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CHAPTER 1

General Introduction

“There is a theory which states that if ever anyone discovers exactly what the
universe is for and why it is here, it will instantly disappear and be replaced by
something even more bizarre and inexplicable. There is another which states
that this has already happened.”

— Douglas Adams [1]

The phrase quoted above by English humorist and science fiction novelist Dou-
glas Adams points to a universe that is bizarre and inexplicable. It also alludes
to a purpose, a why, of the universe which may be discovered. Of course, the
quote above is to be interpreted in its humorous context, but its subject matter
extends into the realm of science. The questions: is there a why to the universe,
what is that why, and does asking the ‘why” question make sense when applied
to the universe, are scientifically unanswered [2]. Nevertheless, these and other
questions concerning complex components of this universe inspire scientists ev-
ery day to keep looking for answers and discoveries across a wide variety of dis-
ciplines from cosmology to psychology to biology. Bypassing the elusive ‘why’
question, scientists typically try to gain more insight into the ‘how” of the uni-
verse: How did the universe come about, how is it evolving, how does it maintain
itself, and what is life? In doing so, even though the universe and our existence at
times may appear quite bizarre and inexplicable, we assume a rational basis for
the universe: we aim to discover principles, laws and theorems that provide the
structure for us and the things around us.

In his 1944 book What Is Life, Nobel Prize-winning Austrian (quantum)
physicist Erwin Schrodinger posed the question “How can the events in space
and time which take place within the spatial boundary of a living organism be ac-
counted for by physics and chemistry?” He concluded that “the obvious inability
of present-day physics and chemistry to account for such events is no reason at
all for doubting that they can be accounted for by those sciences” [3]. Indeed, the
biological sciences have come a long way since 1944 and the ability of physics and
chemistry, aided by mathematics and computer science, to account for biological
events has grown tremendously.

The publication of Schrodinger’s book inspired and was shortly followed
by the discovery of the structure of DNA [4], and the field of molecular biology
subsequently boomed. Simultaneously, a separate line of research with roots in
non-equilibrium thermodynamics revealed that the coupling of multiple molec-
ular processes is fundamental to life due to the second law of thermodynamics.
This understanding gives rise to the need to study coupling between processes
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and network properties [5]. The former line of research is more reductionist in
nature, whereas the latter line of research is focused on whole systems and while
merely phenomenological at its onset, soon incorporated mechanisms as well [6].
This thesis discusses several scientific works in the fields of systems biology and
bioinformatics, which were formed from the convergence of the reductionist and
systems ways of thinking on the occasion of the genomics revolution [7].

Systems biology continues in the spirit of Schrodinger’s classic book but with
a twist. Systems biology rephrases Schrodinger’s question in terms of how bio-
logical function, i.e. life, emerges from the underlying molecular network which
is constrained by physical and chemical laws. The twist unites the two roots of
systems biology: we need to know both the components of the biological system
and their properties, and how they interact and give rise to new functions and
new top-down constraints. In the consideration of the whole network as a com-
plex system, explicitly inclusive of molecular mechanisms, the fields of mathe-
matics, systems theory and computer science have come to play prominent roles.

The works highlighted in this thesis illustrate (small) steps forward toward
understanding the emergence of functions in biology from a systems perspective.
The chapters that follow aim to contribute to answering Schrodinger’s question,
albeit without Schrodinger’s sweeping scope. The scope of this thesis is narrower
and emphasizes the use of mathematical modeling, computational approaches
and bioinformatics to express and understand a small selection of the ideas and
challenges found in modern biology. We will however return to Schrodinger’s
overarching question in the Discussion (Ch. 8).

1.1 Beautiful, damn hard, and increasingly useful

In a book of the same title and spirit as Schrodinger’s, Margulis and Sagan illus-
tratively suggested that life resembles a fractal, a pattern repeated when “zoom-
ing in” to smaller scales and when “zooming out” to larger scales [8]. In this
sense, the fundamental unit or “fractal” of life is the cell, existing either as singu-
lar entities (e.g. bacteria and archaea), as communities of cells, or as the building
blocks of multi-cellular organisms (e.g. humans). Viewed through the analogy
of a fractal, the remark by mathematician Benoit Mandelbrot on fractals in math-
ematics also applies to the biology of life: “beautiful, damn hard, increasingly
useful.” The beauty and utility of life is evident around and through us. Biol-
ogy being ‘damn hard’ is apparent from the mind-boggling complexity [9] and
diversity [10] of single cells, the manner in which single cells unite to form com-
munities [11] and multi-cellular organisms, and the fascinating way in which that
complexity gives rise to the precise and coherent functioning evident throughout
the natural world [12].

Underlying all the functionality and diversity of living organisms is the
genome: an organism’s entire set of long-term hereditary information. As pro-
posed by Watson and Crick [4], molecularly, the genome consists of DNA, a dou-
ble helix of two strands of nucleotide molecules held together by cross-strand
hydrogen bonds. DNA in turn is compacted into individual packets called chro-
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mosomes. In the same way that Morse code consists of dots interspersed with
dashes, each chromosome is made up of functional, coding stretches of DNA,
referred to as genes, interspersed between non-coding (but possibly functional)
stretches of DNA [13]. Schrodinger’s book inspired Watson and Crick toward
their ultimate discovery of the structure of DNA, prompting Watson to write that
Schrodinger “[. . .] very elegantly propounded the belief that genes were the key
components of living cells and that, to understand what life is, we must know
how genes act” [14].

Indeed, much of biological research since Watson and Crick has regarded
the identification and functioning of genes. The complete human genome, which
has since been sequenced, was initially estimated to house somewhere between
26,000-40,000 protein-coding genes [15, 16]. This number has been further down-
sized to below 25,000 genes [17] and recently to roughly 20,000 [18] as more com-
plete drafts of the genome have been released. In contrast, the minimal number
of genes needed to sustain (bacterial) life is currently thought to be ~ 400 based
on gene knockout studies in the bacterium Mycoplasma genitalium [19]. These
genes provide the blueprint for all cellular components: each gene encodes an
RNA molecule which results from the transcription of a piece of DNA and is itself
translated to produce proteins. Proteins in turn are three-dimensional molecules
that perform a myriad of functions as catalysts, regulators of gene transcription
and structural support units. The mind-boggling complexity of cells emerges
from these thousands of functionally diverse, interacting components that exhibit
distinct spatial and temporal properties. These interactions and the functions that
emerge from them are what will concern us here.

1.2 Networks, dynamics, systems, and objectives

A reductionist approach may lead one to consider each organism as the sum of
its cells and each cell as the sum of its parts. However, such a view is detrimental
as it misses key aspects of the systems of life: emergence, complexity, responsive-
ness and robustness [20]. For complex systems, simply knowing the components
of a system does not enable one to explain how functionality emerges, i.e. the
whole is not just the sum of its parts: typically, the whole is a function of the
parts. Therefore, to understand complex systems, it is crucial to understand (i)
what the components can do and how they interact, (ii) the system’s inputs and
outputs and the relationships (coupling) between them, (iii) the dynamics across
time of components and their interactions, and (iv) the system’s goal or objective,
if any, and how this objective is achieved through the interactions between the
components. Following (i), the concept and science of “networks” is fundamen-
tal to modern biology [21]. Following (ii), we need to consider the network as
a system that interacts with its environment. Following (iii), the mathematics of
dynamical systems comes into play in biology. Finally, (iv) requires us to con-
sider what cells are “wired” for, such as the generation of offspring. Is there an
evolved objective and has there been a corresponding selection mechanism in the
particular biological system under consideration?
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Life, as such a complex system, is more like a verb: it repairs, maintains,
reproduces and outdoes itself [8]. Furthermore, there is a fundamental need for
systems biology to understand the cross-communication among biological path-
ways, due to the need to couple processes that require Gibbs energy input to
processes that release Gibbs energy as a consequence of the second law of ther-
modynamics (see below and Ch. 5). The aim of systems biology is to discover
general principles about how functional properties and behavior of living organ-
isms arise from the interactions of their constituents, to understand these princi-
ples and systems and to predict their future states and behavior [22, 23]. These
aims will underlie all chapters of this thesis. Specifically, all chapters (Ch. 2-7)
deal with point (i) mentioned above, Ch. 2 and 6 deal with (iii), Ch. 3 deals with
(iii) and (iv), and Ch. 5-7 deal with (ii) and (iv).

1.3 Putting the computation in systems biology

Schrodinger posited that the problem of life is a puzzle posed to no single disci-
pline!. Given that cells consist of chemical compounds that are subject to the laws
of physics, the relevance of chemistry and physics to cell biology is clear. Com-
puter science, bioinformatics and mathematics play a role in modern biology for
at least two reasons. First, the era of big data has reached biology [24, 25] as well
as other parts of modern life [26]. Storage, retrieval and analysis of this data now
frequently requires advanced computing architectures, bioinformatics pipelines
and mathematical statistics. Ch. 3, 4 and 7 partially deal with large (although
modest by today’s new standards) datasets and networks. However, there is a
second, more fundamental, reason for the importance of computer science, bioin-
formatics and mathematics in biology which arises directly from our mission to
consider biological systems as complex systems as described above.

In order to understand the world through the scientific method, we must
make observations and recognize patterns. This is what (big) data and their anal-
ysis can deliver. We also need something that (big) data itself cannot deliver: we
need to construct hypotheses in the context of existing knowledge and proven
principles. We can then predict and test the outcomes of our hypotheses and, if
warranted, update the status of our hypothesis to that of a proven principle or
fact. Unfortunately, for complex systems such as those of life, it is challenging
to reason intuitively about thousands of components, each with a multitude of
interactions with other components, which may change over time. If we want to
transcend merely describing what we observe in the world and in the laboratory,
exploratory and predictive modeling of some sort must be performed in order to
support and go beyond our intuitive thinking.

The importance of predictive modeling for biology is amplified by our vast
but limited ability to investigate biological systems experimentally. First of all,
although technical capabilities do improve year by year, our ability to perform
measurements in cells does not cover the entirety of the hypotheses we are capa-
ble of constructing. Even the recently introduced large scale -omics techniques,

1https ://www.nature.com/articles/d41586-018-06166-x
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such as transcriptomics and proteomics, (so far) fall short here because they are
too variable, obtaining time courses is challenging and we are often unable to
perform multiple experiments on a single biological system simultaneously (e.g.
transcriptomics and proteomics measurements in the same cells at the same time).
Secondly, there is a fundamental imprecision by which we can measure the real
world, and there is fundamental stochasticity in molecular events and sample
sizes. Both of these limitations can be remedied, at least to some extent, by com-
putational analysis since it may nail down and suggest focused experimental
tests. Furthermore, modeling is cost-effective, since experimental research is of-
ten more expensive. This is not to say that predictive modeling should or could
replace experimental observation. Predictive modeling should instead serve as
a compass, directing where to most effectively target experiments. It is for these
reasons that mathematical analyses of experimental data and predictions, based
on our (possibly flawed) understanding of biological systems, are highly valu-
able.

Pharmacologist James Black stated in his 1988 Nobel lecture: “Models in an-
alytical pharmacology are not meant to be descriptions, pathetic descriptions, of
nature; they are designed to be accurate descriptions of our pathetic thinking
about nature. They are meant to expose assumptions, define expectations and
help us to devise new tests.” [27, 28]. Encapsulating our current understanding
of a system (or parts thereof) in a model and precisely formulating how we think
the components interact with each other and the environment enables us to make
precise predictions. These predictions are falsifiable when they lie within the
sphere of experimentally obtainable results. Not only can such theoretical pre-
dictions lay bare naive conceptions in our understanding of the system, they can
highlight exactly how specific design principles emerge and give rise to their ul-
timate effects, and may suggest new, focused experiments to perform. Iteratively
improving our understanding of biological systems in this way can be seen as
an upward (in the sense of understanding) spiral of systems biology [23, 29]. Sir
Arthur Conan Doyle wrote in the Adventure of Sherlock Holmes, “Data! Data!
I can’t make bricks without clay!” [30]. A systems biologist might rephrase this
statement and say: “Data! Model! Data! Model! I can’t understand life without
data and a model!”

The explosion of modeling in biology has led to the development and ap-
plication of many modeling formalisms and tools [31]. Two techniques will be
applied extensively in this thesis. Dynamic models using ordinary differential
equations [32] will be featured in Ch. 2 and 6. Such models describe the temporal
trajectories of concentrations and fluxes of components of a biological system in
terms of kinetic and thermodynamic properties of catalytic or information com-
ponents such as enzymes, transporters and transcription factors. The differential
equations may be equated to zero and solved to find and analyze the properties
of their steady state(s) such as stability (in terms of eigenvalues) and metabolite
concentrations. Steady states are points in the phase space of the system (the
space given by the dependent variables) where the dynamics of the system stay
put, i.e. the rates of change of all variables in the system are zero. As discussed in
Ch. 2 and 6, steady states may reflect biological states that are functional (healthy)
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or dysfunctional (diseased), and many interesting properties may be calculated
from them [32, 33]. The second technique, flux balance analysis [34], a form of
linear programming, will be featured in Ch. 5-7. In contrast to ordinary differ-
ential equation models, flux balance analysis models do not deal with time and
concentrations as such but consider the system at steady state and solely in terms
of a flux pattern. Instead of temporal evolution of the system they describe the
flow (or flux) through a biological network at steady state.

Ch. 2 and 5-7 use mathematical modeling to interpret observed biological
phenomena, and where possible, suggest new experiments to test model predic-
tions. Furthermore, Ch. 3 and 7 present new experimental datasets, their compu-
tational and bioinformatics analysis, ramifications and subsequent testable pre-
dictions. Ch. 4 discusses a new web-based tool for making sense of existing
genome-wide data in the literature. Finally, Ch. 7 applies new methods for in-
corporating transcriptome data and medium-metabolite concentrations into flux
balance analysis.

1.4 Computational systems biology from cell cycle
oscillations to metabolic fluxes

Chapters 2-7 present mathematical modeling and data analyses on a wide variety
of topics: cyclin/Cdkl oscillations during the yeast cell cycle modeled using or-
dinary differential equations (Ch. 2); data analysis, integration and visualization
(Ch. 3-4); steady state metabolic flux predictions in acetogenic bacteria (Ch. 5);
human liver in the context of drug detoxification (Ch. 6) and human hepatocellu-
lar carcinoma cell lines (Ch. 7). However, as divergent as the chapters are in terms
of their biological focal points and in terms of the computational techniques ap-
plied, at the heart of each is the primacy of the network, its stationary states, and
the integrated behavior of its components as a system engaging in various modes
of achieving its function. Ch. 2-7 can be grouped into 3 parts based on the biologi-
cal topic under consideration: (i) the process during which life creates a replica of
itself: the cell cycle (Ch. 2-3), (ii) visualizing and presenting the vast amount of in-
formation available on the protein-protein interaction network in budding yeast
(Ch. 4), and (iii) the processes through which cells build more of themselves by
building new components using nutrients from their environments: metabolism
(Ch. 5-7). Ch. 4 in a way lives in between Ch. 2-3 and Ch. 5-7 in that it consid-
ers interaction networks in a genome-wide sense, not just those nodes relevant
to one particular biological process. Ch. 5-7 will often assume that the system
aims to optimize biomass production which, similar to Ch. 2 and 3, also involves
life generating more of itself. Fig. 1.1 illustrates the grouping and content of the
chapters. Ch. 3 and 4 are focused on data analysis and data visualization whereas
Ch. 2 and Ch. 5-7 use different modeling techniques but all are focused on steady
state related behavior.

