agreement with the bunch spectrum, Fig. 18.

Another outstanding feature of this spectrum is the clear

presence of the k ¼ �1 mode, with the frequency shifted

strongly downwards, in a good quantitative agreement with

the space charge model, see black crosses in Fig. 13. The

strong negative shifts for the k < 0 modes have been

predicted by the space charge models [2,11] and observed

in the numerical simulations [3,9]. For strong space charge,

due to nearness of the negative head-tail modes to the

incoherent tune these modes are strongly Landau damped.

In part, the presence of the k ¼ �1 mode was probably

possible here due to rather moderate space charge q � 4:5
in this case.

The transverse decoherence observed in the case pre-

sented in Figs. 19 and 20, is very different from the third

example, Fig. 17, although the space charge parameter is

similar, q � 4, as well as the bunch length, see Table I. We

see that the recoherence periodicity is quite faster which is

due to the dominance of the k ¼ 2 mode as it is confirmed

in the bunch spectrum, see the red line in Fig. 20. More

remarkable, the bunch decoherence in Fig. 19 shows a

much weaker amplitude drop between the recoherence

peaks. The reason is the compensated vertical chromaticity

to nearly zero, according to the set parameters. This is

predicted by the linear theory Eq. (9), also shown in

Fig. 6. According to the interpretation of the mode mixture,

at a small chromaticity the part of the k ¼ 0 mode is very

large, see Fig. 9. The spectrum from the measurements in

Fig. 20 confirms this. The relatively small part of the k ¼ 2
mode provides the periodicity of a weak recoherence.

For the determination of the space charge parameter, the

eigenfrequency of the k ¼ 1 mode is needed which could

be obtained by a frequency analysis of the bunch head

oscillations, see the blue line in Fig. 20, and the resulting q
values in Fig. 13 (cyan triangles).

IV. CONCLUSIONS

The transverse decoherence and coherent eigenspectra

in long bunches with space charge have been studied using

measurements at the SIS18 heavy-ion synchrotron and

particle tracking simulations.

A model Eq. (8) for the combined effect of space charge

and nonlinear synchrotron oscillations has been formu-

lated, with the fitting parameter q� obtained from the

particle tracking simulations for the low-order head-tail

modes. The space charge parameter q ¼ �Qsc=Qs0 of

the bunch can be determined for every head-tail

mode from the corresponding frequency shift �Qk, see

Eq. (11), according to the given bunch length.

The transverse decoherence in bunches with space

charge has been observed experimentally and quanti-

tatively explained, using simulations and analytic models.

An initial rigid bunch offset can be decomposed into head-

tail modes. The chromaticity determines the contribution

of the different head-tail modes. Using the airbag [2]

eigenmodes as an approximation for the bunch head-tail

modes, the relative amplitudes can be found analytically,

see Fig. 8.

Different head-tail modes experience also different

Landau damping rates. After a transition period the bunch

oscillation is a combination of the remaining modes. For

example, it can be a mix of the k ¼ 0 mode and k ¼ 1
mode. The periodicity of the bunch recoherence corre-

sponds then to the frequency difference between these

two modes. Our simulation examples demonstrate this

explanation of the bunch decoherence for different space
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FIG. 19. Time evolution of the bunch offset in the vertical

plane at SIS18 after a transverse kick. The vertical chromaticity

was compensated for this beam to �y � 0. The recoherence

periodicity corresponds to the mix of the dominating head-tail

modes k ¼ 0 and k ¼ 2 with �Qk¼2 ¼ 1:86� 10�3, giving the

periodicity of 540 turns.
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FIG. 20. Transverse coherent spectrum for the bunch from

Fig. 19, Qs0 ¼ 3:24� 10�3. The red spectrum is obtained

from a frequency analysis of the complete bunch offset, while

the blue spectrum is a result of a frequency analysis for the

bunch head. The mode k ¼ 0 highly dominates, in the complete

bunch spectrum the mode k ¼ 2 is stronger, and the bunch head

spectrum reveals the uneven modes k ¼ 1, k ¼ 3. The frequen-

cies of the head-tail modes provide the space charge parameter

q � 4, see cyan triangles in Fig. 13. The bunch length corre-

sponds to 	z ¼ 1:0 rad, �b � 0.
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charge parameters and for different chromaticities, see

Figs. 7 and 8. An important Landau damping mechanism

in bunches with space charge is due to the variation of the

space charge tune shift along the bunch [11,13,14].

Experimental observations of the transverse bunch de-

coherence with space charge in the SIS18 heavy-ion syn-

chrotron at GSI are presented. The space charge parameter

q has been determined from the bunch spectra for different

head-tail modes, summarized in Fig. 13. The work is

focused on the frequency positions of the bunch spectrum

peaks; the peak widths in our observations were dominated

by the Fourier window so the physical peak width is out of

the work scope. With increasing bunch length we observe

that nonlinear synchrotron oscillations modify the head-

tail mode frequencies. The bunch decoherence always

corresponded to the mix of the dominating modes, in our

case the k ¼ 0 and k ¼ 1 modes or the k ¼ 0 and k ¼ 2
modes. Compared to the simulation it is more difficult to

predict which modes would be faster suppressed due to

additional damping mechanisms in a real machine. In the

experiment the oscillations are further damped after the

transition period, possibly due to the nonlinear magnet

field errors. The periodicity of the recoherence was exactly

confirmed by the mode frequencies from the spectra. A

direct comparison of the first two examples (Figs. 11 and

12 vs Figs. 14 and 15) demonstrates the role of the

bunch length. A comparison of the fourth example

(Figs. 19 and 20) with the others demonstrates the role of

the chromaticity: at a nearly zero chromaticity the mode

k ¼ 0 dominates the bunch decoherence alone. The third

example (Figs. 17 and 18) shows a decoherence with a

pronounced flat between the recoherence peaks, corre-

sponding to the mix of the k ¼ 0 and k ¼ 1 modes.

The results of this work apply to the evolution of a

possible transverse injection offset during bunch-to-bucket

transfer from one ring to another. Transverse coherent

spectra can be used not only to measure the betatron

tune, the head-tail mode frequencies can be used to extract

useful information about the long intense bunches, for

example the incoherent space charge tune shift. The effects

of space charge and rf nonlinearity have also direct con-

sequences for the chromaticity measurements which use

the decoherence/recoherence after a kick [18]. As we have

previously discussed in Ref. [15], Landau damping due to

space charge suppresses the k � 1 modes with different

damping rates and makes the head-tail phase shift within

the bunch inapplicable for a chromaticity measurement.

Only in the case when the eigenmode k ¼ 0 continues to

oscillate alone is it possible to extract the chromaticity

using a different (from the no-space-charge case [18])

expression. However, in a general case a combination of

the eigenmodes survives during the first recoherence peri-

ods, and the methods from [15,18] do not provide a useful

chromaticity calculation, as we have also observed for the

signals presented in this paper. Hence, the decoherence

with space charge and rf nonlinearity should be analyzed

in detail in future papers.
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