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Abstract 

Following adequate hydro-geological conditions, water supply from local groundwater resources represents a viable solution for 
farms located far away from surface-water sources or from areal water supply systems, providing major economical and social advantages. 

To exploit these resources safely care in order groundwater contamination with elements, substances, products 
and / or pathogenic microorganisms character, especially when abstraction is required to provide drinking water to be 
taken even in the design of water cachment, specific technical measures, one of the most important areas consisting 
of correct size  of the protection perimeters with a strict diet and restriction diet. 

This paper improves the analytical models of sizing the sanitary protection areas for water catchments through perfect wells or drains 
from unconfined aquifers, aiming at finding numerical solutions with a higher degree of accuracy.  

The mathematical sizing models are differentiated according to the main characteristics of the aquifer and 
water catchment, such as container rock’s  type (with interstitial porosity or with cracks and/or cavities); aquifer’s type 
(unconfined or confined) and feeding method (with or without initial dynamics); tapping with different wells and drains 
according to the water bed’s opening (perfect/imperfect).  

For a better understanding of the mathematical models mentioned above, and the technique for numerically 
solving, two examples there are presented in which all details items are considered in the sizing of sanitary protection 
zones with strict diet regime and with restrictions regime 
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            One of the most important protective 
measures for the quality of the underground waters 
that are to be tapped for drinking is setting out 
sanitary protection perimeters with severe regime 
and restriction regime (Cojocaru D. et. al., 2013).   
These areas are delimited on the surface, around 
the well or the catchment drain and serve 
preventing the contamination and pollution of the 
groundwater with elements, substances, products 
and/or pathogenic microorganisms. 
 Nowadays in our country, for the setting of 
the sanitary protection areas with severe and 
restriction regimes, it is generally accepted the 
hypothesis that there is a self-cleaning process in 
the aquifer. Hence, the sanitary protection 
perimeter has been conceived based on a so called 
“transit time” defined as being (Hotărârea nr. 
930/11.08.2005) and (Ordin nr.1278, 2011): the 
amount of time needed to start, develop and end 
the physical, chemical and biological processes of 
de-polluting the possible elements, substances 
and/or polluting products in the underground 
water. Considering the hydrodynamic regime of 
the groundwater in the influence area of the 
catchments, a certain distance corresponds to the 
“transit time”, named “sanitary protection distance with 
severe/restriction regime”, covered by a drop of pollutant in 

aquifer, in the flowing direction of the underground stream, 
upstream the catchment point. 
 The difference between the “severe regime” size 
and the “restriction regime” size is given by the amount of 
time of the “transit time”: tS = 20 days in severe regime and 
respectively, tS = 50 days in restriction regime. 
 For the analytical sizing models of the 
sanitary protection areas of higher complexity, 
only graphic-analytical solutions are given, which 
are difficult to use in practice due to the great 
computational effort as well as to the poor 
accuracy of results. Moreover, some of the 
calculus relations presented are erroneous. 
 From the authors’ analyses, there has been 
noticed that some sizing relations of the sanitary 
protection areas for water catchments through perfect wells 
or drains from unconfined aquifers in container rocks with 
interstitial porosity without initial dynamics from study 
(Ordin nr.1278, 2011) are erroneous or insufficiently 
precise. Thus, we state: 
- the equation of depression curve for the perfect 
catchment wells, in unconfined aquifers, 
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 - the equation of sanitary protection distance 
for perfect drain in  the aquifer level, without the 
initial growth rate,  
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- the equation of variation of  relative 
depth η of the curve of depression depending on 
the time of transit, t for perfect drain in  the aquifer 
free level, with the initial growth rate,  
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Imprecise relation for the Hoffman-Lillich method 
(rewritten for coherent measurements units for  
time t and filtration coefficient k) . 
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In this paper, the analytical models of sizing the 
sanitary protection areas for water catchments 
through perfect wells or drain from unconfined 
aquifers in container rocks with interstitial porosity 
without initial dynamics, are improved in order to 
find numerical solutions with a higher degree of 
accuracy. 

 
MATERIAL AND METHOD 

 
The fact that the formulas (1) and (4), for a 

perfect well in unconfined aquifer, and (2) and (3), 
for perfect drain in unconfined aquifer, are 
erroneous, has been emphasized first by covering 
in detail the steps of deducing the calculus 
relations for the sanitary protection distances. 
 