To lighten the scientific jargon and make the content of this thesis more ap-
proachable, the topics of the following six chapters were summarized in the title
of this thesis through the terms: waves, ChlIPs, GEMMs, gears, markers and maps.
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Figure 1.1: Overview of the six interrelated scientific topics dealt with in this
thesis. Ch. 2 and 3 are generally concerned with the budding yeast cell cycle
(red), where Ch. 2 is concerned with oscillatory phenomena in the cell cycle reg-
ulatory network and Ch. 3 with DNA binding of two pivotal transcriptional reg-
ulators in that network. Ch. 5-7 relate to metabolism (blue), with Ch. 5 placing an
emphasis on thermodynamics and energy harvesting in prokaryotes, and Ch. 6
and 7 focus on biomarker prediction and metabolic shifts in response to nutri-
tion changes respectively. Ch. 4 (purple) bridges the gap from Ch. 2-3 to Ch. 5-7,
providing a logical connection between them, and is focused on the organization,
representation and visualization of the knowledge of gene and protein interac-
tions across the whole genome for budding yeast.
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These respectively refer to: (i) waves, or oscillations, of cyclin/Cdkl complexes
throughout the budding yeast cell cycle (Ch. 2), (ii) chromatin immunoprecipi-
tation with exonuclease treatment experiments (ChIP-exo) to assess the genomic
binding locations of the forkhead transcription factors in budding yeast (Ch. 3),
(iii) the web-based network visualization tool GEMMER that we developed for
genetic and protein-protein interaction networks in budding yeast (Ch. 4), (iv)
the concept of gear-shifting and metabolic optimality discussed in (Ch. 5), (v) the
prediction of (bio)markers of glutathione conjugation in the liver from genome-
wide metabolic maps and from a kinetic model (Ch. 6), and (vi) GEnome-scale
Metabolic (GEM) maps which are utilized in Ch. 5-7.

Each chapter includes a stand-alone introduction and discussion. Below, the
content of each chapter is briefly introduced from a more general perspective
and in the context of the topics (networks, dynamics, systems, computation and
thermodynamics) and terms (waves, ChIPs, GEMMs, gears, markers and maps)
discussed above.

Wauves: first autonomous oscillator model for cyclin/Cdk1 oscilla-
tions in the budding yeast cell cycle

Life, from bacteria to humans, grows and renews through cell division, the pro-
cess in which a mother cell divides into two daughter cells. In eukaryotes, pro-
gression through the cell cycle is associated with oscillations of complexes be-
tween cyclins and cyclin-dependent kinase molecules. The network giving rise
to these oscillations has a fundamental design that is common to different organ-
isms [35]. Budding yeast has been used as a model organism to study cell cycle
regulation [36]. In Ch. 2 we use dynamical systems theory [37] to better under-
stand the network properties that enable the budding yeast cyclin/Cdk1 network
to exhibit steady oscillations, without being driven or reset by an external force.
Functional and dysfunctional cellular states may be viewed as (different) sta-
ble attractors, i.e. some alteration has been introduced in the functional biochem-
ical network or environment that gives rise to a different attractor that is dysfunc-
tional [38]. These attractors are typically stationary states in a high-dimensional
state space (also called the phase space): they tend to attract systems that are in
nearby states and are fixed once entered. The state dimensionality here is equal
to the number of independent time-varying quantities such as molecular concen-
trations within the cell and in the environment. The point in state space that a
system assumes at steady state is determined by a great many parameters that
together span a parameter space. The dimensionality of and the location in this
parameter space is mostly determined by the genome, by physical and chemical
constraints (e.g. thermodynamics and diffusion constraints) and by the environ-
ment. Often stationary states are steady, i.e the point in phase space does not
move with time. For oscillating systems such as circadian rhythms and the cell
cycle, the attractor may be a stationary state that changes position in state space
with time, but returns to an earlier position at some point in time and then re-
peats its behavior. This is the case of stable oscillations (also called 'limit cycle
oscillations’) where the system moves through a repeating continuum of states
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that is fixed. A third type of system - i.e. that of deterministic chaos - continues
to move through the state space, never turns back upon itself, but remains within
a confined area of state space. A fourth type of system does not remain within
any bound; these are globally unstable systems, impossible in biology, because
biology is always constrained by resources.

In this thesis we shall only consider the first two types of stationary systems
and in particular those that are stable in the sense of Lyapunov, i.e. that, after
a small perturbation in variable values, return asymptotically to the limit of the
same stationary state. A stable oscillation will thereby persist even in the face of
natural perturbations, and it is then called a stable limit cycle.

The state space may have multiple attractors for the same set of parameter
values, and the functional and dysfunctional states may correspond to different
attractors for the same parameter values. In this case, the disease may be caused
by a transient perturbation of variable values followed by a relaxation to a differ-
ent attractor. The state space might also have a single attractor and the disease is
then caused by a steady change in parameter value, which shifts the attractor in
state space. The latter case may correspond to a genetic disease.

In Ch. 2 we focus on the budding yeast cell cycle in terms of a stationary state
of stable oscillations in (complexes of) four proteins that play a role in regulating
cell cycle progression, starting from a minimal network model generated in our
laboratory [39, 40]. Ch. 2 mainly addresses the questions: (i) Can we construct a
mathematical model, true to biological knowledge about the system, that oscil-
lates in the sense of being a stable limit cycle? (ii) Are there substantial differences
among different hypothetical and known network designs in budding yeast that
are particularly able to yield oscillating dynamics corresponding to the cell cycle?
(iii) Are there multiple distinct areas in the parameter space where these oscilla-
tions may occur, or is there just a single one? The goal here is to gain insight into
design principles of the cell cycle regulatory network that allow it to produce os-
cillations, and to ascertain whether there are multiple ways (different parameter
settings) of doing so. This is a task ideally suited to modeling-based analysis. In
Ch. 2, instead of taking a classical continuation approach to bifurcation analysis,
we use a recently proposed modeling methodology [41] which breaks any kinetic
model up into a distinct set of phenotypes with particular properties. We utilize
this approach by sampling the set of phenotypes for our models to identify and
characterize points in the parameter and state space where the system oscillates.
This results in a collection of parameter sets that may lie in vastly different areas
of the parameter space and produce stationary cell cycle oscillations with differ-
ent properties. This collection of parameter sets is then analyzed for conserved
features and patterns.

ChIPs: ChIP-exonuclease analysis of Forkhead transcription fac-
tors in budding yeast

Continuing from Ch. 2, Ch. 3 zooms in on the Forkhead transcription factors,
Fkhl and Fkh2, which are members of a family of transcription factors that is
conserved among eukaryotes [42]. Fkh1 and Fkh2 are responsible for several of
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the interactions in the networks we studied in Ch. 2, in terms of their involvement
in the generation of cell cycle oscillations.

In order to respond accurately to the cell’s internal and environmental cues,
the cell cycle must in some way interact with other cellular processes such as sig-
nal transduction and metabolism. Both Fkh1 and Fkh2 are intriguing candidates
for the connections between the cell cycle, signal transduction and metabolism
because they: (i) have relatively lengthy expression windows, (ii) are known to
play crucial roles in the cell cycle regulatory network [40] and (iii) may target
[43—45] more than just cell cycle genes. Therefore, in Ch. 3 we investigate the
question: Can the target genes of Forkhead transcription factors Fkh1 and Fkh2
play roles in processes other than the cell cycle? If so, they could function as hubs
connecting multiple cellular processes.

We approach this question by performing the so-called ChIP-exo [46], a rela-
tively recent experimental approach that can detect protein-DNA interactions at
near single-nucleotide resolution, for Fkh1 and Fkh2. We shall do this across two
cellular conditions, logarithmic phase (i.e. exponential growth) and stationary
phase caused by nutrient depletion. We will match the genomic binding loca-
tions of Fkh1 and Fkh?2 to the promoters of genes and, consequently, gain insight
into the genes they may regulate within and outside the cell cycle. In the course
of our analysis we make use of two existing peak detection tools and develop a
new, perhaps more appropriate method: maxPeak. In addition to analyzing the
resulting data, we extensively catalogue how the new data matches and updates
previously available data for Fkh1 and Fkh2.

GEMMs: Visualizing interaction networks in budding yeast

Continuing on the theme of integrating cellular processes, Ch. 4 turns to visual-
izing the available data on gene-gene, protein-gene and protein-protein interac-
tions for budding yeast, across space, time and functional scales. We perceived
that there was a need to integrate various separate databases containing infor-
mation on interactions alone, spatial characteristics alone and timing alone while
projecting this information onto interaction networks. This should then allow
interaction networks to be viewed in their spatial, temporal and functional con-
texts. To this purpose, we built ‘GEMMER’, a web-based tool that allows for such
visualizations to be produced in a user-friendly manner. GEMMER should aid
researchers to “rediscover” well-known interactions in their full genome-scale
context, and perhaps to spot lesser-known interactions that may be of relevance
to certain scientific questions.

Gears: Gear-shifting in early micro-organisms

After discussing the budding yeast cell cycle (Ch. 2 and Ch. 3) and integrating
various alternative cellular processes (Ch. 3 and Ch. 4), Ch. 5 turns to another
fundamental cellular process: metabolism. Metabolism refers to the processes
through which cells build their own components (anabolism) and break down
nutrients from their environments (catabolism).
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As discussed in Ch. 2 and 3, the cyclin-dependent kinase Cdk1 progressively
binds to different cyclins throughout the phases of the cell cycle. By doing this,
cyclin subunits shift gears in the sense of redirecting Cdk1 between proteins that
thereby become subject to phosphorylation. In microorganisms, certain proteins
which alternate partner proteins also cause changes between similar functional-
ities. This is what we identify as ‘shifting gears’. The organism may also shift
between different flux patterns through its metabolic network, a third form of
‘gear shifting’.

Consideration of life as a verb, i.e. constituted by cells that actively change,
divide and respond to stimuli, directly ties into their need to transform forms of
energy. It thereby connects with one of the foundational fields of physics: thermo-
dynamics. Thermodynamics proposes that the course of each chemical event in
the universe is dictated by the energy content of the system under consideration
and the energy exchange between the system and its environment [47], where
this energy can have various forms.

Organisms are like islands of order in an ocean of chaos [8]. In order to meet
the second law of thermodynamics, as the order inside an organism increases, the
disorder in the universe as a whole must increase; for processes and life to happen
chaos must be produced in the universe as a whole, or, more stringently, Gibbs
or metabolic energy must be dissipated. The maintenance of the order inside an
organism, and the continual need for synthesis and replacement of the chemical
components making up the cell require continuous Gibbs (or metabolic) energy
input [6], and a coupling of processes that lower Gibbs energy to the processes
that require Gibbs energy input. Thermodynamics furthermore dictates the di-
rection in which chemical reactions occur and as such poses fundamental restric-
tions on network performance. In biology, evolution has led to energy coupling,
whereby the direction of chemical reactions can be inverted through coupling to
other reactions that are downhill in terms of Gibbs energy.

In Ch. 5 we deal with both equilibrium thermodynamics (ET) and non-
equilibrium thermodynamics (NET) in the context of metabolism of prokaryotes
that may have populated earth in its early days. ET, dealing with the initial and
final states of the system, is not concerned with time, rates or the pathway by
which a chemical change occurs. It merely reasons based on the change in Gibbs
or metabolic energy between the initial and final states of the system. In con-
trast, NET does deal with time, rates, coupling, yields and actual thermodynamic
efficiency [6].

At equal catalytic efficacy, flux (rate) increases with a process’s Gibbs energy
dissipation: i.e. the more thermodynamically favorable a process is, the higher
the flux rate tends to be [48]. In Ch. 5, we discuss a variomatic gear-shifting prin-
ciple, by way of coupling anabolism and catabolism, illustrating how cells may
increase anabolic flux rates (e.g. growth rate) by changing the degree of coupling
between anabolism and catabolism, not by traditionally decreasing the ‘leakage’
or ‘slippage” but by increasing the stoichiometry. We further consider whether
micro-organisms are capable of achieving gear-shifting through the proteins (e.g.
enzymes) they express such that they optimize flux yield. Gear-shifting may be
a strategy for organisms to regulate the trade-off between rate and yield. By se-
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lectively expressing only certain enzymes, the amount of ATP synthesis coupled
to a process may increase, thereby reducing the thermodynamic favorability of
the overall process and decreasing the rate. Schiichmann and Miiller posited
that acetogenic bacteria, and CI. ljundahlii in particular, may be able to couple
different amounts of ATP synthesis to the process of acetogenesis depending on
the electron acceptors/donors of the hydrogenase and the enzymes of the Wood-
Ljungdahl Pathway (WLP) [49]: i.e. for the same input and output, a different
ATP yield may be achieved by shifting between enzymes in the pathways in-
volved. Using flux balance analysis simulations, we highlight that indeed CI.
ljungdahlii is at least in theory able to gear-shift in the acetogenesis process.

Markers: illustrating biomarker prediction for glutathione conju-
gation: steady state metabolic maps versus dynamic models

Sticking with the metabolic theme, in Ch. 6 we move from prokaryotic to hu-
man metabolism and continue with the application of flux balance analysis to
metabolic maps. A key promise of the advent of the human metabolic map
[50, 51] was the ability to more systematically investigate the causes, conse-
quences and monitoring of diseases. Flux balance analysis only addresses fluxes
and will not help predict changes in concentrations indicative of (‘biomarking’)
disease. Following the first release of the human metabolic map, a computa-
tional approach using flux variability analysis (FVA) was proposed to predict
concentration changes that could serve as biomarkers of human inborn errors
of metabolism. This approach appeared to produce fair agreement with experi-
mentally validated sets of biomarkers [51, 52]. In Ch. 6 we focus on this method
of biomarker prediction. We first develop a hitherto lacking rationale for the ap-
proach, then re-implement it, double-check its reported performance, and then
apply it to a search for biomarkers of glutathione conjugation capacity in the hu-
man liver.

Before supplying patients with xenobiotics that deplete glutathione, it would
be advisable to infer the patient’s glutathione status in the liver by way of measur-
ing blood biomarkers. In Ch. 6, we investigate whether the FVA-based biomarker
prediction methodology recovers the suitability of serum ophthalmic acid (OPA)
and 5-oxoproline (OXO) as robust biomarkers of glutathione levels and utiliza-
tion, as predicted by a kinetic model of the same system that is used as the gold
standard.

Maps: nutritional shifts and the Warburg effect in two liver cancer
cell lines

Metabolism is directly involved in many human diseases including cancer, and
indirectly in virtually all, because disease causes metabolic changes that can ac-
company or even affect etiologies and be read as biomarkers. The best-known
metabolic abnormality in cancer cells is an increased glycolysis followed by lactic
acid production even in the presence of oxygen and fully functional mitochon-
dria, a process known as the Warburg Effect [53]. It is as if cancer cells perma-
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nently shift to a lower gear in terms of diminished ATP production from glucose.
Ch. 7 further expands on the theme of metabolism in human disease states and
gear-shifting by turning to the application of flux balance analysis to the human
metabolic reconstruction [54] in the context of hepatocellular carcinoma. We com-
bine this genome-scale metabolic modeling approach with in vitro experiments to
investigate whether the behavior of cancer cells is determined by their nutrition
or/and the expression of their genes. To that end, we developed a new method
that integrates the genome (nature) and the environment (nurture) and identifies
the influence of cell-nutrition changes on the Warburg effect in two hepatocellular
carcinoma cell lines.

