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A B S T R A C T   

Five Balkan paprika varieties at physiological maturity were investigated by means of Raman spectroscopy in 
order to discriminate the differences which stemmed from their genetic variability since the plants were grown 
under the same experimental conditions. The spectra were obtained using the 532 nm wavelength. In an effort to 
find the best classification power, several pre-processing methods were applied: 1) baseline correction, unit 
vector normalization; 2) baseline correction, unit vector normalization and first Savitzky-Golay derivative; 3) 
baseline correction, unit vector normalization and second Savitzky-Golay derivative; 4) baseline correction, unit 
vector normalization and third Savitzky-Golay derivative. All of the pre-processing methods were followed by 
making PCA-LDA (Principal Component Analysis-Linear Discriminant Analysis), QDA (Quadratic Discriminant 
Analysis), and PLS-DA (Partial Least Square - Discriminant Analysis) classification models. QDA showed the best 
discrimination power (83.87–100% and 89.47–100% for the training and the test data, respectively), then PCA- 
LDA (0.00–100 and 0.00–100% for the training and the test data, respectively) and PLS-DA (19.35–100% and 
0.00–100.00% for the training and the test data, respectively). The results pointed out the applicability of 
chemometric modeling associated with Raman spectroscopy in the assessment of nutritionally similar samples, 
such as the studied red paprika varieties.   

1. Introduction 

Paprika (Capsicum spp.) is among the most cultivated vegetable 
crops. According to the recent FAO reports, the global production of 
fresh and dried green chilies and peppers in 2019 was estimated at 
38,024,154 and 4,255,050 tonnes, respectively (www.fao.org). Paprika 
is characterized by a high number of varieties differing in shape and 
color, starting from green, yellow or white (unripe fruits), and turning to 
red, dark red or brown. Significant quantities of red paprika are pro
duced in Hungary, Serbia, Croatia and North Macedonia as it is one of 
the favorite and most frequently used vegetables in traditional cuisine 
(Vinković et al., 2018). Because of its high nutritive value, and especially 
due to the presence of different bioactive compounds, mainly fibers, 
L-ascorbic acid (vitamin C), carotenoids and polyphenols, sweet paprika 
is recommended for daily consumption in human diet (Greco, Riccio, 
Bergero, Del Re, & Trevisan; Kolašinac, Dajić-Stevanović, Kilibarda, & 
Kostić, 2021). Different carotenoids of paprika are responsible for 
different fruit coloration, as well as for the significant health-related 
beneficial effects, which are mainly attributed to capsanthin, 

capsorubin, beta carotene and lutein (Deli, Molnár, Matus, & Tóth, 
2001). During the ripening period, the color of red paprika transforms 
from green to deep red due to the accumulation and transformation of 
carotenoids, which mostly refers to the conversion of lutein and beta 
carotene into zeaxanthin and capsanthin (Deli et al., 2001). 

The level of bioactive compounds in paprika is influenced by the 
ripening stage, the genotype and cultivation practice (Hallmann & 
Rembiałkowska, 2012). The content of polyphenols, carotenoids and 
ascorbic acid increases during the fruit maturation reflecting increased 
antioxidant activity (Kim, Ahn, Ha, Rhee, & Kim, 2011). 

Different analytical tools are used for food quality assessment, as 
well as for the confirmation of the geographic origin of target products 
and their possible adulteration. Regarding the quality assessment of 
different paprika varieties and their products, a standard technique and 
some advanced techniques are used, including NMR (Nuclear magnetic 
resonance) (Ramírez-Meraz et al., 2020), HPLC (High-performance 
liquid chromatography) (Cetó et al., 2018), VIS-NIRS (Monago-Maraña, 
Eskildsen, Galeano-Díaz, Muñoz de la Peña, & Wold, 2021), HPLC-FLD 
(High-performance liquid chromatography with fluorescence 
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detection) (Campmajó, Rodríguez-Javier, Saurina, & Núñez, 2021), 
UHPLC (Mudrić et al., 2017), FT-MIR (Fourier transform mid-infrared) 
(Horn, Esslinger, Pfister, Fauhl-Hassek, & Riedl, 2018), 
UHPLC–APCI–HRMS (ultra-high-performance liquid chromatography 
coupled to high-resolution mass spectrometry using atmospheric pres
sure chemical ionization) (Arrizabalaga-Larrañaga et al., 2021), and 
some others. 