 The sanitary protection distance for the 
perfect well in unconfined aquifer 
It has been considered the case in which the 
aquifer has no initial dynamics, which in practice 
is acceptable for slopes of the impermeable bed 
that satisfy the condition i0 < 0.003. 
The apparent velocity v, in an unconfined aquifer 
is given by the Darcy equation: 

hv k i                              (5) 
where, in the case of a well, the hydraulic slope ih 
has the following differential expression: 

h
dhi
dx

                             (6) 

where h is the height of the water free level at 
distance x from the well’s axis. 
Out of the relations (5) and (6) the following 
differential expression results for the velocity v:  

dhv k
dx

                              (7) 

Replacing in the continuity equation of well (fig. 1) 
2Q x h v                               (8) 

the expression (8) for velocity, we get: 

2 dhQ k x h
dx

                                (9) 

            
           Fig. 1. Calculation chart for a perfect 

catchment well in unconfined aquifer without initial 
dynamics 

 
From the relation above, we get the expression of 
the hydraulic slope dependent on the flow rate: 

2
dh Q
dx k x h


  

                         (10)  

Equation (8) may be rewritten in the form of a 
differential equation with separable variables x and 
h , 

2dxQ k h dh
x

                                            (11) 

which by integration between the limits r0, x and 
respectively, h0, h, 
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leads to the depression curve equation in the 
implicit form shown below: 

   2 2
0 0ln ln 0k h h Q x r                     (13) 

From (10) the depth h may be made explicit in this 
way: 
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At the superior limit, the depth h is bounded by the 
depth corresponding to the hydrostatic level of the 
aquifer, H, and the coordinate x – by the influence 
radius of the well, R; inserting into the equation 
(10) these limits, that is h=H and x=R, the height 
h0 and/or the flow rate Q may be developed in this 
way: 
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Replacing the expression (15) for the flow rate Q 
in equation (11) it gives: 
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That is the correct relation which, for x=l, must 
replace the erroneous relation (1).  
For the radius R, for unconfined aquifers, the 
empirical formula of Kusaikin is recommended 
(Luca O., 2000): 

 0575R H h k H                             (17) 
Eliminating the depth h0 from relations (8) and (9), 
the following equation has occurred with unknown 
R: 
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equation which, usually is solved numerically. 
Replacing expression (15) in eq. (18), it gives the 
following explicit form for the depression curve 
equation:  

 21 ln lnh k H Q R x
k
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 Considering the equation above, the 
equation of the hydraulic slope (9) becomes: 
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In evaluating the distance covered by the 
underground stream in a period of time t , the 
actual speed of the stream is considered, ve, which 
can be defined, either dependent on the apparent 
speed  v, given by the relation (7), and, considering 
the actual porosity, ne  

e
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                           (21) 

either dependent on the space x and time t,  
 ev dx dt              (22) 
Eliminating speed ve from the two relations above, 
the following differential relation occurs:  

 
e
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               (23) 

Inserting the relation (21) into the relation above, 
there results the following linear differential 
equation of the first degree: 

22 lne

dx k Q
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           (24)  

The sanitary protection distance D, corresponding 
to time tS , is the particular solution of equation 
(24) corresponding the following initial and, 
respectively final, conditions:   
t = 0, x = r0  and  t = tS, x = D           (25) 
Equation (24) with conditions (25) may be usually 
achieved only by numerical methods, for instance, 
through Runge-Kutta method of the fourth order. 

The average slope im from the formula of the 
Hoffmann-Lillich method (4) is evaluated with the 
relation: 
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                          (26) 

where hD represents the height of the water level at 
distance D from the well axis. 
In study (Ordin nr.1278/20.04.2011) there is a 
graphic-analytical method of applying the 
Hoffmann-Lillich method, which is laborious and 
less precise. To improve this method, we have 
suggested the assessment of the heights  h0 şi hD 
with the relations (12) and (18) and then, by 
eliminating the slope im from relations (4) and (23), 
the following equation has been deduced, which, if 
numerically solved, allows the direct determination 
of the distance D: 
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The sanitary protection distance for the perfect 

drain in unconfined aquifer without initial 
dynamics 

 
The deduction of the analytical expression 

for the sanitary protection distance D, follows 
mostly the same steps as for the equation (21). 
 

 
Fig. 2  Calculation chart for a perfect catchment 

drain in unconfined aquifer without initial dynamics. 
 