In Ch. 7 we use flux balance analysis to investigate whether two hepato-
cellular carcinoma cell lines show metabolic differences, particularly in terms of
their Warburg effect, when cultured in media with various carbon and Gibbs en-
ergy sources. Experimentally, we characterize the cells using exometabolomics
and growth rate assays. Computationally, we propose a novel extension of flux
balance analysis by which we predict metabolic flux patterns consistent with
both the measured transcriptome profiles of the cell lines, through transcriptome-
limited flux bounds, and specific medium conditions in the flux balance analysis
models. The medium conditions are represented by their experimentally mea-
sured metabolite concentrations which will be translated into flux bounds in the
flux balance simulations. The integration of these two types of constraints re-
quires a choice of a scaling constant weighing the two sets of constraints. By
choosing this scaling constant carefully, a model can be generated that closely
matches observed experimental behavior.

Further data, technique and tool development, and the future of
big data and big models in biology

This thesis concludes in Ch. 8 with a general discussion on the relevance of the
themes developed in chapters 2-7 and their connections for future biomedical re-
search. Particularly, we discuss the importance of the biological principles discov-
ered and further development of the novel data (Ch. 3 and 7), techniques (Ch. 2,
5, 6 and 7) and tools (Ch. 4) discussed in this thesis. Finally, we also view the
work in chapters 2-7 in terms of the wider aspects of the big data and big model
explosion in biology which will continue to have strong impact in biomedical
research.
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“Rather grandly I argued to myself that the process of reproduction was a cen-
tral property of life, and that this was seen in its simplest form with the repro-
duction of cells. Therefore, I reasoned that study of the cell cycle responsible for
the reproduction of cells was important and might even be illuminating about
the nature of life.”

— Paul Nurse!

Abstract

Some biological networks exhibit oscillations in their components to convert
stimuli to time-dependent responses. The eukaryotic cell cycle is such a network,
being governed by waves of cyclin-dependent kinase (cyclin/Cdk) activities that
rise and fall with specific timing and guarantee its timely occurrence. Disruption
of cyclin/Cdk oscillations could result in dysfunction through reduced cell divi-
sion. Therefore, it is of interest to capture the properties of network designs that
exhibit robust oscillations. Here we show that a minimal cell cycle network is
able to oscillate autonomously, and that cyclin/Cdk-mediated positive feedback
loops (PFLs) and Clb3-centered regulation is recurrent for sustained cyclin/Cdk
oscillations in 11 known and hypothetical network designs. We propose that
Clb3-mediated coordination of cyclin/Cdk waves reconciles checkpoint and os-
cillatory cell cycle models. Considering the evolutionary conservation of the cy-
clin/Cdk network across eukaryotes, we hypothesize that functional (‘healthy’)
phenotypes require the capacity to oscillate autonomously compared to dysfunc-
tional (potentially ‘diseased’) phenotypes.

2.1 Introduction

Living systems exhibit dynamic self-organization, i.e. the spontaneous emer-
gence of spatio-temporal order with the formation of various spatio-temporal
patterns [1]. Self-organization may involve oscillations in the concentrations of a
system’s components [2—4], which have been observed at various temporal scales.
Oscillatory behavior arises from non-linear interactions among two or more com-
ponents of a system [5]. An example is given by the eukaryotic cell cycle, the
sequential process through which a growing cell replicates and divides into two
daughter cells. The dynamics of this process are implemented through biochemi-
cal interactions between genes and proteins, and are governed by periodic waves
of cyclin-dependent kinase (Cdk) activities [6-10].

Here, self-organization in the form of oscillations results from the sequential
activation and inactivation of a number of cyclin/Cdk complexes that regulate
a timely cell cycle [8]. The periodic fluctuations of cyclin/Cdk activities are reg-
ulated by cyclin levels (i) through transcription factors and (ii) through targeted

Ihttps://www.nobelprize.org/prizes/medicine/2001/nurse/biographical/
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degradation by multi-protein complexes such as the Anaphase-Promoting Com-
plex (APC).

Sustained cyclin/Cdk oscillations equate to growth and cell division. For
bacteria and single cell organisms such as budding yeast, (faster) growing sub-
populations will outperform slower growing and not-growing subpopulations,
thus providing a selectable advantage. Thus, the increased fitness for an organ-
ism, realized through sustained, autonomous oscillations, can be considered a
functional or ‘healthy” phenotype of a cell. In contrast, lack of oscillations in
cyclin/Cdk complexes is to be considered dysfunctional or “diseased" behavior,
unless quiescent cells are considered.

Mathematical modeling can be of help to better understand how cell cycle
networks exhibit oscillations with certain properties, e.g. a specific amplitude
and/or frequency and a definite order of appearance among a system’s compo-
nents, mathematical modeling may be performed. Cell cycle oscillations may be
modeled (i) by sustained oscillations in the form of limit cycles, where cyclin/Cdk
oscillations arise independently from external factors, or (ii) by checkpoint mech-
anisms, where external requirements such as attaining a minimum cell size to
progress from G1 to S phase are explicitly taken into account in the form of irre-
versible transitions between steady-states. Here, checkpoints act as signals that
delay the cell cycle phase transitions by stabilizing the dynamics in alternative
stable steady-states of the underlying biochemical system. Contrarily, sustained
autonomous oscillations exhibit limit cycles around a single steady-state. The
checkpoint view is currently prevalent, due to correlations observed between
the cell cycle period and the growth rate [11], although noise-induced oscilla-
tions have been theoretically predicted when cell size is constant [12]. However,
models that exhibit autonomous oscillations in the form of limit cycles are better
suited when networks are investigated in absence of external controls such as cell
size.

Among the network designs that have been described to characterize cell
cycle oscillators, positive feedback loops (PFLs) enhance amplitude and robust-
ness of cyclin/Cdk [13-15]. PFLs promote switch-like responses that guarantee
unidirectionality of cell cycle progression [5]. Similarly, negative feedback loops
(NFLs) are considered necessary for oscillations to occur [15, 16], and a model
consisting of at least three ordinary differential equations is needed for sustained
oscillations to occur [5]. It has been conjectured that PFLs have evolved to facil-
itate oscillations in NFLs at lower, kinetically achievable, degrees of cooperativ-
ity [5]. Alteration in the frequency of cyclin/Cdk oscillations or of a cell cycle
as a whole may correspond to alteration of cell proliferation, thereby to a dys-
functional or ‘disease’” phenotype of a cell, as a result of deregulation of timely
cyclin/Cdk activities [9, 17, 18]. This deregulation may impinge on the cellu-
lar concentrations of cyclin and Cdk proteins, which already exhibit significant
oscillations in a wild type cell [19].

Here we build on our previously published minimal model of the cell cy-
cle network [10] to generate the first truly autonomously oscillating model of
Clb/Cdk1 complexes in budding yeast, with the intent to: (i) simplify our pre-
viously published model to make it more amenable to the parameter scans per-
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formed in this work, (ii) integrate new evidence in order for the model to ac-
curately reflect the experimental observations, and (iii) investigate the effect of
hypothetical interactions that can be validated experimentally. For each of the 11
resulting network designs we investigate (i) which network designs exhibit au-
tonomous, stable oscillations, i.e. limit cycles, and (ii) how network designs and
associated parameters influence the occurrence of these oscillations.

The design described by our model’s comprehends: (i) three cyclin/Cdk
complexes, i.e. CIb5,6/Cdkl, Clb3,4/Cdkl and Clb1,2/Cdkl, which exert their
function in the S-G2-M (mitotic) phases of the cell cycle, and (ii) their stoichio-
metric inhibitor Sicl that is active in G1 phase. One key feature of our model
design is the incorporation of the CIb3 cyclin, which is lacking in existing cell cy-
cle models [20, 21]. Our analysis is driven by the hypothesis that elements of the
interaction network are critical, or more important, than others to generate sus-
tained oscillations. Dynamic models based on this design exhibit transient oscil-
lations of all mitotic cyclins simultaneously [10], and thereby of cyclin/Cdk activ-
ities, which may result in a frequency characteristic of a functional wild type cell.
However, so far no analysis has been conducted to investigate: (i) whether this
specific model is able to oscillate autonomously, and (ii) how the occurence and
properties of cyclin/Cdk oscillations can be modulated by variations of model
parameters, suggesting shifts to dysfunctional or hyperfunctional states.

Other models of the cell cycle have been investigated in terms of their poten-
tial to show oscillations (briefly called “oscillatory potential” below) [8, 20, 21];
however, these are: (i) larger in size, (ii) different in the network structure, and
(iii) analyzed only using conventional bifurcation analysis techniques to find sin-
gle oscillating points or regions in the parameter space. Due to the differences
in network design and model size, it is not clear a priori that the results from
existing models would translate to the simplified network investigated here.

Several methods exist for finding parameter sets leading to bifurcations and
oscillations in biochemical networks [22-24]. In this work, we make use of the
System Design Space (SDS) methodology [25-27] to detect limit cycles more eas-
ily [28], and analyze the ability of our minimal cell cycle model to generate tran-
sient and sustained oscillations. The application of the SDS methodology to an-
alyze oscillatory behavior is novel in the cell cycle field, and it has never been
applied to models of the size considered here. Identifying limit cycles is an open
mathematical challenge for high-dimensional systems, and even numerically this
is challenging. This problem is exacerbated if the interest is to find multiple limit
cycles across distinct regions in the parameter space, as the existing methods [22—
24] do not accommodate this aspect as easily as the SDS. Our pipeline centered
around the SDS method allows to search for oscillations across a set of regions,
each with unique network properties, that partition the parameter space. The
SDS methodology relates genotype and environment, which affect biochemical
and environmental parameters in the system, to the phenotype of steady-state
attributes of the biochemical system, by deconstructing the biochemical system
into a finite number of qualitatively distinct subsystems. Within this approach,
the term "phenotype’ refers to a combination of ‘dominant terms’, i.e. a subset of
interactions in the network that are large in numerical value with respect to the



Chapter 2. Minimal network designs for autonomous cell cycle oscillators 21

other terms, which are neglected from the equations. Note that the parameters
(genotype and environment) and dynamic concentrations in the system define
which terms are dominant (numerically large) and therefore which phenotype is
expressed.

The computational cost of using the SDS methodology increases with the
number of terms in the model equations, since this translates into more distinct
phenotypes. For this reason, it is advantageous to use our previously published
model, which has significantly less terms than other published models for bud-
ding yeast [20, 21, 29]. Applying the pipeline considered here to the more com-
plex yeast cell cycle models would most likely require significant computer clus-
ter usage. The disadvantage of using a minimal model is that biochemical details
that have been uncovered about the cell cycle regulatory network may be lack-
ing. However, one may expect that if the core design of a minimal and detailed
models are similar, the general properties remain the same as well as shown for
both budding yeast [29] and fission yeast [30]. Furthermore, the implementation
time of the complex, yet powerful, framework provided by the SDS methodology
is greatly simplified by utilizing the Systems Design Space Toolbox [31].

In this work, we present the first autonomously oscillating Clb/Cdk1 model
for budding yeast, and have explored the oscillatory behavior of 11 known and
hypothetical network designs. We recovered the known importance of PFLs and
NFLs for oscillations. More specifically, we show that a positive feedback loop
(PFL) by CIb3/Cdkl on CLB3 synthesis (Clb3 PFL) improves the ability of our
models to produce sustained Clb/Cdkl1 oscillations, and that a positive feed-
back loop by Clb2/Cdkl on CLB2 synthesis (Clb2 PFL) takes over this key role
when the model takes into account the inhibition of G1/S cyclins by Clb2/Cdkl1.
Furthermore, we show that two regulatory activations, i.e. Clb5 — CIb3 and
Clb3 — ClIb2, forming a transcription factor-mediated linear CLB cascade that
we have recently discovered [32], are more frequently dominant in phenotypes
that yield sustained Clb/Cdk1 oscillations as compared to the feed-forward Clb5
— Clb2 regulation described earlier [33]. We thus hypothesize that functional
(“healthy") phenotypes require the capacity to oscillate autonomously — through
Clb3-centered regulations — compared to dysfunctional (potentially 'diseased’)
cellular phenotypes - where these designs are altered and the potential for oscil-
latory behavior is reduced. We envision a scenario in which CIb5 and CIb2 are
involved in the checkpoints, whereas Clb3-centered regulations that coordinate
Clb5 and Clb2 drive autonomous cell cycle oscillations to maintain cell prolifera-
tion. This scenario thus reconciles checkpoint and oscillatory views of cell cycle
regulation. In addition, we highlight that the transcriptional inhibition of G1/S
cyclins and Sicl by mitotic Clb/Cdk1 results in particularly strong NFLs for stabi-
lizing oscillations. Finally, through perturbation of selected limit cycles, we iden-
tify crucial model parameters that exert the strongest control on the frequency of
Clb/Cdk1 oscillations.

Given the evolutionary conservation of the cell cycle network across eukary-
otes, the mitotic cyclin/Cdk network can be used as a core building block of
multi-scale models that integrate regulatory modules to address cellular physi-

ology.
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2.2 Results

Experimental rationale underlying the computational analyses

The cell cycle has a unique property as compared to other biochemical networks.
Its drivers, i.e. the cyclin subunits that regulate the Cdk activity, have both spe-
cialized functions as well as partially overlapping functions, through different
specificity of binding to the substrates that they recognize and — through their
partner Cdk — phosphorylate [34]. Budding yeast cells lacking CIb5 (S phase cy-
clin) do not replicate at the proper time, but they do so progressively after activa-
tion of CIb2 (G2/M phase cyclin), which can partially substitute for the missing
CIb5 activity; this indicates that a partial overlap in the cyclin function helps to
drive DNA replication [35]. In these cells, S phase is prolonged and the overall
cell cycle timing is slightly delayed [36]. Conversely, cells lacking Clb2 (G2/M
phase cyclin) exhibit defects in mitotic entry and delay in mitotic exit [37]; more-
over, modified Clb2 degradation kinetics result in a compromised viability [38].
In these cells, Clb5 (S phase cyclin) and/or CIb3 (S/G2 cyclin) cannot substitute
for the missing Clb2 activity, indicating the relevance of cyclin specificity for the
events that trigger cell division.

Differently from CIb5 and Clb2, cells lacking CIb3 or cells where CIb3 degra-
dation kinetics have been modulated are viable and complete cell division at the
same timing as a wild type cell [38]. In fact, Clb2 can replace Clb3 activity (Clb2
replaces Clb3 better than it does with Clb5, as Clb2 and Clb3 have more structural
and functional similarities than Clb2 and Clb5). Whereas CIb5 and Clb2 deletions
affect dynamics of cell division timing as well as cell viability, Clb3 deletion does
not affect cell cycle timing nor cell viability. CIb3 deletion is lethal only in the
clb2A clb3A double mutant [37], and in the cIb5A clb3A clb4A [39] and clb2A
clb3A clb4A [37, 40—42] triple mutants, indicating that Clb5 and Clb2, respec-
tively, are required for spindle formation in the absence of Clb3 and Clb4.