Today, there is a great need for the application of non-destructive 
and rapid analytical methods in food quality control, as well as food 
product authentication and adulteration, since the standard instru
mental methods are high-priced, time-consuming and require special 
sample preparation. In general, all of these methods target the detection 
of a narrow group of chemical compounds (such as proteins, carbohy
drates, lipids, polyphenols, etc.), as well as some specific (target) com
pounds or even the isotopic forms of an element (such as 18O, 13C) 
(Danezis, Tsagkaris, Camin Brusic, & Georgiou, 2016). Moreover, high 
chemical complexity of plant and food samples makes quality control 
analysis difficult. The compound-based approach in the chemical char
acterization of a complex sample is focused on the precise targeting of 
one or a small number of desired compounds (Cetó, Sánches, Serrano, 
Díaz-Cruz, & Núñez, 2020). Consequently, a relatively new approach, 
which shifted from a component-based to a pattern-based approach, 
should be applied (Esteki, Shahsavari, & Simal-Gandara, 2019). This 
approach allows simultaneous recording of a number of compounds and 
together with chemometrics (pattern recognition), it could provide 
respectable information about the biological sample. 

Raman spectroscopy is a molecular vibrational spectroscopic tech
nique based on the interaction between monochromatic light (from VIS 
and UV region) and a sample. The observation of the Raman scattering 
signal depends on the change of its polarizability during a particular 
mode of vibration (Larkin, 2011). During this collision, the vibrational 
(rotational) energy of the molecule is changed, and the scattered radi
ation is shifted to a different wavelength, a Raman shift (Yang & Ying, 
2011). Obtained Raman spectra contain information about the chemical 
bonds in the sample (Yang & Ying, 2011). Raman microspectroscopy 
combined with multivariate chemometric analysis has already been 
used as a promising tool for the discrimination and authentication of 
different carotenoid-rich food samples. In such approaches, a number of 
classification methods are used, including unsupervised (Principal 
Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA)) 
and supervised classification models (Partial least square discrimination 
analysis (PLS-DA), Linear discriminant analysis (LDA), k-nearest 
neighbors (KNN), and Soft independent modeling of class analogy 
(SIMCA) (Akpolat et al., 2020; Ivleva, Niessner, & Panne, 2005; Kola
šinac, Pećinar, Danojević, Aćić, & Dajić-Stevanović, 2021b; Mon
ago-Maraña et al., 2019). Carotenoids are especially detectable by 
Raman (micro)spectroscopy due to their polyene molecular structure 
(Schulz, Baranska, & Baranski, 2005). In addition, carotenoids are 
among the key nutrients in red paprika, contributing to both sensory, i.e. 
visual attractiveness (as they are responsible for fruit and product 
coloration) and nutritive quality of the fruit (Pugliese et al., 2014). 

There are several reports addressing the use of Raman spectroscopy 
in the characterization of carotenoids in paprika, including the studies 
on the carotenoid content during ripening (e.g. Sharma, Sarika Bharti, 
Singh, & Uttam, 2019), the distribution of carotenoids along the fruit 
pericarp (fruit wall) (e.g. Baranski, Baranska, & Schulz, 2005) and the 
determination of particular carotenoid compounds in chili peppers 
(Sharma et al., 2019). However, to the best of our knowledge, no reports 
addressed the application of Raman spectroscopy as a tool in the 
discrimination of paprika varieties based on the differences between the 
components appearing within the target spectral range, mostly the total 
carotenoids and some individual carotenoid compounds. 

The main objective of this paper is to establish the best multivariate 
classification model for the discrimination and therefore, the authenti
cation of different paprika varieties at their final maturity stage, 
considering the needs for defining the best harvest practices, the quality 

assessment and the control of final food products. 

2. Material and methods 

2.1. Plant material 

The samples of the traditional Balkan red paprika varieties (Amfora, 
Una, Kurtovska Kapija and Vrtka), as well as one inbreed line (derived 
from a cross between cultivar Amfora and Una) were used in the 
experiment (Fig. 1). The plants were grown under the same agro- 
ecological conditions, at the experimental field plots of the Institute of 
Field and Vegetable Crops, Novi Sad, the Republic of Serbia. The sam
ples were harvested in the last week of September depending on the full 
maturity phase of each variety, i.e. as soon as the deep red color 
appeared across the entire fruit’s surface. The fruits were previously 
marked to ensure the same harvest conditions for all of the samples. Five 
fruits were collected from each variety. After washing the fruits with 
deionized water, several fragments of about 2 cm2 were taken from each 
sample for Raman spectroscopy recording. Spectra were recorded from 
the epidermal layer, i.e the fruits’ surface was studied. 