Adopting the calculus diagram from (fig. 2), for the 
velocity v the differential expression (7) is valid. 
Replacing in the continuity equation: 
 q h v   
the expression (7), we get: 

dhq k y
dx

                             (28) 

where q is the specific flow rate. 
From the relation above we get the expression of 
the slope dependant on the flow rate: 
dh q
dx k h




                                                         (29)  
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Equation (29) may be rewritten in the form of a 
differential equation with separable variables x and 
h , 
q dx k h dh     
which by integration between limits B/2, x and, 
respectively,  h0, h,  

02

x h

B h
q d k d         

leads to the depression curve equation in the 
implicit form shown below: 
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                        (30) 

From equation (27), the depth h, may be developed 
as follows: 

 2
0 2qy h x B
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Considering the equation above, the slope 
expression (26) becomes: 
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Inserting the expression (32) into relation (23), for 
the slope dy dx , the following linear differential 
equation of the first order occurs: 
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                        (33)  

The sanitary protection distance D, corresponding 
to time tS , is the particular solution to equation 
(33) corresponding the following initial and, 
respectively final, conditions: 
t=0, x=B/2  and t=tS, x=D                        (34) 
The differential equation (33) is with variables t 
and x separable and may be rewritten in the form:  
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which must be integrated with limits (34): 
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Solving the integrals above through exact 
analytical methods, the protection distance D may 
be developed as follows: 
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  It has been noticed that, even when neglecting the 
width B, the relation (2) is incorrect, leading to 
smaller values of the distance D of about 20%. 
 

The sanitary protection distance for the perfect 
drain in unconfined aquifer with  initial 

dynamics 
 

In the case of a catchment drain in an 
aquifer with initial dynamics ((i0> 0.003), The 
hydraulic slope I, has the following differential 
expression: 

0h
dhi i
dx

                            (38) 

Thus, considering relations (5) and ( 28), the 
following differential expressions arise for the 
speed v si and the specific flow rate q : 

 0v k i dh dx                                    (39) 

 0q k h i dh dx                                         (40) 
Integrating equation (40) taking into account the 
relative depth η : 
 

h H                                        (41) 
the equation of depression curve results (Ordin 
no.1278/20.04.2011) : 
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Following the deduction process of equations (20 
÷24), we get the differential equation with 
separable variables t and h :  
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Integrating the above equation between the limits 
0, t and  h0, h through exact analytical methods, 
it follows the variation law of depth h depending 
on transit time t, developed in relation with 
variable t: 
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Taking into account the relative depth (41), the 
above equation may be rephrased in this way: 
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 so in eq. (3) the sign “-“ in front of linear element 
η0 is wrong. 
  

 
RESULTS AND DISCUSSION 

 
The mathematical models presented in the 

previous section have been applied in the complex 
ground water catchment system with both drains 
and wells from Timisesti – Zvoranesti. 
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Case study no.1: well F4 from Zvoranesti-

Timisesti catchment front 
The catchment front with small depth 

wells from Zvoranesti-Timisesti has been designed 
for the flow rate Qcap = 250 l/s, and is situated in 
the bottom land from the right bank of the 
Moldova River, parallel to Timisesti drains, at 
about 1 km. downstream from them; it has the 
length , L= 2580 m, and consists in 30 drilled 
exploiting wells (F1, F2, …, F30 – 26 of them 
working), with depths between 11 and 12 meters. 

The catchment well F4 is built by drilling 
until the confining bed (perfect well), with slope 
i0= 1.5 ‰ <  3 ‰ (aquifer without initial 
dynamics). 

The building-functional parameters of well 
F4 – r0, Q and h0 -  as well as the hydrological 
parameters of the exploited aquifer   – H, k, ne – 
are written directly on the diagram from (fig. 3).  
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Fig. 3. Diagram of determination of sanitary 

protection distances for well F4 
 
Numerically solving equation (24) with conditions 
(25) – successive for: 
 t=tS=tSv=20 days and t=tS=tR=50 days              (46)  
the following values resulted: 
 DSv=7.52 m and DR =12.53 m                           (47) 
Thus, formula (4) has lead to the following under-
evaluations  of the sanitary protection radiuses: for 
the severe regime, 9.40 times; for the restriction 
regime, 8.88 times – so, evaluations eq. (4) may be 
considered to be inadmissibly small. 