Taking into account this experimental evidence, we envision a scenario
where (i) CIb5 and Clb2 serve a function in checkpoint models (as currently incor-
porated in Tyson/Novak’s cell cycle models [20, 21]), whereas (ii) Clb3 serves a
function in autonomous oscillations required to sustain the cell’s viability. Specif-
ically: (i) In Tyson/Novak’s cell cycle models, Clb5 and Clb2 represent the check-
points that drive the cell cycle through the next cell cycle phase, should their
concentration reach a definite threshold. In the cell, DNA damage/errors would
activate the checkpoint affecting CIb5 levels, thus slowing/halting DNA replica-
tion dynamics, whereas troubles in cell division would activate the checkpoint
affecting Clb2 levels, thus delaying/impairing cell division. In addition, the re-
quirement of definite Clb5/Clb2 threshold concentrations may be seen as the re-
sult of a proper availability of nutrients which, if lacking, would not allow the
thresholds to be reached, thus the cell cycle not to be completed. Conversely:
(ii) CIb3 has never been considered in any existing (checkpoint) models of cell
cycle regulation, possibly due to its not fully clear and not critical role in cell di-
vision. In our view, Clb3 serves a function in the cell’s autonomous oscillations.
Clb3 is not involved in the checkpoints, as its deletion is lethal only in the clb5A
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cIb3A clb4A [39] and clb2A clb3A clb4A [40-42] triple mutants, but not in the
clb5A cIb3A and clb2A clb3A [40] double mutants. Furthermore, we have dis-
covered, through a detailed computational and experimental investigation, the
role of Clb3 in the coordination of the mitotic waves of cyclins, synchronized
from the S through M phases in a linear cascade (Clb5 — Clb3 — Clb2) through
the Fkh2 transcription factor [32]. In order to shed light on this hypothesis, in this
study we have conducted a detailed computational analysis, to investigate the
occurrence of sustained oscillations in a minimal Clb/Cdk1l model and to iden-
tify recurring Clb-mediated principles of design, i.e. network motifs, underlying
autonomous oscillations.

The minimal cell cycle model and derivation of designs 1A-3

Starting from our previously published minimal cell cycle model [10] (Design
1A, Supplementary Information, Fig. S2.1A), we built a number of mathematical
models based on Ordinary Differential Equations (ODEs) that are able to gener-
ate oscillations. The core design considers four species: (i) three representing the
complexes that Cdk1 forms with the three pairs of B-type cyclins, CIb5,6, Clb3,4
and Clb1,2, and (ii) the inhibitor Sicl that binds and inhibits all three Clb/Cdk1
complexes. Each of the four species is associated to cell cycle events during a
specific phase of the cell cycle (Fig. 2.1A). The model describes (i) the progres-
sive activation of the three Clb/Cdkl complexes in a linear cascade, and (ii) the
complex formation between Sicl and the Clb/Cdkl complexes, which are mu-
tually inhibiting one another (Fig. 2.1B). The minimal model considers the com-
plexity of all documented interactions among the Clb/Cdk1 complexes (Table 2.2
and Fig. 2.1C, solid lines) in addition to two hypothetical interactions (Table 52.2
and Fig. 2.1C, dotted lines). In addition, the model describes the degradation
of the Clb/Cdk1/Sicl complex, and the basal synthesis and degradation of each
species, as visualized in the interaction diagram (Fig. 2.1D).

The existing model [10] is rooted in experimental evidence, and the new
models presented here were built considering: (i) recently unraveled experimen-
tal evidence, (ii) hypotheses generated on existing experimental evidence, and
(iii) simplification of a number of reactions (Table 52.2). This process resulted
in five sequential model designs: 1A, 1B, 1C, 2 and 3. The essential differences
between the five designs are summarized in Fig. 2.1D and S2.1). In Supplemen-
tary Information, Section 2.4, we document the step-by-step derivation of the
five alternative network designs. Design 3 presents a special case as it incorpo-
rates a novel quasi-steady-state approximation, which assumes that formation
(k™) and/or dissociation (k™) of the Clb/Cdk1/Sicl ternary complexes occur on
a faster time-scale than the other processes considered in the model (Mart Loog,
personal communication, and Supplementary Information, Section 2.4.

The main aim of this work is to systematically identify limit cycles across dis-
tinct parameter regions and across multiple minimal model designs, in order to
identify network motifs (presence of specific interactions and parameter values)
that support the occurrence of oscillations. As a preliminary analysis, we investi-
gated the ability of designs 1A-3 to generate: (i) transient cyclin/Cdk oscillations
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Figure 2.1: Schematic views of the minimal cell cycle model for budding yeast
and full interaction diagram for designs 1A, 1B, 1C, 2 and 3. (a) Key molecu-
lar players driving phase-specific cell cycle events. (b) Linear cascade between
the three Clb/Cdkl complexes, and mutual inhibition between these and the
Clb/Cdk1 inhibitor Sicl. (c) Interactions among the Clb/Cdk1 complexes. Solid
lines indicate (8) proven interactions, whereas dotted lines indicate (2) hypothet-
ical interactions (see Table 52.2). (d) Full interaction diagram for designs 1A, 1B,
1C, 2 and 3 of the minimal cell cycle network. The scheme illustrates the core
interactions in all model designs presented in this work, i.e. black and red arrows
for the basal and activatory regulations, respectively, and highlights the progres-
sive changes to the core structure introduced in designs 1A-3 (blue, red cross,
orange and green, respectively). Dotted arrows indicate the CIn(/Cdk1)- and
Clb(/Cdk1)-mediated phosphorylation of Sicl in Clb/Cdk1/Sic1 ternary
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Figure 2.1: (Continued) complexes, resulting in its degradation. The complex for-
mation between Clb/Cdk1 complexes and Sicl is indicated with the K 4 param-
eter, referring to the quasi-steady-state assumption introduced in Design 3 (see
Supplementary Information, Section 2.4, which should be taken to be the regu-
lar complex formation (k™ for formation, £~ for dissociation) for designs 1A-2.
Model derivations are reported in Supplementary Information, Section 2.4, and
details of the reactions and their experimental evidence are reported in Table S2.2.

and (ii) sustained oscillations in the form of limit cycles. Finally, for each design,
we performed a sensitivity analysis of how the model parameters influence the
period of a single limit cycle. We observed that all five model designs are able
to generate limit cycles, and that the basal synthesis and degradation parame-
ters together with those responsible for the linear Clb cascade (Clb5 -> CIb3 ->
Clb2), hold the greatest control over the length of the period of oscillation (see
Supplementary Information, Section 2.4).

Conserved network motifs across oscillatory phenotypes

For a system of the size of model designs 1A-3 (7 species and over 20 parame-
ters), there is generally no way to obtain all possible parameter sets that give rise
to limit cycles, and an infinite number of these could exist. However, a relevant
question, interpretable biologically, is to address which network designs are able
to generate oscillatory behavior in the form of limit cycles. The System Design
Space (SDS) methodology [25] can be utilized to investigate such a capability of
definite network designs. Specifically, the methodology allows to partition net-
work designs into ‘phenotypes’ that represent the dominance of certain reactions
over others, neglecting all non-dominant ones. For a given set of parameters and
concentrations (i.e. states) one activatory term and one inhibitory term in each
differential equation are numerically larger than all others, i.e. dominant (see
the Methods section 2.4 and Supplementary Information, Section 2.4). The domi-
nance of a reaction implies boundary conditions, i.e. inequalities in the parameter
and state spaces, which, if feasible, partition these spaces into areas referred to as
‘valid” phenotypes. Parameter sets that yield oscillations occur within a valid
phenotype and therefore link the dominance of specific reactions to the occur-
rence of oscillations.

In order to analyze models for the occurrence of limit cycle oscillations, we
implemented a modeling pipeline based on the SDS methodology that incorpo-
rates a novel approach to sample phenotypes for finding limit cycles, applicable
to any network design. We implemented a parameter sampling procedure that
makes use of the boundaries of a phenotype and employs log-uniform random
sampling (see Fig. 2.2 and the Methods section 2.4).

We set up model definitions in the GMA form (see Supplementary Infor-
mation, Section 2.4) for all the kinetic models representing five network designs
considered in this work. In addition, we used the model presented by Sav-
ageau and colleagues [43] as a test case to make sure that our implementation



26 Chapter 2. Minimal network designs for autonomous cell cycle oscillators

Identify all valid w| Determine 1D phenotype > Sample the 1D parameter ranges
phenotypes For all - boundaries through log-uniform sampling

valid phenotypes A l

Determine steady-state as a valid
point in the state space

Set up the )
System Design Space Repeat 250 times

Valid random point in the
parameter and state space of the phenotype

g Check for complex conjugate, non-negative
Model definitions in real part eigenvalues at the steady-state
SciPy and GMA form
iYes iNo
Check for limit cycle Discard sample
and wave properties
/ in full model

Figure 2.2: Computational pipeline implemented by using the System Design
Space Toolbox, to identify oscillatory phenotypes in high-dimensional parameter
spaces, for any model, using targeted parameter sampling. The procedure starts
from a previously defined set of model equations in the format used by Scipy and
the System Design Space Toolbox. All valid phenotypes with consistent bound-
ary conditions in each model were identified. Each such valid phenotype was
sampled log-uniformly 250 times. For each random sample, the parameter val-
ues were checked to lie within the parameter region defined by the phenotype
and the steady-state was calculated. The potential for oscillation was identified
by looking for the presence of two non-negative eigenvalues in the phenotype
steady-state. If this condition was met, the full model was analyzed for the pres-
ence of a limit cycle (see “Methods” section 2.4).

could recover their previously reported results (data not shown). By using our
pipeline (Fig. 2.2) we generated the System Design Space for each model vari-
ant, i.e. the set of all phenotypes, and retrieved the set of valid phenotypes (see
Supplementary Information, Section 2.4). For our models, the valid phenotypes
represented 0.044% — 0.34% of all theoretically possible phenotypes. This re-
duced the number of phenotypes for which the stability was investigated to a
manageable amount of several hundred to several thousand phenotypes (Table
2.1). After identifying the valid phenotypes, these were sampled to retrieve pa-
rameter sets yielding potential oscillations by using log-uniform random sam-
pling. As a criterion for oscillations that emerge from a Hopf bifurcation, for each
sampled parameter set we checked for the presence of a pair of complex conju-
gate eigenvalues with non-negative real part in the steady-state of a phenotype.
If a particular combination of phenotype and parameter set satisfied this condi-
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tion, and therefore showed potential for oscillations, the limit cycle behavior in
the full kinetic model was then tested using that specific parameter set.

We observed that in Design 3, with 250 samples for each valid phenotype,
664 phenotypes with a potential for oscillations were identified, and 8 limit cycles
across 7 of these were found. Conversely, for Design 1A no positive complex con-
jugate eigenvalues were found, supporting the existing point of view that NFLs
are required for sustained oscillations [15, 16]. Designs 1B-2 exhibit limit cycles
but with an incorrect order of peaking of the four model species so we did not
count them. The results for the updated model Design 3 can be directly compared
to designs 1A and 1B, which are based on our published minimal model [10, 32];
we conclude that the updated model outperforms its counterparts.

Each parameter set that yielded a limit cycle was stored, and the time-
dependent oscillatory behavior was plotted (the parameter sets are available in
the Supplementary Code Repository). For each phenotype for which a limit cy-
cle was found, the terms in the differential equations that were dominant for
that phenotype were identified. Inspection of these dominant processes allowed
for counting the existence of specific parameters within these phenotypes (Table
2.2). In Design 3, oy, (Clb3 PFL, responsible for Clb3/Cdk1 activation) and o,.
(Clb2/Cdk1 activation by Clb3/Cdk1) are the activatory parameters observed
most frequently in phenotypes that yielded limit cycles (Table 2.2). This find-
ing suggests that the dominance of these two terms in the differential equations
increases the ability to generate sustained oscillations, perhaps by enlarging the
region within phenotypes of the design space where oscillations occur. The result
confirms the relevance of the linear CLB cascade through the Fkh2 transcription
factor that we have recently discovered [32] - formed by the two regulatory acti-
vations Clb5 — CIb3 (a,) and Clb3 — Clb2 (a, ) - over the Clb5 — Clb2 regula-
tion (o) described earlier [33]. Altogether, these findings point to the relevance
of Clb3 for generating sustained Clb/Cdk1 oscillations, through the dominance
(i) of the Clb3 PFL and (ii) of the linear cascade (Clb5 — Clb3 — Clb2).

With respect to the inhibitory regulations, we observed that the Clb3 NFL
(7yy) and the Clb2 NFL (v,,) terms are rarely dominant in phenotypes exhibiting
limit cycles (Table 2.2). Conversely, the parameters referring to the APC-mediated
inhibition of Clb5 and CIb3 by Clb2 (., and +.,, respectively), and to the degra-
dation rates of Sicl and Clbs from the Clb/Cdk1/Sicl ternary complex (6 and
€, respectively) were observed more frequently with respect to the generation of
sustained cyclin/Cdk1 oscillations.

Alternative network designs of the minimal cell cycle model

To further analyze the oscillatory behavior of our minimal cell cycle model, we
extended Design 3 to test six new network designs that include further known or
hypothetical inhibitory regulations. By doing this, we aim to understand whether
and how these regulations might enable the cyclin/Cdk network to generate limit
cycles. The new designs are based on Design 3, and are referred to as Design 4
through Design 9 (Fig. 2.3). Each new design reflects either a single or several
related inhibitory regulations. Design 4, Design 5 and Design 6 describe known in-
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Phenotypes  with Phenotypes with
Design # | Total phenotypes Valid phenotypes oscillatory potential limit cycles Total limit cycles
3 995328 3355 664 7 8
4 1990656 6689 1158 66 204
5 1990656 6950 1523 16 23
6 1990656 6844 1508 20 31
7 1990656 6692 1239 19 24
8 1990656 6750 974 9 9
9 1990656 6977 677 13 21

Table 2.1: Number of phenotypes: in total, that are valid, that show potential for oscillations (presence of two non-zero
eigenvalues). The number of limit cycles retrieved and the number of distinct phenotypes these occured in for model Design 3
through Design 9.