2.2. Raman instrumentation and spectra recording 

Horiba Raman spectrometer system (Horiba Jobin Yvon, France) 
equipped with the Olympus BX 41 microscope was used in this study. 
This system possesses 532-nm and 785-nm laser sources. During the 
spectral recording, the 532-nm laser was focused onto the sample on the 
microscope stage through a 50 LWD (long working distance) objective 
(Olympus, Tokyo, Japan). The spectrometer is equipped with 1200 
lines/mm grating. Raman scattering signals were detected by a charge- 
coupled-device (CCD) detector, the detection range from 900 to 1800 
cm− 1 in the extended mode. The measurement was conducted with a 5s 
integration time, with 10 spectral accumulations, and 20–25 mW 
maximum output laser power. The spectral data were collected with 
LabSpec 6 (Horiba, France). The spectral resolution was about 3 cm− 1 

and the calibration was checked by a 520.47 cm− 1 line of silicon. In 
order to consider a possible sample inhomogeneity, the experiments 
were performed in five replicates of each paprika variety. Ten spectra 
were recorded per each replicate making a total of 50 spectra per vari
ety, i.e. 250 spectra in total. The assignment of the major bands was 
carried out using the literature data. 

2.3. Chemometric analysis 

Obtained raw spectral data were arranged in a matrix with 250 rows 
(objects-each variety 50 repetitions) and 334 columns (variables- 
wavenumbers). Raw spectra were pre-processed by applying the 
following procedures: 1) baseline correction, unit vector normalization; 
2) baseline correction, unit vector normalization and first Savitzky- 
Golay derivative; 3) baseline correction, unit vector normalization and 
second Savitzky-Golay derivative; 4) baseline correction, unit vector 
normalization and third Savitzky-Golay derivative. After derivation, the 
spectra were smoothed with 13 smoothing points (Fig. 2). 

The final stage requires the introduction of the Principal Component 
Analysis (PCA), prior to the application of different classification 
methods. PCA is required since a large number of independent variables 
usually cause misclassification problems (Abdul Rashid, Siti Esah Che 
Hussain, Razak Ahmad, & Norazami Abdullah, 2019). PCA is a method 
for reducing a large number of data sets of possibly correlated variables 
to a smaller number of uncorrelated variables (property of orthogo
nality) called principal components (PCs). Acquired PCs serve as the 
input for tested classification methods, including: PCA-LDA (Principal 
Component Analysis-Linear Discriminant Analysis), QDA (Quadratic 
Discriminant Analysis), and PLS-DA (Partial Least Square - Discriminant 
Analysis). 

LDA method serves as a model for separation into two classes 
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(Pomerantsev, 2014). The aim is to find the ideal projections and carry 
out the discrimination on the projected subspace. Distances between 
classes are maximized through projection while keeping minimum dis
tance between the objects in the same class (Chen & Jiang, 2018). LDA 
creates linear boundaries by dividing the variable space into regions 
with a straight line or hyperplane (Dixon & Brereton, 2009). 

QDA is a multiclass method, which can be used for the discrimination 
of several classes simultaneously. In contrast to LDA, QDA obtains 
quadratic boundaries, where a quadratic curve divides the variable 
space into regions (Dixon & Brereton, 2009). PLS-DA classification 
method is based on the search for the components or latent variables 
which serve to discriminate two or more different groups. Discrimina
tion is implemented according to their maximum covariance with a 
target class (Uarrota et al., 2014). 

To conduct multivariate classification methods, all data were divided 
into two sets: the training set (75% of the samples) and the test set (25% 
of the samples). The training set was used to establish the classification 
rules while the test set was used to validate them. Goodness of models 
was evaluated based on the highest value of sensitivity (SE) specificity 

(SP) and precission (P) in both training and test sample sets. SE refers to 
the percentage of samples of a given class that the model correctly 
recognises as belonging to that class:  

SE = TP/(TP + FN)                                                                              

SP refers to samples that do not belong to a given class and are 
correctly rejected by the model  

SP = TN/(TN + FP)                                                                              

Precision tells what fraction of predictions as a positive class were 
actually positive. To calculate precision, use the following formula:  

P = TP/(TP + FP)                                                                                 

Computation of sensitivity, specificity and precission for PCA-LDA 
model is based on 2 × 2 confusion matrix (Table 1). 