 
Case study no.2: New Drain – Timisesti 

The New Drain  of Timisesti  catchment 
has been designed for flow rate QDN = 1200 l/s; it 
is built as an accessible drain gallery (fig. 4); it has  
a length of 4078 m, with 15 visiting chimneys (C1, 
C2, ..., C15) and a collecting well at the 

downstream end from which two water transport 
pipes lead to Iasi. 
 

 
 

Fig 4. New Drain Timisesti. Transversal section 
through catchment drain (gallery) 

 
 In the section of visiting chimney C14, the drain is 
located on the impermeable base layer (perfect 
drain), which has the slope i0= 1.65 ‰ < 3 ‰ 
(aquifer without initial dynamics); the following 
values have been determined for the geometrical, 
hydraulic and hydro-geological parameters, used as 
input data for the assessment of the sanitary 
protection distances (2) and (37): 
B=1.3 m, h0=0.304 m, q=3.07e-5 c.m/s∙m 
k=9.1e-4 m/s, ne=30%, H=6.01 m 
Considering successively conditions (46), the 
results are: 

-      with equation no (2): 
 DSv = 78.08 m, DR = 145.76 m;     (48) 

-   with equation no (37): 
 DSv1 = 100.79 m, DR1 = 186.15 m. 

So, formula (2) has lead to the following under-
evaluations of the distances of sanitary protection: 
for the severe regime, 2.53%, for the restrictions 
regime, 21.69%. 

 
CONCLUSION 

 
- The depression curve equation of the perfect 
catchment wells in unconfined aquifers (1) is 
completely erroneous and must be substituted by 
relation (13). 
- Coefficients of equation (2) for the determination 
of the sanitary protection distances for perfect 
drains in unconfined aquifers, with slope i0 = 1.5 
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‰ < 3‰   are erroneous, this leading to under-
evaluations of about 20%, so equation (2) must be 
replaced by equation (37). 

- Equation (4) corresponding to Hoffman-Lillich 
method is very inaccurate, since in Case study 
no.1, comparing solutions (47) and (48), lead to 
under-evaluations of about 9 times: so, we suggest 
using instead the differential equation (24) with 
initial conditions (25). 

- The sign “-“ in front of the linear element  η0 
from the variation law of the relative depth η 
dependent on transit time t is erroneous, therefore 
equation (3) must be replaced by the correct 
relation (45). 

- The mathematical models to determine the 
sanitary protection distances for perfect drains and 
wells are suitable for accurate numerical solving, 
possible with the help of adequate automatic 
calculus programs. As a general conclusion, we 
recommend all engineers not to use calculus 
formulae, even if these are presented in official 
documents, without thoroughly checking them 
first, because, otherwise, designing errors may 
occur leading to major economic effects.             

Notations: 
B = width of drain on water surface 

corresponding the depth h0, [L]; 
DSv = radius of sanitary protection area 

with severe regime, [L]; 
DR  = radius of sanitary protection area 

with restriction regime, [L]; 
h0 = water depth (height) in the well for 

extracting the flow rate Q (or water depth in the 
drain for extracting the specific flow rate q), [L]; 

hD =  height of the water level at distance 
D from the well axis, [L]; 

H = thickness of unconfined aquifer, [L]; 
        i0  = hydraulic slope (hydraulic gradient) of 
the aquifer in natural regime, [-]; 
        ih = hydraulic slope of the depression 
curve,[-];   

im = average slope of the depression curve 
on the interval [x0, D],[-]; 

k = hydraulic conductivity, [LT-1];  
ne = effective porosity, [-]; 
N.H. = hydrostatic level of the aquifer, [L]; 
r0 = well’s radius, [L];=influence radius of 

the well [L];  
q = specific flow rate, [L2T-1]; 
Q = catchment flow rate, [L3T-1]; 
s = denivelarea in put, [L]; 
t = time, [T]; 
tS = transit time left to cover the saturated 

area, [T]; 

tSv = transit time left to cover the saturated 
area, needed to size the sanitary protection area 
with severe regime, [T]; 

tR = transit time left to cover the saturated 
area, needed to size the sanitary protection area 
with restriction regime, [T]; 

v = apparent velocity, [LT-1]; 
ve= actual (average) velocity of the 

underground stream, [LT-1]; 
x = distance from the well’s axis, [L]; 
η = relative depth for curve depression  [-]; 
η0 = relative depth corresponding to h0  [-].  
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