Ummwms # Qry  Qyy  Qgy  Oyy  Qzy Yyx  Vzx  Tyy Yzy  Vzz K € Q& Q@ QN Qm Uy Uy
3 0 6 0 6 1 1 5 1 4 0 - 7 3 1 0 4 0 1 0
4 41 23 1 17 [ 48 12 20 12 18 4 54 46 63 14 11 5 0 2 0
5 3 12 2 10 4 0 11 0 13 0 8 14 12 5 1 4 0 1 0
6 3 17 0 13 7 3 13 2 12 1 10 16 15 3 2 4 2 0 O
7 6 12 2 9 7 3 14 3 12 0 16 18 13 2 1 0 1 1
8 2 6 3 3 2 2 6 0 6 2 2 9 6 1 0 3 0 1 1
9 2 11 1 9 3 2 11 1 10 1 1 12 7 0 1 5 0 0 0

Table 2.2: Counts of the occurrence of parameters in dominant terms of phenotypes that yielded limit cycles for model Design
3 through Design 9. The counts listed are subsets of the numbers in the column “Phenotypes with limit cycles” in Table 2.1.
Parameters that are present in all phenotypes, due to the model design, are not shown (vs, v, ka). The generic K parameter
modulates the strength of the unique novel inhibitions in designs 4-9. For example, in Design 4, K represents the parameter
K .., which refers to the transcriptional inhibition of Clb2/Cdkl (z) on CIb5/Cdkl (x). Parameters that are part of terms
that were dominant in more than 60% of all phenotypes that yielded limit cycles per design (Table 2.1), are highlighted and
color coded in groups: activatory (red) and inhibitory (blue) interactions among the Clb/Cdkl complexes, novel inhibitory
interactions in designs 4-9 (yellow), and basal synthesis and degradation reactions (green).
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hibitory regulations mediated by Clb/Cdk1 activities (Fig. 2.3A), whereas Design
7, Design 8 and Design 9 describe hypothetical inhibitory regulations mediated by
Sicl (Fig. 2.3B). In the following, each design is described succinctly, and both de-
tailed molecular mechanisms and equations supporting the designs are reported
in Supplementary Information, Section 2.4.
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Figure 2.3: Schematic view of known and hypothetical inhibitory regulations
added to Design 3 of the minimal cell cycle model. (a) Design 4, Design 5 and
Design 6 describe known inhibitory regulations mediated by Clb/Cdk1 activities.
(b) Design 7, Design 8 and Design 9 describe hypothetical inhibitory regulations
mediated by Sicl. Colored lines indicate novel regulations, with each color iden-
tifying a particular network design. Dashed lines indicate regulations occurring
in two different designs. In the latter, the two designs related to each such in-
teraction are shown with the same color. Black lines indicate the activatory and
inhibitory regulations occurring in the minimal cell cycle model. See text and
Supplementary Information, Section 2.4 for details about the molecular mecha-
nisms.

Design 4 incorporates the inhibition of Clb5/Cdk1 by Clb2/Cdk1 through
the MBF transcription factor, formed by Mbp1 and Swi6. Clb2 has been shown to
interact physically with Swi4, and to repress transcription of the G1 cyclins [44].
This inhibition translates to an effective inhibition of the CIb5/Cdk1 activity, due
to the lack of the PFL between the G1 phase CIn2/Cdk1 complex and SBF/MBF



30  Chapter 2. Minimal network designs for autonomous cell cycle oscillators

[45] and to the lifted inhibition of Sicl by CIn1,2/Cdk1 [46]. Design 5 and Design
6 incorporate the inhibition of Clb/Cdk1 on SIC1I transcription through the SWI5
transcription factor. Specifically, Design 5 describes the inhibition of SICI tran-
scription mediated by the Clb2/Cdk1 activity [47], reflecting the likely scenario
where the most abundant Cdk1 activity is due to Clb2/Cdk1. Design 6 describes
the same mechanism mediated by the three Clb/Cdk1l complexes: Clb2/Cdkl,
Clb3/Cdk1 and Clb5/Cdk1.

Design 7 and Design 8 incorporate the hypothetical inhibition of Sicl on mi-
totic CLB transcription to rationalize a recent observation that Sicl oscillations
rescue viability of cells with low levels of mitotic Clb cyclins [48]. Specifically,
Design 7 describes the inhibition of Clb2 and CIb3 synthesis - which we have re-
cently shown to be regulated by a similar transcriptional mechanism [32] - by
Sicl. Design 8 describes the hypothetical inhibition of CIb5, Clb3 and Clb2 syn-
theses by Sicl. Finally, Design 9 incorporates the hypothetical inhibition of Sicl
synthesis by a Sicl-mediated NFL through SWI5.

The ability of extended designs to generate sustained oscillations

To retrieve limit cycles for the new network designs 4-9, we again employed the
pipeline described in Fig. 2.2. Each design yielded several hundred phenotypes
that corresponded to parameter space regions with two non-negative complex
conjugate eigenvalues, and all designs yielded a set of limit cycles (Table 2.1).
Specifically, all designs yielded a higher number of limit cycles and more distinct
phenotypes with limit cycles than Design 3 did. This points to a stronger tendency
to oscillate due to the new inhibitory regulations. Interestingly, Design 4 outper-
formed all other designs in terms of the number of limit cycles retrieved, followed
by Design 6, Design 7 and Design 5. The computational results obtained for Design
4 and Design 5 indicate a role in generating and stabilizing sustained oscillations
for the two inhibitory regulations experimentally observed: (i) Clb2/Cdkl on
Clb5/Cdkl, indirectly, through Swi4 [44], and (ii) Clb2/Cdkl on Sicl, directly,
through Swib [47].

Among the hypothetical designs, Design 6 is an extension of Design 5, ex-
perimentally supported, and performs better, suggesting that it would be bene-
ficial for a cell to have all Clb/Cdk1 activities inhibiting SIC1 transcription. This
finding is a testable prediction. Among the hypothetical designs that are not yet
supported by experimental evidence, Design 7, which describes the inhibition of
CLB2 and CLB3 syntheses by Sicl, exhibits the highest number of parameter sets
in which limit cycles with 24 sampled limit cycles across 19 distinct phenotypes).
This finding suggests the possible relevance of Sicl transcriptional inhibition to
guarantee a self-sustaining cell cycle, and is currently being tested in our labora-
tory.

As we exemplified for Design 3, we quantified the occurrence of parameters
in the dominant terms (processes) for designs 4-9, identifying phenotypes that (i)
are valid, (ii) have a potential for oscillations, and (iii) yield limit cycles (Table 2.1
and Supplementary Code Repository). As we showed for Design 3, among the
phenotypes that yield limit cycles, in designs 5-9 «,,, (Clb3 PFL) is the parame-
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ter observed most frequently among the activatory regulations, followed by «,,,
(Clb2/Cdk1 activation by Clb3/Cdk1) (Table 2.2). Intriguingly, when adding the
inhibition of Clb5/Cdk1 by Clb2/Cdk1 in Design 4, the Clb2 PFL («,.) becomes
the most dominant design. This likely reflects the crucial role of Clb2/Cdk1 in
the modulation of CLB5 synthesis, thus reinforcing the importance of positive
feedback loops in the occurrence of sustained oscillations.

Furthermore, in all designs with the exception of Design 3 and Design 8, both
steps in the linear Clb cascade [32], a,, (CIb5 — Clb3) and . (Clb3 — Clb2), are
more frequent than o, (Clb5 — CIb2), and in designs 5-9, «, ., is equally or more
frequent than o .. In fact, in all designs with the exception of Design 4, the Clb3
— Clb2 activation is the second dominant activatory regulation. Furthermore,
once again, 7., (the APC-mediated inhibition of Clb5 by Clb2/Cdk1) and 7., (the
APC-mediated inhibition of Clb3 by Clb2/Cdk1) are the parameters observed
most frequently among the inhibitory regulations. The degradation rate of Sicl
from the Clb/Cdk1/Sicl ternary complex (§) was present in dominant terms of
the majority of limit cycles for designs 3-9. The same holds to a lesser extent for
the degradation rate of the Clbs from those complexes (¢). Finally, the two novel
interactions in Design 4 and Design 7 (inhibition of Clb5 synthesis by Clb2 and
inhibition of Clb2 and ClIb3 synthesis by Sic1 respectively) especially stand out in
their contribution to the high number of limit cycles observed for these designs.
For these two model designs the novel inhibitory interactions were dominant in
nearly all identified limit cycles.

We additionally calculated the Pearson correlation coefficients between all
parameter combinations across Designs 3-9 (Supplementary Information, Section
2.4 and Table S2.4). In line with the observations above, the parameters related to
the Clb3 PFL and the APC-mediated inhibition of Clb3 by Clb2/Cdk1 are highly
positively correlated in six out of the seven model designs (see Table S2.4). This
is in line with the observation that both interactions occur as often dominant ac-
tivatory and inhibitory terms, respectively (see Table 2.2). Intriguingly, even in
Design 4, for which we observed a shift from the Clb3 PFL to the Clb2 PFL as the
most often dominant activatory term in the limit cycles, this correlation remains
high. This indicates that, even though the CIb3 PFL is more rarely dominant in
this design, its strength still needs to be balanced by a Clb2/Cdk1-mediated inhi-
bition.

Altogether, our findings highlight that the Clb3 and Clb2 PFLs, together
with the linear cascade (Clb5 — Clb3 — Clb2) and the APC-mediated inhibitions
driven by Clb2 are principles of design underlying a self-sustaining cell cycle net-
work that may be conserved across evolution.

Limit cycles belong to distinct phenotypic regions spread across
the parameter space and showcase a range of oscillation proper-
ties

Our analysis for designs 1-9 has retrieved hundreds of parameter sets that gen-

erate limit cycles (Table 2.1). A critical question to be addressed is whether these
limit cycles belong to different, distinct regions in the parameter space. Part of
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this question is addressed by the fact that, for each design, we have identified
limit cycles across multiple phenotypes; this implies that different interactions
and regulations are dominant across (some of) the limit cycles, and that they be-
long to distinct parameter space regions. However, design space phenotypes may
overlap in the parameter space. A key concept here is that of the robustness region,
i.e. the parameter space region around a limit cycle point within which param-
eters can be smoothly altered without interrupting the limit cycle behavior [49].
Generally, it is challenging to obtain a good approximation to a robustness region
around a single point let alone compare multiple such regions for overlap.

To explore whether the identified limit cycles belong to non-overlapping ro-
bustness regions, we analyzed the spread of the parameter values through box-
plots and by Principal Component Analysis (PCA) projection. For all designs,
most parameter values cover multiple orders of magnitude (see Supplementary
Information, Section 2.4 and Fig. S2.18). Interestingly, some parameters are con-
sistently narrow in range across all designs: K 4, v, and v, (referring to the com-
plex formation between Clb/Cdk1 complexes and Sicl, to the basal synthesis of
Sicl and to the basal synthesis of Clb5, respectively), indicating that they need to
be tightly controlled in order to generate sustained oscillations. Conversely, o,
(Clb3 PFL) is narrow in range in all designs except Design 4, and vice versa for o,
(Clb2 PFL). This finding supports the observations of the flipped dominance of
these parameters across the designs shown in Table 2.2. Similarly, in each design,
either ¢ or e show a narrow range. Interestingly, . (CIb3 — Clb2), second step
in the linear cascade (Clb5 — Clb3 — Clb2) shows a higher median value than
the first step in all designs with the exception of Design 4, in agreement with its
previously observed dominance.

Subsequently, we performed PCA (see “Methods” section 2.4) on the limit
cycle parameter sets for designs 3-9 to visualize how the parameter values are
spread throughout the 22 dimensional parameter space (Fig. 2.4). The limit cy-
cles are spread across the two main principle components, suggesting that they
are spread in the parameter space as well. For Design 4, many points appear to
clump together; however, the scale on the axes is larger for this design than for
the others, and many more limit cycles are found for this design which increase
the overlap. This result is strengthened by the fact that for all designs the first
two principle components never explain more than 61.9% of the variance in the
data, indicating that there is also significant variance in the data along other or-
thogonal directions in the parameter space. For all designs in Fig. 2.4, limit cycles
are separated both within and between phenotypes, indicating that, even within
a single phenotype, limit cycles are found that are spread across different areas of
the parameter space. The results illustrate the complex distribution of the param-
eter sets in the parameter space. A similar result was obtained by aggregating the
limit cycles across designs 4-9 (bottom-right panel in Fig. 2.4). The aggregated re-
sults for designs 3-9 highlight that there are distinct areas of the parameter space
that produce oscillations for different network designs.

Our analysis does not prove that the limit cycles do not belong to overlap-
ping robustness regions (i.e. could potentially be found by continuation tech-
niques), but indicates that the combined robustness region would have to cover
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Figure 2.4: Projection of limit cycle parameter sets onto the first two princi-
pal component axes, for designs 3-9 separated and for designs 4-9 combined
(bottom-right). Each dot represents a parameter set yielding a limit cycle. Param-
eter values were normalized to have a mean of zero and a standard deviation of 1
prior to principal component calculations, in order to deal with parameters span-
ning different orders of magnitudes. For the single panels, the colors indicate the
unique phenotype each parameter sets belongs to. For the combined panel, the
colors indicate the model design. For the purposes of this analysis, the unique in-
hibitory parameters in designs 4-9 were treated as the same parameter. The per-
centage of variance in the data explained by each principal component is listed
on the axes. Values along the axes should be compared to the [0, 1] unit interval
since the principal components have a length of 1 and are linear combinations of
the normalized parameters.

multiple orders of magnitude in most dimensions. Given that the vast majority of
our parameter samples did not lead to limit cycles, such a vast robustness region
seems unlikely. Altogether, Fig. 2.4 and S2.18 suggest that either some of our limit
cycles belong to different robustness regions, or the robustness region must take
an incredibly complex, unlikely and large N-dimensional shape.

We further quantified the differences in oscillation properties between the
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limit cycles by looking at the period of the oscillation and at the minimal percent-
age of the oscillation amplitude with respect to the maximal concentration across
species (see Supplementary Information, Section 2.4). In Fig. 52.19 and 52.20 box-
plots of the period and amplitude (in terms of the minimum/maximum ratio),
respectively, for designs 3-9 are shown. It can be observed that the limit cycles
display a wide range in both properties; the wide range of parameter values cov-
ered between the limit cycles translates to differential oscillation properties.

As an illustrative example of the results that we obtained, we show a robust-
ness analysis of a limit cycle of phenotype number 1906532 for Design 4 (Fig. 2.5).
We highlighted this limit cycle in the PCA plot for Design 4 shown in Fig. 2.4; this
limit cycle sits relatively close to most limit cycles found for Design 4. In Fig. 2.5A
and 2.5B, a 2D slice of the parameter space across the K, - 7,, plane (two dom-
inant inhibitory regulations in this phenotype) is shown, where the phenotype
number 1906532 (purple) borders with several other phenotypes (Fig. 2.5A) and
the stability in terms of the number of non-negative eigenvalues may be observed
(Fig. 2.5B). The black dot in Fig. 2.5A) and 2.5B) indicates a limit cycle that we
identified — belonging to phenotype 1906532 —, which sits in an area where oscil-
lations can be expected based on the eigenvalues. In Fig. 2.5C, properties of the
limit cycle dynamics can be observed: (i) a period of about 27 minutes, resulting
in a frequency of 0.037 minutes™; (ii) a similar (within 10-fold) order of magnitude
of the amplitudes of the concentration of the four species considered (Sic1, CIb5,
Clb3 and Clb2), consistent with previous observations [50, 51]; (iii) the correct
temporal order of peaks of the four species considered: Sicl in G1 phase, Clb5 in
S phase, CIb3 in G2 phase, and Clb2 in M phase [10] and (iv) the amplitude of the
oscillations covering most of the concentration range of the four species, i.e. their
concentration sharply decreases and, in the case of total Clb3 and Clb2 becomes
equal to zero when starting a new, successive cell cycle, as shown experimentally.