Unlike binary classification, PCA-QDA and PLS-DA were performed 
as multiclass discrimination models. Hence, metrics needed to calculate 
SE, SP and P for each variety were computed according more complex 

Fig. 1. Varieties used in the experiment: U-Una, A-Amfora, AxU-Amfora x Una, KK-Kurtovska kapija, VR-Vrtka.  

Fig. 2. Pre-processed spectra: A) baseline correction, unit vector normalization; B) baseline correction, unit vector normalization and the first Savitzky-Golay de
rivative; C) baseline correction, unit vector normalization and second Savitzky-Golay derivative; D) baseline correction, unit vector normalization and the third 
Savitzky-Golay derivative. 
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confusion matrix (Table 2) and following equations: 

3. Results and discussion 

3.1. Raman spectra 

Investigated paprika fruit samples were very similar in shape and 
color at the final maturity stage (Fig. 1). According to the obtained 
Raman spectra, it was clear that some subtle differences between the 
samples existed (Fig. 3). Fig. 2 shows the results of different pre- 
processing methods. Accordingly, 2B, 2C and 2D show that the 
changes in the Raman intensity and the bands’ position (especially in the 
low wavenumber region) are more clearly visible using the 1st, 2nd and 
3rd order derivatives. However, since there was a lot of noise coming 
from fluorescence, at that point, useful information was not obtained. 

The literature data indicate that the red paprika varieties can slightly 
differ in their chemical composition at the final (deep red) physiological 
state, which is mainly related to some differences in the concentration of 
total polyphenols (Mudrić et al., 2017), flavonoids (Tundis et al., 2011) 
and carotenoids (Collera-Zúñiga, Garcıá Jiménez, & Meléndez Gordillo, 
2005). Discrimination analysis in spectroscopy is a model of classifica
tion of observed objects (samples) according to their spectra. Generally, 
classification methods are divided into two groups: supervised, where 
the data are portioned according to their similarity into pre-defined 
groups; and unsupervised, where there is no prior information about 
the groups (Pomerantsev, 2014). So far, Raman spectroscopy coupled 
with chemometric classification methods has been used as a tool for 
discrimination of several fennel chemotypes (Gudi, Krähmer, Krüger, 
Hennig, & Schulz, 2014) and coffee varieties (Keidel, von Stetten, 
Rodrigues, Máguas, & Hildebrandt, 2010; Luna, da Silva, da Silva, Lima, 
& de Gois, 2019. In these studies, the Hierarchical Cluster Analysis 
(HCA), Soft Independent Modeling of Class Analogy (SIMCA), Linear 
Discriminant Analysis (LDA) and Quadratic Discriminant Analysis 
(QDA) were applied. 

Significant bands associated with the pericarp essential constituents 
were observed at ~1511–1519 cm− 1 (very strong), ~1149–1151 cm− 1 

(medium) and ~998–1006 cm− 1 (low intensity) (Fig. 3B), representing 
the characteristic bands of carotenoids. Although the carotenoids were 
present in the sample as minor components (in a quantity less than 1 mg 
kg− 1), they were very sensitive in the Raman visible region due to the 
signal enhancement caused by the pre-resonance effect of the analyte 
(Baranski et al., 2005). It is thought that the observed bands were 
assigned to the stretching vibration of the C=C, C− C bonds and the 
C− CH3 in-plane group rocking vibrations, respectively (de Oliveira, 
Castro, Edwards, & de Oliveira, 2009; Schulz et al., 2005). These bands 

suggest the presence of carotenoids as major secondary metabolites in a 
wide range of plant species including the paprika fruit (Sharma et al., 
2019). According to Schulz et al. (2005), the main bands of the red 
paprika fruit are observed at 1517, 1158 and 1004 cm− 1 which is 
assigned to the capsanthin, the main carotenoid in red paprika at the 
physiological maturity stage. de Oliveira et al. (2009) reported that the 
bands at 1527, 1156 and 1006 cm− 1 can be allocated to beta carotene. 