In Fig. 2.5D, a 1D bifurcation diagram is shown for the parameter K., which
refers to the transcriptional inhibition of CIb5/Cdk1 (x) by Clb2/Cdk1 () that is
unique to Design 4. We observed that there is a range of K., values (in blue color)
where sustained oscillations occur in the full model. The amplitude changes with
the bifurcation parameter (indicated by the vertical size of the blue area). We ob-
serve a general agreement between the region in Fig. 2.5B, where the phenotypes
support two positive eigenvalues, and the “robustness region” [49] of the limit
cycle in Fig. 2.5D; however, it can be noted that the robustness region of the limit
cycle is smaller than predicted by the eigenvalues of the phenotypic subsystem
(yellow line). In Fig. 2.5E, a 2D parameter scan for the Clb3 PFL («,,) and the
Clb2 PFL (a.) is shown in the form of what we consider as a “robustness re-
gion” . Fig. 2.5F shows a similar robustness region for the Clb2 PFL («..) and
the Clb3 NFL (v,,). These regions visualize how far the chosen parameters may
be changed around the limit cycle such that the qualitative behavior does not
change, and it is represented as a heatmap, where the color scale indicates the
amplitude of oscillations. In this way; it is possible to investigate how mutations
or environmental perturbations that lead to changes in model parameters can
change or break the oscillatory behavior. This analysis highlights the complexity
of combinations of parameters for which sustained oscillations may occur, and
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Figure 2.5: Robustness of a limit cycle for phenotype number 1906532 in Design
4. The black dot in (a) and (b), the time course in (c), the dotted line in (d) and
the red dot in (e) and (f) represent the same limit cycle and parameter set. (a)
2D slice K., - vyy (with v, representing the Clb3 PFL) of the design space visu-
alized in regions corresponding to different phenotypes. White color represents
absence of phenotypes, whereas the other colors indicate specific phenotypes, or
combinations of overlapping phenotypes. Some regions relate to multiple phe-
notypes, indicating that these phenotypes overlap in this 2D projection of the
parameter space. (b) The same 2D phase plane as in (a), visualizing the num-
ber of positive eigenvalues the steady-state of the phenotype. The orange area
suggests potential for oscillatory behavior. Consistent with stability indications,
limit cycles were not retrieved for most of the phenotypes in (a) based on our
sampling (only phenotype 1574756 and 1906532) which fall in the orange area.
The overlapping regions from (a) where multiple phenotypes are simultaneously
valid in the same region of the design space are shown to support multi-stability.
(c) Sustained oscillation time course of the limit cycle. (d) 1D bifurcation diagram
plotting the oscillation amplitude (minimum and maximum of the oscillation) in
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Figure 2.5: (Continued) the full model of the limit cycle for CIb5 (x on the y-
axis and in the equations) while varying the K., parameter, is unique to Design
4 and refers to the inhibition of Clb5/Cdk1 (x) by Clb2/Cdk1 (z). The blue line
reflects the range of K., values yielding stable steady-state behavior, i.e. no oscil-
lations, whereas the blue area represents the range of parameter values yielding
oscillations, while keeping fixed all other parameter values. The yellow dashed
line indicates an unstable steady-state with two non-negative eigenvalues in the
phenotype. The grey dotted line indicates an unstable steady-state in the pheno-
type that has one non-negative eigenvalue, whereas the solid grey line indicates a
stable steady-state; as there is more than one line, multi-stability occurs. (e) 2D ro-
bustness heatmap of the amplitude of oscillations (0 and white in case of a steady
state) within a 2D slice of the parameter space. 1,000 random log-uniform sam-
ples of the parameters «,, (Clb3 PFL) and . (Clb2 PFL) were retrieved while
keeping all other model parameters fixed. For each sample, the amplitude of
oscillations in CIb5 is represented by the scale of green color. The radial basis
interpolation algorithm (RBF) has been applied to infer the color for points in the
plot that were not explicitly sampled. (f) Similar 2D robustness region heatmap
as in (e) for o, (Clb2 PFL) and +,, (Clb3 NFL).

that, around the limit cycle identified by our pipeline (shown as a red dot), there
is a region of the parameter space where oscillations are robust to change in these
two parameters (albeit with a varying amplitude). This analysis highlights that
this limit cycle is particularly sensitive to changes in the Clb2 PFL.

The analysis above can be used to identify phenotypes that are functional
or dysfunctional based on specific features, e.g. in the tendency of a network
design to oscillate. For instance, we can identify functional, healthy phenotypes
that have a strong tendency to oscillate (2.5A), phenotype in violet color), as com-
pared to dysfunctional phenotypes, which exhibit no oscillations (2.5A and 2.5B,
all phenotypes except 1906532 and 1574756) or a reduced tendency to oscillate in
only a small area of the parameter space, reflecting a reduced robustness of the
limit cycle.

2.3 Discussion

Cell cycle networks are often modeled through checkpoint mechanisms, where
the starting point of oscillations is reset upon reaching specific concentration
thresholds of certain network components [20, 21]. To build computational cell
cycle networks that oscillate autonomously is a challenge.

In this work we showed, to our knowledge for the first time, that some
designs of the cell cycle network are suited to support truly autonomous oscil-
lations, independent of checkpoint mechanisms, for a wide range of parame-
ter sets. Specifically, we studied whether known or hypothetical designs may
modulate the tendency to generate or stabilize sustained oscillations. We con-
sidered a minimal model of the network governing the activation of the mitotic
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cyclin/Cdk1 (Clb/Cdk1) complexes in budding yeast [10], and analyzed 11 alter-
native network designs for their ability to yield limit cycles (Supplementary In-
formation, Section 2.4 and Section 2.4). The model under investigation describes
the sequence of events from the G1 through the M phases of the cell cycle and
back to G1 again, assuming that to each phase is assigned one major functional
component: Sicl, stoichiometric inhibitor of the Clb/Cdk1 complexes [52], to the
G1 phase; Clb5/Cdk1, which promotes DNA replication dynamics [53], to the
S phase; Clb3/Cdk1, which is involved in the spindle assembly [54], to the G2
phase; and Clb2/Cdk1, which promotes spindle formation and cell division [55,
56], to the M phase. In seven of these designs, from Design 3 through Design
9, a quasi-steady-state approximation was introduced, which assumes an equi-
librium between the Clb/Cdk1/Sicl ternary complex and its free components,
Clb/Cdk1 and Sicl. This assumption is novel in cell cycle models.

Our modeling effort, unlike existing cell cycle models that have been inves-
tigated in terms of their potential to show oscillations [8, 20, 21], supports the
implicit hypothesis that there is a functional reason for autonomous oscillations.
Aside from the novelty of our work in terms of the methodology that we have
employed, we make a case for autonomous oscillations. The two opposing hy-
potheses of checkpoint models (i.e. the cell cycle system, by itself, should not fa-
vor oscillations, as these would disappear upon activation of checkpoints due to a
cell’s response to cellular damage, or to a not favorable response to environmen-
tal cues) and autonomous oscillations (i.e. the cell cycle system, by itself, should
tend to exhibit self-sustained oscillations, independently from stimuli from the
environment) are rather hard to prove or disprove. This is because oscillations
do exist in living cells that may be due to cell cycle regulation alone, or to its in-
terplay with the rest of the cell such as external factors, metabolic cues, etc. The
fact that autonomously oscillating cell cycle models exist for mammalian cells
[8], does not provide any strong support for either of the two hypotheses, be-
cause cell cycle models, overall, need to oscillate, and may be designed to do so.
In the autonomous limit cycle models, limit cycle oscillations are identified by
the presence of two complex conjugate eigenvalues with positive real part. In the
checkpoint models, this property may or may not be present because — at spe-
cific points in the model dynamics — either the concentrations [20, 21] or both the
concentration and the network wiring can be changed depending on the model
under examination. The resetting of the position in the state space can force the
model dynamics into a repetitive pattern that would not occur (in the same way)
without the checkpoint(s).

The cell cycle models for budding yeast are currently incomplete: These
models require the help of the modeler or a computer program to break and then
restart the model at the end /beginning of every cycle. Our model is a limit cycle
model, which cycles by itself without any periodic resetting. We developed a new
methodology, based on initial work by Savageau and colleagues, to the point that
we could scan the parameter space for possible limit cycles, by adding a search
for complex positive eigenvalues around the Hopf bifurcations. This produced
a type of model that then enabled us to determine which parameters control the
occurrence and period of the cell cycling of yeast. Because the current cell cycle
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models in budding yeast do not have a complete limit cycle, they cannot perform
such a comprehensive control analysis.

Our cell cycle model structure was not designed to yield oscillations in gen-
eral, but it can yield oscillations. Specifically, our work highlights that the under-
lying mechanisms of these oscillations are the Clb3-centered regulations — never
considered in any available model of cell cycle regulation in budding yeast —
which we have shown to exist in budding yeast cells [32]. The prediction that
Clb3-centered regulations are the highest represented network motifs that lead
to self-sustained, autonomous oscillations, provides a more subtle proof, and a
much stronger evidence reconciling the checkpoint and autonomous oscillation
views. Specifically, our results suggest that autonomous oscillations driven by
Clb3/Cdk1 may occur when this complex is coupled and coordinated to the other
S and M phase kinase complexes, Clb5/Cdk1 and Clb2/Cdk1, which are instead
involved in the checkpoints. Whereas Clb5 and Clb2 have been described to be
involved in the checkpoint mechanisms (Tyson and Novak’s types of models), we
propose that Clb3(/Cdk1) drives autonomous cell cycle oscillations to maintain
cell proliferation. Clb3 being tightly coordinated together with Clb5 and Clb2,
we envision that Clb3-mediated oscillations are maintained unless an activation
of checkpoints terminates the autonomous oscillations.

Our findings do not rule out checkpoint mechanisms, but add an aspect
that does not appear in pure checkpoint mechanisms, i.e. designs yielding au-
tonomous oscillations. If we assume that only checkpoint mechanisms exist, then
there would be no reason to expect such designs to occur in reality. However, the
fact that they do occur supports the hypothesis that generating oscillations may
provide an evolutionary advantage. Therefore, we hypothesize that “health" re-
quires the capacity to oscillate autonomously — investigated in detail in this study
—and the capacity to interrupt the oscillation due to checkpoint activation and/or
unfavorable environmental cues — not investigated in this study and subject of a
future modeling project.

It has been demonstrated [12] that including stochastic effects in checkpoint-
based cell cycle models, using Langevin-type equations, can lead to qualitative
changes in model dynamics and noise-induced oscillations. In this way, the di-
chotomy between checkpoint models and limit cycle oscillators is partially over-
come by stochasticity, since checkpoints may be overcome through random fluc-
tuations. Noise-induced oscillations also imply that inclusion of stochastic effects
(in cell cycle models) may reshape and enlarge the regions in the parameter space
that support oscillatory behavior. Experimental work regarding the role of noise
in cell cycle regulation has been shown. Baumann and colleagues showed that
stochastic telophase arrest of budding yeast mutants cannot be captured with a
deterministic model, but can partially be captured by a stochastic model [57].
Similarly, by using a stochastic model of the G1/S transition, we showed that
entrance into S phase is dependent on tight control of SIC1 mRNA transcrip-
tion and degradation [58]. Moreover, Peccoud, Tyson and colleagues measured
experimentally the size of fluctuations in mRNA levels of 16 proteins that are
important in the cell cycle by using time-lapse fluorescence microscopy [59] and
smRNA FISH [60, 61] and improved their cell cycle model to match the observa-
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tions. Further development to incorporate the role of noise in cell cycle models in
relation to sustained oscillations calls for software and methods supporting bifur-
cation analysis of stochastic differential equation models, also within the context
of the System Design Space (SDS) methodology that we have used in this study
or extensions thereof.

To study the dynamic effects of the designs over a wide range of parameter
values, we applied the System Design Space methodology to analyze the pheno-
types that the 11 network designs partitioned the parameters and state space into.
These phenotypes can be associated to areas of the parameter space in which sus-
tained oscillations in the form of limit cycles can occur. The ability to enumerate
the phenotypic repertoire of each of the designs, and to explore the behavior of
each phenotype in a model, allows for desired properties to be readily identified
[27]. This, in turn, helps to reduce the computational effort by focusing the search
of limit cycles on specific regions in the parameter space. The SDS methodology is
therefore useful when studying natural systems and when engineering synthetic
networks intended to be endowed with particular characteristics [62].

After applying our pipeline to identify oscillatory phenotypes (Fig. 2.2), we
retrieved limit cycles for the network designs 3-9 but not for the designs 1A-2. The
latter lack the quasi-steady-state approximation, which is instead implemented
in the former. The lack of observed oscillations in Design 1A provides an in-
teresting case that is in line with the prevalent view that NFLs are required for
sustained oscillations [15, 16]. Remarkably, the Clb3 positive feedback loop (Clb3
PFL) is recurrent in all network designs that yielded sustained oscillations with
the exception of Design 4, where the Clb2 PFL takes over. Strikingly, PFLs have
been shown to promote oscillations and switch-like responses that allow unidi-
rectionality of cell cycle progression, by enhancing amplitude and robustness of
cyclin/Cdk oscillations [5, 13, 14]. Our finding that PFLs are important for ob-
taining sustained oscillations in the cell cycle is in agreement with these previous
studies. In recent work, Novak and colleagues highlighted the importance of the
PFL between SBF and CIn1,2 for the cell size checkpoint in G1 phase by using
checkpoint models [63]. Similarly, they highlighted the importance of two antag-
onistic PFLs of Cdk1:CycB and PP2A:B55 for interphase-M phase transitions in
the mammalian cell cycle, by using a non-checkpoint model that exhibits bista-
bility and hysteresis [64]. Contrarily to these two studies, our work focused on
autonomous oscillations rather than on multiple different steady-state attractors.
A novel insight from our work is that it appears that our models do not require
both the Clb3 and Clb2 PFLs but, depending on the absence or presence of the
inhibition of Clb5/Cdk1 by Clb2/Cdk1 (designs 3, 5-9 vs. Design 4), one PFL
has a more stabilizing effect on the oscillations than the other. The general result
that we retrieve concerning the NFLs and PFLs is in agreement with the litera-
ture. However, the specific (combinations of) PFLs and NFLs that are found in
oscillating phenotypes and parameter sets (see Table 2.2) were not predictable
a-priori.

Furthermore, the regulatory activation Clb3 — CIb2 (c,.), which forms the
linear CLB cascade [32] together with CIb5 — CIb3 (), is observed more fre-
quently than Clb5 — CIb2 (o). Therefore, our analyses point to the relevance of
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Clb3-centered regulations for the generation of sustained Clb/Cdk1 oscillations
in budding yeast. Importantly, our results for Design 4 and Design 5 support the
experimental evidence that the inhibitory regulations, Clb2/Cdk1 on CIb5 in De-
sign 4 and Clb2/Cdk1 on the Clb/Cdk1 inhibitor Sicl in Design 5, play a crucial
role in cell cycle regulation.

Among the hypothetical network designs, Design 7 is of particular interest
because it rationalizes a recent experimental observation for which the molecular
mechanisms remain at the moment obscure. This design describes the inhibition
of CLB2 and CLB3 syntheses by Sicl, as an attempt to describe the experimental
evidence that Sicl oscillations rescue viability of cells with low levels of mitotic
Clb cyclins [48]. Our findings indicate that including this inhibitory regulation
resulted in a higher number of limit cycles as compared to other hypothetical
network designs. This result suggests that Sicl inhibition on the synthesis of
CLB2 and CLB3 may be relevant to guarantee a self-sustained cell cycle. We spec-
ulate that this inhibitory regulation might occur through a physical interaction of
Sicl on transcription factors that drive synthesis of these mitotic cyclins, such as
Fkh2, which we have described to be the regulator driving both CLB2 and CLB3
transcription [32]. The mammalian counterpart of Sicl, the cyclin/Cdk inhibitor
p27XiP1 [65], has indeed been shown to behave as a transcriptional repressor, by
binding to and inhibiting a number of gene promoters through E2F4/p130 com-
plexes [66]. The specific role of p27XiP! as transcriptional repressor is to recruit G1
cyclin/Cdk complexes needed for p130 phosphorylation in early-mid G1 phase
[67]. This regulation of a cyclin/Cdk inhibitor at gene promoters is unknown in
budding yeast, and a direct involvement of Sicl as transcriptional repressor, po-
tentially through Fkh2, calls for a detailed experimental investigation, which we
are currently conducting in our laboratory.

Importantly, we addressed that the limit cycles we identified belong to multi-
ple different phenotypic regions, in the System Design Space sense (which some-
times partially overlap), and that the parameter values cover multiple orders of
magnitude and are spread across a PCA projection, whose variance is spread
across many principal components. Our analysis suggests that it is improbable
that all limit cycles found for each particular model design belong to the same
robustness region. However, it is currently not possible to prove that their ro-
bustness regions do not overlap. In order to answer this question, it would be
useful to explore whether methods that approximate single robustness regions
[49] can be applied to multiple limit cycles to prove their separation in the pa-
rameter space.

Our work shows how the SDS methodology can aid in the identification of
qualitatively distinct behavior of complex systems, resulting in phenotypes that
are characterized by a tendency to generate oscillations within a definite network
design. In this respect, phenotypes that exhibit oscillations can be considered
functional phenotypes of a cell, which exhibit oscillations or a high number of
oscillations as compared to dysfunctional phenotypes, which may exhibit no or
low amount of oscillations. This approach may represent an interesting avenue
of further research to embed the missing details of the minimal cell cycle network
considered in this work into existing checkpoint models. The cell cycle network
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incorporates designs that are particularly suited to support sustained oscillations,
suggesting that this biochemical process may have evolved to generate or stabi-
lize autonomous oscillations, at least under some conditions.

We envision that populations of cells consist of subpopulations expressing
different phenotypes, and that individual cells are able to dynamically shift their
network configurations so as to effectively alter their phenotype. This would
allow evolutionarily selectable differences between subpopulations to emerge.
Point-mutations and shifts in gene expression, e.g. up- and down-regulation of
inhibitors, provide valid mechanisms by which the functioning of any network
interaction could be altered. Such alterations can impact the strength of, or en-
tirely block, a network interaction, e.g. a PFL. For example, in our cell cycle net-
works, binding or phosphorylation affinity of the Clb/Cdk1 complexes could be
altered. Consequently, cells may theoretically be able to dynamically shift net-
work configurations, as we have proposed for metabolic networks [68, 69] (also
see Ch. 5), causing switches in phenotype. Our results indicate that, if these
changes occur within the core cell cycle regulatory network, an impact on the
ability of the network to exhibit oscillations can be observed. Therefore, differ-
ences in the affinity of Clb/Cdk1 complexes to bind and phosphorylate Fkh tran-
scription factors and, vice versa, in the affinity of Fkh to the CLB promoters may
be expected. These scenarios are currently investigated in our laboratory.

Given the evolutionary conservation of the cell cycle network across eukary-
otes, our approach may be translated to human cell cycle models, in which com-
ponents are often mutated in disease [70]. In the mammalian cell cycle there does
not exist a one-to-one relationship between the robustness and maintained fre-
quency of the cell cycle of individual cells on the one hand, and the “health” of
the whole organism on the other hand. For human cells, the whole organism may
not be “healthy” when each cell would cycle robustly, or with a higher frequency.
Here our approach reverses: in the context of cancer, our analysis could highlight
network design principles that would be good (healthy) for the particular disease
state (the cancer). Regardless, applied to the whole organism or to populations
of cells within the organism that may become deregulated, as in cancer, it is of
interest to identify network properties that result in changes in the robustness
and frequency of oscillations. Thus, our pipeline can be used to point to pre-
cise molecular strategies of intervention to restore molecular designs that may be
disrupted in disease.

2.4 Methods

All Python and MATLAB code, Jupyter Notebooks and COPASI files are avail-
able as part of a Github repository (https://github.com/barberislab/
Autonomous_minimal_cell_cycle_oscillator).
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Simulation of Ordinary Differential Equation (ODE) models

Time course analyses were conducted in MATLAB 2017a by using the odel5s
solver or in Python 2.7 by using the scientific Python (SciPy) version 1.1.0, Nu-
meric Python (NumPy) v1.14.1, Design Space Toolbox Python module v0.3.0a4
and the related C toolbox v0.3.0a6. In the Python scripts, a sequence of integra-
tors was set up in case that one of the methods would fail to integrate accurately.
The sequence implemented was the following: Isoda, bdf and dopri. The Python
and MATLAB code used to generate all our analyses are provided in the Supple-
mentary Code Repository.

Application of the SDS Toolbox

The Design Space Toolbox V2 for Python 2.7 [31] was used to apply the System
Design Space methodology to the 11 network designs considered in this work.
The functionality of the toolbox was first tested by reproducing previously pub-
lished results by Savageau and colleagues [27]. Subsequently, their pipeline to
analyze the phenotypic repertoire for oscillatory phenotypes was implemented
in Python. The novelty of our implementation is two-fold: (i) the generalization
of this pipeline, to be applicable to any predefined kinetic model in terms of a
set of equations in SciPy notation; (ii) the approach of Savageau and colleagues
was improved to include extensive parameter sampling within the boundaries of
phenotypes characterized by potential oscillations (oscillatory phenotypes), i.e.
areas in the parameter space with two non-negative eigenvalues. The pipeline of
our work is shown in Fig. 2.2. The pipeline consists of a Python script contain-
ing model definitions, a set of newly written Python functions that are wrapped
around the Design Space Toolbox V2, and several Jupyter notebooks [71] that
analyze a model and properties of any given limit cycle, respectively. All files
are available in the Supplementary Code Repository. The main Jupyter notebook
reads the model to be analyzed (defined in GMA form), and then proceeds to
(i) set up the design space for the model, (ii) identify all valid phenotypes, (iii)
identify the stability of each valid phenotype indicated by the presence of two
complex conjugate eigenvalues with non-negative real part, by sampling each
valid phenotype for a user defined number of times (in this study 250 parameter
samples were collected), and (iv) retrieve limit cycle behavior by integrating the
full kinetic model in the GMA form (Supplementary Information, Section 2.4) for
the sampled parameter set. The other Jupyter notebooks allow users (i) to an-
alyze properties of a limit cycle, specifically to draw: 1D bifurcation diagrams,
phenotype phase planes, stability diagrams and robustness regions for a user de-
fined set of limit cycles and bifurcation parameters; (ii) to reproduce the results
from Table 2.1 and Table 2.2; and (iii) to reproduce the boxplots of the period,
amplitude, parameter values and the PCA plots.

Parameter space sampling to find oscillatory phenotypes

The phenotypes characterized by a network design may theoretically exhibit os-
cillatory as well as steady-state behaviors for a range of parameter values. To de-
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termine the steady-state(s) of a phenotype, a representative point within the phe-
notypic region of the parameter space must be found. The Design Space Toolbox
can determine valid parameter sets for a given phenotype. The log-linear bound-
aries associated with the boundary conditions for the system (referred to as an
S-system) representing a particular phenotype define a continuous subspace of
parameter values. Within this space, the terms in the S-system dominate the ne-
glected terms and describe the dominant behavior (Supplementary Information,
Section 2.4. These boundaries enable linear programming problems to be solved
to identify a set of parameter values at a vertex of the phenotypic region.

We implemented a sampling approach in two steps. Since steady-state sta-
bility may change within a phenotype when model parameters are altered, sam-
pling just once may not give an accurate view of a phenotype’s stability. We sam-
pled parameter sets for each valid phenotype of a particular network design 250
times. For each sample of the parameter values, we first used the functionality
of the System Design Space Toolbox to determine the steady-state and the pres-
ence of non-negative real part complex conjugate eigenvalues of the steady-state
for the combination of a given phenotype and parameter set. Second, for valid
phenotypes satisfying the necessary condition for sustained oscillations, i.e. two
complex conjugate non-negative eigenvalues at the fixed point, we determined
the dynamics in the full model in the GMA form, using the previously calculated
steady-state as the initial condition, and checked for the presence of a limit cy-
cle. Different initial conditions may give rise to different attractors and, hence,
iterating this procedure for multiple initial conditions may result in the identifi-
cation of more limit cycle attractors. However, in this work, we did not take this
approach.

To sample a valid parameter set for a given phenotype, we first used the
valid_parameter_set function in the Design Space Toolbox to obtain a valid param-
eter set for the phenotype. We then rearranged the parameters in the model by
shuffling them into a random so as to avoid biased sampling due to the fact that
the sample for each parameter may alter the phenotypic boundaries for the fol-
lowing parameters. Subsequently, for each parameter in the randomized order,
we (i) determined the phenotypic tolerance: 1D boundaries of the phenotype
when keeping all other parameters the same (utilizing the vertices_1D_slice func-
tion in the System Design Space Toolbox), and (ii) log-uniformly sampled the
range of numbers between these boundaries. This sequence of steps ensures that
we retrieve a set of unique parameter sets that are specific for a given pheno-
type, and random. We opted for log-uniform random sampling due to inherent
problems that we observed with uniform random sampling. In uniform random
sampling in 1D, ranges with the same length have the same probability of being
sampled. When a phenotype has, for example, a range of [0, 100], 99% of the sam-
ples will fall in the [1, 100] interval and 10% will fall in the [90, 100] interval. This
has the consequence that parameter sets with relatively low parameter values are
exceedingly rare, especially when sampling multiple parameters simultaneously
as is commonly the case with biochemical models. This problem is further aggra-
vated by the fact that the effects of parameters in the model are multiplicative,
rather than additive. As do Metabolic Control Analysis (MCA) and Biochemical
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Systems Theory (BST), we think that equal relative changes are equally impor-
tant; hence, we concluded that log-uniform sampling was appropriate for this
work. In all model designs, parameters were limited to the range [10~?,1000].

To check whether sampled parameter sets yield limit cycles, and not just
damped oscillations, we integrated the system of ODEs for the full model in the
GMA form (Supplementary Information, Section 2.4) in a series of subsequent
time windows. After each successive time window we first checked whether
the integration of the ODEs proceeded successfully without error. Second, we
used the last time window to check the properties of the time course for each
of the model species (Sicl, Clb5, Clb3, CIb2) by identifying all maxima that: (i)
were within 5% of the global maxima in the current time window. When five
such ordered maxima for each species occurred in the time course, we consid-
ered the time course to exhibit sustained oscillations. A limit cycle trajectory
exhibits multiple, successive peaks in a repeating pattern and would therefore
satisfy the aforementioned criteria. The five ordered maxima of each species may
represent a yeast cell dividing at least five times. To accept the time course as a
limit cycle, we additionally required that: (i) all species have an oscillation am-
plitude of at least 10% of their global maximum, (ii) the ratio between the global
maxima across all species is less than 100-fold (experimentally, there is less than
a three-fold difference in the concentration of the four species considered in the
model [50, 51], and (iii) the identified maxima in step (ii) are not only found in the
beginning of the time course, since this would otherwise indicate a damped oscil-
lation. The main results presented in Table 2.2 did not change when we required
an oscillation amplitude of at least 50% (data not shown). After each successive
time integration window, we checked that the conditions above were met. If the
limit cycle conditions were satisfied, the integration was stopped. Finally, as last
criteria, we required the identified limit cycle oscillation to exhibit the correct cell
cycle order (Sicl, CIb5, Clb3, Clb2). Conversely, if the conditions were not satis-
fied, the integration was continued unless a steady-state had been reached. We
defined a steady-state as when none of the concentrations changed more than 1%
of their global maxima in the last time window. If the time course did not exhibit
a limit cycle or a steady-state within 10,000 minutes, the integration was stopped
and we concluded that the time course did not exhibit oscillations. In our hands,
these two tests are sufficient to identify limit cycles. In rare cases, this approach
may erroneously detect a limit cycle although there is in fact a slowly decaying,
damped oscillation or slowly increasing oscillations; however, such cases should
become clearer from inspection of the time course.

Principal component analysis

PCA projects a set of N-dimensional vectors along a new coordinate axis specified
by orthogonal and uncorrelated vectors which are ranked according to how much
of the variance in the data they explain. These “principal components” are linear
combinations of the original parameters and are of unit length. Each principal
component is associated with a percentage of the variance in the original dataset
that it explains. As a result we can visualize features (parameter values in this
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case) in two-dimensional space in such a way that parameter sets that are “close
together" (i.e. not showing much variation) will appear together on the PCA plot.

Observations that are far apart in the PCA plot are separated in the original
space along the directions specified by the principal components if there was sig-
nificant deviation within the original dataset to begin with. However, parameter
sets that are far apart in the original data may sometimes cluster closely together
on the PCA plots if the first principal components do not explain a lot of the
variance in the dataset.

We first normalized the parameter sets by dividing by the standard deviation
and subtracting the mean so that each parameter has a mean of 0 and a variance
of 1 across the different limit cycle parameter sets before applying the PCA algo-
rithm. This helps avoid bias from the multiple orders of magnitude covered in
the parameter values.
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Supplementary Information

Model derivations and initial limit cycles for Design 1A through
Design 3
Here, we introduce model designs 1A-3 which are updated and expanded ver-

sions of the minimal cell cycle model of Barberis and colleagues [10], shown in
Fig. 52.1. We will start by discussing the original model.
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Figure S2.1: Alternative designs of a minimal cell cycle network in budding yeast.
Model schemes and simulated time courses of waves of Clb/Cdk1 complexes are
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Figure S2.1: (Continued) represented as follows: Design 1A (a) and its time course
(b); Design 1B and Design 1C (c) and simulated time course for Design 1C (d);
Design 2 and Design 3 (e) and simulated time course for Design 3 (f). First, the
minimal cell cycle model (Design 1A) was expanded to generate Design 1B (see
Section 2.4) by including: (i) a positive feedback loop (PFL) by Clb3/Cdkl on
CLB3 (Clb3 PFL; oy, ) in ¢) through a transcription factor [32], (ii) a negative feed-
back loop (NFL) of CIb3/Cdk1 on itself through activation of degradation (Clb3
NFL; 7,, in c), the four known Clb-regulated degradations (inhibitory regula-
tions) mediated by both the Clb/Cdkl and (ii) complexes and Anaphase Pro-
moting Complex (APC) (7.2, Y2y, V22 and 7,,) (see Fig. 1C in [45] for details).
Design 1C removes the CIn2/Cdkl-mediated contribution to Sicl degradation
from the Clb/Cdk1/Sicl ternary complexes (red crosses in c). Design 2 includes
the salvaging of CIb3/Cdk1 and Clb2/Cdk1 upon degradation of Sicl from the
Clb/Cdk1/Sicl ternary complexes (see green lines in e indicated with J) (see Sec-
tion 2.4 such salvaging was already in place for Clb5/Cdk1l upon degradation of
the Cdk1-Clb5-Sicl ternary complex in a and c). Design 3 describes the complex
formation between Sicl and Clb cyclins by the association equilibrium constant
(K 4), instead of the forward (k) and backward (k_) parameters in Design 2, as
a consequence of the quasi-steady-state approximation, i.e. assumes a fast equi-
librium between the free forms of Sicl and Clb/Cdk1 complexes and the ternary
complexes they form, which is reflected by a high K4 value. This implies that
steady-state concentration of Clb/Cdk1/Sicl ternary complexes changes with
Sicl dynamics, and that the fraction of free Clb cyclins is directly related to free
Sicl at any moment (Supplementary Information, Section 2.4). This assumption is
supported by in vitro experimental evidence indicating a strong binding of Sicl to
the Clb/Cdk1 complexes. (a, ¢ and e) Red arrows indicate activation of each CLB
gene, thereby of each Clb/Cdkl complex, by any previous Clb/Cdkl complex
in the cascade; blue arrows indicate APC-mediated Clb inhibition by Clb/Cdk1
complexes, resulting in Clb degradation; black arrows indicate all other reac-
tions; and green arrows indicate the progressive changes with respect to the pre-
vious kinetic model(s). Dotted arrows indicate the Cln(/Cdk1)- and Clb(/Cdk1)-
mediated phosphorylation of Sicl in Clb/Cdk1/Sicl ternary complexes, result-
ing in its degradation. (b, d and f) Time courses representing the total concentra-
tions of Clb5, Clb3 and Clb2 as function of time are shown in red, blue and green,
respectively (for sake of clarity, Sicl time course has been omitted). Time courses
were obtained by simulating the kinetic models with the canonical parameter set
(see Table S2.1).