In addition to the bands corresponding to carotenoids, the weak 
bands were identified below 1000, at 1572–1575, 1440–1442 and 
~1260 cm− 1, and in the region of 1600–1625 cm− 1 (Fig. 3B). As the 
parenchyma cells of paprika pericarp are very rich in various carbohy
drates, the bands observed below 1000 cm− 1 probably refer to glycosidic 
linked stretches (Synytsya, Čopı;́ková, Matějka, & Machovič, 2003). The 
bands observed at ~1445 cm− 1 (related to δ(CH2) vibrational mode) and 
at ~1256 cm− 1 are most probably linked to the polygalacturonic acid 
(Chylińska, Szymańska-Chargot, & Zdunek, 2014) (Fig. 3B). The weak 
band at 1575 cm− 1 is associated with the presence of benzene ring 
(Trebolazabala, Maguregui, Morillas, de Diego, & Madariaga, 2017) 
which is the main constituent of phenolic compounds. In addition to this 
one, the weak band at ~1600 cm− 1 can also be attributed to phenolic 
compounds (Prats Mateu, Hauser, Heredia, & Gierlinger, 2016). It is 
known that the red pepper is rich in flavonoid glycosides and phenolic 
acids such as quercetin-3-glycoside (Lekala et al., 2019). 

3.2. Multivariate classification analysis 

It has already been discussed that the target compound classification 
analysis could sometimes be useless because of the fact that there is 
rarely a specific compound present only in one single type of a sample, 
which could consequently be used to separate (classify) samples ac
cording to such fine chemical differences. The non-targeted analysis also 
has some disadvantages, mainly because it requires many descriptors, 
some of which might be irrelevant, thus interfering with the data pro
cessing stage and possibly causing degradation of model performance. In 
our experiment, all classification rules are built upon the spectral region 
between 900 and 1800 cm− 1, which is mostly associated with the bands 
corresponding to the carotenoids. 

Since the classification models are unpredictable due to unknown 
discrimination power, it is necessary to perform several models based on 
accepted pre-processing methods (Devos, Downey, & Duponchel, 2014). 
In all tested classification models, five principal components were used, 
explaining 99% of the entire variability. 

The precision of PCA-LDA, PLS-DA and PCA-QDA in the training data 
was 0–100, 19.35–100 and 83.87–100%, respectively, while in the test 
data it was 0.00–100.00 0.00–100.00 and 89.47–100.00%, respectively. 
The results varied depending on the performed pre-processing method. 
In general, the applied pre-processing methods did not change the 
classification precision but PCA-LDA and PLS-DA showed uncertainty in 
the case where the number of corrected classified samples was zero. 
PCA-QDA showed the best classification power and consistency in all of 
the pre-processing methods used (for the graphical representation of the 
classification results see Supplementary material). 

The main problem of the PLS-DA model was to classify the Amfora 
variety and Amfora x Una inbreed line. The effect could be connected 
with the similar genetic structure of these two samples, since they share 
a high number of common genes, including those possibly determining 
the metabolic pathways of synthesis of carotenoids, polyphenols, sugars 
and other metabolites. PCA-LDA showed better performance in the 
classification of these two samples, while PCA-QDA did not show 
weakness in the classification of genetically related samples. PLS-DA and 
PCA-LDA are based on Mahalanobis distance, but LDA presumes a single 
variance-covariance matrix over all classes. However, QDA presumes 
different variance-covariance matrices for each class separately, 
creating a more powerful classification rule (Dixon & Brereton, 2009) 
which can be the reason for the best discrimination power. In the event 
of incorrect classification, the varieties were randomly assigned to a 

Table 1 
Confusion matrix. The table compares the prediction against the correct group 
assignment.   

Actual values  

positive negative 

Predicted values positive TP FP 
negative FN TN 

*TP- true positive; TN- true negative; FP-false positive; FN-false negative. 

Table 2 
Confuson matrix of multiclass classification problem.   

Actual values 

Predicted values  U A AU KK VR 
U a b c d e 
A f g h i j 
AU k l m n o 
KK p q r s t 
VR u v w x y  
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certain class. 
The summary of the discrimination of each model and each pre- 

processing model combination is shown in Tables 3 and 4. 
QDA is a very simple algorithm, and as opposed to LDA, it computes 

the variance structures for each class separately, creating a more 
powerful discrimination rule for classes with different covariance 
matrices, such as for biological spectra sets in which the variability 
within the class is the key issue. 

Fig. 3. Raw (A) and averaged (B) Raman spectra of paprika varieties: U-Una; A-Amfora; AxU-Amrofa x Una; KK-Kurtovska kapija; VR-Vrtka.  

Table 3 
Classification results of Training sets of PCA-LDA, PLSDA and QDA models.  

Method Variety Training set Overall 

BC + N BC + N+ 1st D BC + N+ 2nd D BC + N+ 3rd D 

P SE SP P SE SP P SE SP P SE SP  

U 100.00 96.77 100.00 100.00 87.10 79.03 100.00 87.10 97.58 93.10 87.10 98.39 93.85  
A 50.94 100.00 100.00 50.94 100.00 100.00 90.00 100.00 100.00 100.00 96.77 100.00 90.72  
AU 100.00 100.00 100.00 100.00 83.87 100.00 0.00 0.00 100.00 100.00 9.68 100.00 74.46  
KK 0.00 100.00 100.00 0.00 0.00 100.00 0.00 0.00 100.00 50.00 100.00 0.00 45.83 

PCA-LDA VR 0.00 100.00 100.00 0.00 0.00 100.00 0.00 0.00 100.00 0.00 0.00 100.00 41.67  
U 54.54 83.87 80.64 60.00 87.10 79.84 75.00 88.57 84.68 72.73 90.32 81.45 78.23  
A 52.00 19.35 95.97 51.92 19.35 96.77 58.70 34.29 96.77 54.90 25.81 97.58 58.62  
AU 96.87 100.00 99.19 62.22 90.32 86.29 100.00 83.87 100.00 100.00 83.87 100.00 91.89  
KK 100.00 100.00 100.00 82.35 51.61 97.58 86.11 100.00 95.97 86.11 100.00 95.97 91.31 

PLS-DA VR 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00  
U 93.94 93.55 100.00 85.71 83.87 99.19 88.57 87.10 100.00 91.18 90.32 100.00 92.79  
A 100.00 100.00 98.39 96.30 96.77 95.97 100.00 100.00 96.77 100.00 100.00 97.58 98.48  
AU 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00  
KK 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

PCA-QDA VR 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00  
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Kolašinac, Pećinar, Danojević, Aćić, and Stevanović (2021) investi
gated different chemometric models in the classification of red pepper 
cultivars at different maturity stages. According to the training data in 
this research, PCA-LDA and PLS-DA indicated precision between 95% 
and 100%, respectively, while in the test data they showed 90–100% 
and 100% precision, respectively. Luna et al. (2019) used PCA-LDA, 
QDA and PLS-DA in combination with different pre-processing 
methods coupled with Raman spectroscopy for the classification of 
different coffee varieties. The results showed that precision was equal to 
100% for all tested models except for QDA (97.8%), using MSC (mul
tiplicative scatter correction) as a pre-processing method. On the other 
hand, when MC (mean centering) was used, the correct classification of 
the samples was 62.7% for PCA-LDA, 62.7% for QDA and 61.3% for 
PLS-DA. 

The importance of this research is reflected in the potential use of 
Raman spectroscopy in the discrimination of very similar plant samples, 
such as some crop varieties grown at the same conditions and harvested 
at the same maturity phase. The paprika samples investigated in this 
paper are mostly used as raw material to obtain various food products 
that are available at the market. The most preferable and the most 
consumed product is the traditional Balkan dish called “ajvar”, in 
addition to roasted and ground sweet red paprika. “Ajvar” is acknowl
edged Balkan food, prepared from just a few paprika varieties, known as 
“ajvar” or “ajvarusa” paprika types in Serbian, Bosnian and North- 
Macedonian languages. Such varieties as “Kurtovska kapija”, 
“Amfora”, “Crvena roga” and some others, have typical fleshy and taste- 
rich mesocarp (paprika “flesh”), shiny deep red color and elongated, 
cylindrical and somewhat flattened regular shape, suitable for efficient 
roasting. Best quality ajvar is made from just roasted paprika, vegetable 
oil and salt, where only one variety is used depending on the region, 
availability on the market and the price. In addition to homemade ajvar, 
there is significant industrial production offered by several food pro
cessing companies in the Balkans (e.g. “Bakina tajna”, “Premija”, 
“Podravka”, “Dijamant”, etc.), due to high demand and consumer 
preferences. Alongside ajvar, fleshy deep red paprika varieties are also 
used fresh, roasted in different products, as well as in the form of dried 
paprika and sweet ground paprika product. Therefore, future research 
should be directed towards the quality assessment of paprika products 
and the differences which could be accurately estimated by a non- 
destructive and rapid method such as Raman spectroscopy associated 
with proper chemometric models. Moreover, Raman imaging could be 
recommended for studies of alterations in nutrient content and 
composition in different parts of the fruit allowing a deeper 

understanding of carotenoid transformation during the ripening period 
and therefore performing the best harvest practices for different 
capsicum species and varieties. 

4. Conclusion 

Results obtained in this study show that the Raman spectroscopy 
coupled with multivariate classification analysis can be used as a tool for 
the discrimination of different paprika varieties. Overall, this paper aims 
to demonstrate the advantages derived from the use of chemometric 
methods as an alternative to a component-based approach. The pattern- 
based approach has proved to be precise, fast, low-cost and time-saving. 
The best classification results were acquired using QDA in all pre- 
treatment procedures, especially with baseline-correction and normali
zation. Finally, our study confirmed the possible applicability of the 
chemometrics-based Raman spectroscopy in food quality analyses, as 
well as in the authentication of food products, food adulteration and the 
assessment of the product’s geographic origin, since the method allows 
determination of subtle alterations in physico-chemical traits of 
different products and at different processing phases. 
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BC + N - baseline correction, unit vector normalization; BC + N+1st 
D - baseline correction, unit vector normalization and first Savitzky- 
Golay derivative; BC + N+2nd D - baseline correction, unit vector 
normalization and second Savitzky-Golay derivative; BC + N+3rd D - 

Table 4 
Classification results of Test sets of PCA-LDA, PLSDA and QDA models.  

Method Variety Test set Overall 

BC + N BC + N+ 1st D BC + N+ 2nd D BC + N+ 3rd D   

P SE SP P SE SP P SE SP P SE SP  

PCA-LDA U 0.00 0.00 50.00 100.00 100.00 86.84 100.00 100.00 92.10 100.00 100.00 94.74 76.97 
A 0.00 0.00 33.33 65.51 84.21 100.00 76.00 94.74 100.00 82.61 94.74 100.00 69.26 
AU 33.33 100.00 0.00 86.36 100.00 95.16 100.00 100.00 100.00 100.00 100.00 100.00 84.57 
KK 50.00 100.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 87.50 
VR 50.00 100.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 87.50 

PLS-DA U 0.00 0.00 75.00 61.29 100.00 84.21 61.29 100.00 84.21 59.37 100.00 82.90 67.36 
A 20.00 0.00 80.26 100.00 26.32 100.00 100.00 26.32 100.00 84.04 21.05 100.00 63.17 
AU 0.00 5.26 94.74 70.83 89.47 90.79 77.27 89.47 93.42 94.74 89.47 96.05 74.29 
KK 0.00 0.00 76.32 87.50 73.68 97.37 83.33 78.95 96.05 92.63 84.21 94.74 72.07 
VR 0.00 0.00 50.00 100.00 94.74 100.00 100.00 94.74 100.00 98.95 94.74 100.00 77.76 

PCA-QDA U 100.00 100.00 100.00 90.00 89.47 100.00 100.00 89.47 100.00 94.44 89.47 100.00 96.07 
A 100.00 94.74 100.00 100.00 94.74 97.37 90.47 100.00 97.37 90.00 94.74 97.37 96.40 
AU 95.00 100.00 98.68 95.00 100.00 98.68 100.00 100.00 100.00 100.00 100.00 100.00 98.95 
KK 100.00 100.00 100.00 100.00 100.00 100.00 100.00 88.00 100.00 89.47 89.47 100.00 97.25 
VR 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

BC + N - baseline correction, unit vector normalization; BC + N+1st D - baseline correction, unit vector normalization and first Savitzky-Golay derivative; BC + N+2nd 
D - baseline correction, unit vector normalization and second Savitzky-Golay derivative; BC + N+3rd D - baseline correction, unit vector normalization and third 
Savitzky-Golay derivative; P-precission; SE-sensitivity; SP-specificity. 
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baseline correction, unit vector normalization and third Savitzky-Golay 
derivative; P-precission; SE-sensitivity; SP-specificity. 
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