Notation and assumptions in the minimal cell cycle model

The starting point is our published minimal cell cycle model [10]. We consider
a system of seven species: (i) three representing the complexes that Cdk1 forms
with the three pairs of B-type cyclins, Clb5,6, Clb3,4 and Clb1,2, which we refer
to as x, y and z, and (ii) the inhibitor Sic1l, which we refer to as s, that binds and
inhibits all three Clb/Cdk1 complexes (s-z, s-y and s-z). In living cells of budding
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yeast there is a distinction between the roughly constant concentration of Cdkl1
and the varying concentration of Clb cyclins throughout cell cycle progression.
This results in varying concentrations of the Clb/Cdk1 complexes; however, this
distinction is not needed for the modeling purposes presented here.

The mathematical description of the minimal model is in terms of a system of
coupled Ordinary Differential Equations (ODEs). Specifically, the model consid-
ers: (i) basal degradation of all four species in their free form; (ii) basal synthesis
of the Clb/Cdk1 complexes; (iii) forward activation in the Clb cyclin cascade from
one Clb/Cdkl complex to another through phosphorylation of a transcription
factor; (iv) backward inhibition in the Clb cascade from one Clb/Cdkl complex
to another through the Anaphase-Promoting Complex (APC); (v) reversible for-
mation of the ternary complex formed by any of the Clb/Cdk1 complexes and
Sicl; (vi) degradation of Sicl in any of the Clb/Cdk1/Sicl ternary complexes;
and (vii) degradation of Clb cyclins in the Clb/Cdk1/Sicl ternary complexes.
We consider z, y and z to be active in the binary complexes, and inactive in the
ternary complexes with s. We also consider that degradation of Sicl can occur
when Sicl is either free or bound to Clb/Cdk1 in the Clb/Cdk1/Sicl complexes.
We refer to reference [10] and Table 52.2-52.3 for the experimental evidence of the
interactions described above.

We assume basal synthesis (v) of each Clb/Cdk1 complex to be at a constant
rate, and basal protein degradation (/) to be proportional to the current concen-
tration of a species. We further implement that activation («) of one Clb/Cdk1
complex by the previous one occurs through activation of a transcription factor,
and is thus assumed to be proportional to the activating Clb/Cdk1 complex. In-
hibition () from a Clb/Cdk1 complex to the previous one is considered to occur
through the APC, and is thus assumed to be proportional to the product of both
species involved. Complex formation (k) and dissociation (k™) are proportional
to the concentrations of the species forming the complex and to the concentration
of the complex, respectively. Complex dissociation due to Sicl or Clb degradation
from the Clb/Cdk1/Sicl ternary complexes (6 and ¢, respectively) is assumed to
be proportional to the complex concentration. In our mathematical notation, we
will use brackets to denote concentrations and the A - B notation to denote a com-
plex formed by two species A and B. In the equations, we neglect to mention
Cdkl, as it is most abundant in living cells as compared to the Clb cyclins that
activate it, thus being the limiting species.

The Barberis 2012 model

In terms of the notation introduced above, the model from [10] may be repre-
sented as follows:
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The canonical parameter set from the Barberis 2012 model

Table S1 shows the parameter notation from the original model and the transla-
tion to the notation used in this text. The parameter values are those used in the
original publication [10].

Parameter Value | Parameter Value | Parameter Value
(% (k’l) 0.1 Ay (k’B) 1 €x (/C4) 0.01
vy (k) 0.01 ., (kp) 0.1 €y (k17) 0.01
B (ke) 0.7 Yoz (KF) 0.7 kil (ko) 5

B, (ks) 0.7 |y ke) 0T |k (kis) 5
B.(110) 0.7 | e (kw) 07 | kS (kn) 5

Bs (kog) 0.001 | 6, (k5) 0.05 ky (ks) 0.5
Agy (ka) 1 5y (k18) 0.05 ]{7; (K16) 0.5
Ay (kc) 0.1 0 (k14) 0.05 kz_ (klg) 0.5

Table S2.1: Parameters of the Barberis 2012 model as originally published. The
parameter names refer to those used in this work, with the matching parameter
from the original publication in brackets. Note that some parameters might seem
to have different values than in the original publication. This is due to the fact
that, originally, the positive regulations were multiplied by basal synthesis, and
the negative regulations were multiplied by basal degradation. Here, we incorpo-
rate these multiplications into the equations. All parameters have units of min™
when we adopt the convention that concentrations are dimensionless.
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Design 1

In this work, we start from a model that builds on the Barberis 2012 model
(Fig. S2.1A) but contains more regulations in less parameters. We assume that
several parameters are equal across molecular species, i.e. all d,¢, k™, and £k~ pa-
rameters are assumed to be equal, allowing us to describe the same regulations
with less parameters. This means that we assume rates of complex formation and
dissociation, Sicl degradation from the ternary complexes and total degradation
of ternary complexes to be equal among all the three species. Of note, this pro-
cedure reduces the number of parameters from 27 as in the original model to 19,
but the model output for the default parameter set in [10] remains the same, since
these parameters were already assumed to be equal (see Table S2.1).

Recently, Fkh2 was identified as a transcription factor of CLB3 transcrip-
tion, and that Clb3 may activate Clb2 [32]. Given that CIb3 may phosphorylate
Fkh2, a positive feedback loop through Fkh2 has been envisioned in the model.
In the Barberis 2012 model, negative feedback inhibitions among the Clb/Cdk1
complexes were considered; among these, the self-inhibition of M phase cyclins.
However, in the model this regulation was only implemented for Clb2. Here,
we extend the model to additionally implement the Clb3 self-inhibition. Conse-
quently, our model has two new parameters (ayy, Vyy), increasing the total num-
ber of parameters to 21.

The Barberis 2012 model included a term representing the Cln1,2/Cdkl
phosphorylation on Sicl for its degradation, when the latter is in the
Clb/Cdk1/Sicl ternary complexes. This term was incorporated as a constant pa-
rameter, because time-varying concentrations of Cln1,2/Cdk1l were not consid-
ered. However, this leads to an issue in the units of the corresponding parameter,
which was simultaneously used to indicate the phosphorylation of Sicl mediated
by the Clb/Cdk1 complexes. For the former, § should have units of 1/time and,
for the latter, units of 1/(concentration*time). For this reason, and for simplic-
ity, we now introduce this term as a separate parameter A (increasing the total
number of parameters to 22) with units of 1/time and with the convention that
b=\

Of note, the Barberis 2012 model did not include any synthesis of Sicl, in-
stead assuming that Sicl level is high at the start of a cell cycle and decays
throughout the cell cycle, rising again during the M phase to restart the cycle.
This means that, by design, the model could not generate multiple oscillations in
time since this requires resetting of the Sicl concentration. However, in this work
we are interested to retrieve sustained oscillations in all four molecular species,
and for this the synthesis term for Sicl is required. Therefore, we added the sim-
plest possible synthesis term for Sicl in the form the of the parameter v, which
has units of concentration/time. This increases the total number of parameters to
23. With the new parameters just introduced, the set of equations describing the
model can be written as follows:
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d[;y] =kT[s)ly] — k7 [s-yl =6 ([z] + [yl + [2]) [s - y] — els-y] — A[s - 9]
o2 ot = ka2l = 6 (ol + B+ (D s —els- 2] = A2l @2)

Of note, the Barberis 2012 model does not salvage CIb3,4/Cdkl and
Clb1,2/Cdkl when Sicl is degraded in the Clb/Cdk1/Clb ternary complexes,
whereas it does recover ClIb5,6/Cdk1, as experimentally demonstrated [72]. This
can be seen in the equations from the § term occurring only for x and not for y
and z. Last, upon Clb degradation from the Clb/Cdk1/Clb ternary complexes,
Sicl is not recycled, as it can be seen from the equation for the evolution of [s],
since no terms with e occur. Biologically, this means that we assume that Sicl is
not available to function, i.e. it is inactivated due to re-localization to the nucleus.

Since we have the ability to ‘turn off’ certain interactions by setting the corre-
sponding parameters to 0, here we investigate three different scenarios for Design
1: A, B and C. For each scenario, we show a transient oscillation (vs = 0), a limit
cycle (vs # 0) and we analyze the control on the period of the oscillations.

Finding initial parameter sets and analyzing period control coefficients

COPASI [73] was used to find initial parameter sets that yielded sustained cy-
clin/Cdk oscillations. The slider functionality of COPASI allows for the manual
adjustment of one or several model parameters, and for the visualization of the
output of a given combination of parameter sets. Alternatively, limit cycles may
be found by using the Manipulate function in Mathematica or the bifurcation soft-
ware such as MATCONT [74, 75] and XPPAUT [76]. The COPASI files for designs
1A-3 are available as Supplementary Code Repository.

Once a set of parameters that generated oscillatory behavior had been identi-
fied, the control exerted by the model’s parameters on the period of the oscillation
was be analyzed. Control can be quantified by control coefficients: logarithmic
derivatives of system properties, e.g. fluxes and concentrations, with respect to
kinetic parameters. Summation laws have been derived about control coefficients
for parameters with dimension 1 \time with respect to both autonomous and
forced oscillations [77, 78]. Taking log-log derivatives of a period (or any other
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derivative of a stationary state function) is analogous to the concept of a control

coefficient for a steady state flux or concentration i.e. C] = gﬁgg;; [79, 80]. The

sensitivity analysis on limit cycles by control coefficients was conducted by us-
ing the PeTTSy toolbox in MATLAB [81]. The model equations in MATLAB were
converted in the specific format required by PeTTSy; furthermore, files containing
parameters and initial conditions were defined as specified in the PeTTSy man-
ual. With these three files (equations, parameters, initial conditions) the model
can be read by PeTTSy. The PeTTSy input files are available as part of the Sup-
plementary Code Repository. Once a model has been imported into PeTTSy, a
new parameter set may be defined that generates oscillations. PeTTSy then inte-
grates the equations and returns a time course. At this point, the user may run the
Derivatives function and will be prompted to accept or reject the solution. Accord-
ing to the PeTTSy documentation it is crucial, for accuracy reasons, to accept only
solutions with a log[condition number| < 36. We used 400 time blocks to guaran-
tee accuracy for designs 1A-3. After calculating the derivatives, the sensitivity of
the period with respect to parameter changes was analyzed.
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Figure S2.2: Time courses for Design 1A. (Top) time courses for the Clb5/Cdk1,
Clb3/Cdk1 and Clb2/Cdkl total concentrations. (Bottom-left) time courses for
total Sicl, ternary Sicl complex with Clb/Cdkl, and free Sicl. (Bottom-right)
time courses for the binary (Clb/Cdk1) and ternary (Clb/Cdk1/Sicl) complexes.
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Design 1A: No inhibition through the APC

To start with, we considered the model presented in Fig. 2 of [10] (Fig. S2.1A).
In Fig. 52.2, the evolution over one cell cycle is plotted by using the equations
introduced above, and for the parameter values specified in Table 52.1, with all
7 parameters, o, and v, set equal to 0. The top panel of Fig. S2.2 shows a tran-
sient oscillation in the total Clb/Cdk1 concentrations that exhibits their sequen-
tial rise and (near simultaneous) fall over time. Of note, waves of the total con-
centrations arise predominantly due to the concentrations of the Clb/Cdk1/Sicl
ternary complexes, although waves can be also observed for the concentration
of Clb/Cdkl complexes (Fig. S2.2 bottom-right). With regard to the parame-
ter set, cyclin degradation was considered to be of several orders of magnitude
faster when in complex with Cdk1 alone (3) as compared to degradation from
the Clb/Cdk1/Sicl ternary complexes (¢). Biologically, this translates to a small
likelihood of cyclin degradation from the ternary complexes.

This model is able to exhibit limit cycles when a shift in the parameter set
occurs. When we simply turn on the synthesis of Sicl by setting v, equal to 0.3
dampened transient oscillations occur. Sustained oscillations are found when
increasing the rate of ternary complex formation from 5 to 20 (see Fig. S52.3); the
sustained oscillation is a limit cycle with a period of roughly 113 minutes.
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Figure S2.3: Sustained oscillations in Design 1A. (Left) Time courses of the four
total species concentrations. (Right) 3D view of the limit cycle in the Clb5-Clb2-
Sicl space.

Sensitivity analysis of the period of oscillations points to a few key param-
eters controlling the period, namely: 3., €, vs, A, v;. The former three param-
eters yield positive derivatives, whereas the latter two parameters yield nega-
tive derivatives (see Fig. 52.4). Intriguingly, these parameters controlling the pe-
riod are all either basal synthesis or basal degradation rates for various species
in the model. Moreover, the parameters referring to the regulations among the
Clb/Cdk1 complexes do not control significantly the period length.
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Figure S2.4: Logarithmic period derivatives for Design 1A.

Design 1B: Regulatory inhibitions and Clb3 positive and negative feedback
loops

The Design 1B includes the Clb/Cdkl-mediated inhibition on Clb/Cdkl com-
plexes and the potential of CIb3 self-activation, as we have recently proposed
[32] (Fig. S2.1B). We also include the potential of CIb3 self-inhibition, similarly
to that identified on Clb2/Cdkl1 [82]. We assume, as we consistently do, that
self-activation and self-inhibition are proportional to the protein concentration,
in this case y. For this extended model, we set the inhibitory parameters () to
a non-zero value, and add self-activation and self-inhibition terms to the Clb3
(y) ODE, where we assume the new parameters to have the values a,, = 0.1
and y4p = 0.7, i.e. all Clb/Cdkl-mediated inhibitions have the same parame-
ter value as in the Barberis 2012 model (Table S2.1). In Fig. 52.5, the time course
for the canonical parameter is plotted for Design 1B. Of note, the peaks of total
Clb/Cdk1 concentrations appear slightly earlier as compared to Design 1A.

Activating Sic1 synthesis and increasing the Clb/Cdk1/Sicl ternary complex
formation rate, i.e. using the same parameter set as for Design 1A, we again find
sustained oscillations, now with a period of roughly 95 minutes (see Fig. S2.6).
Of note, this mirrors the anticipation of the Clb/Cdk1 waves in the transient os-
cillations by a decrease in the limit cycle period.

We repeated the sensitivity analysis on the period of the sustained oscilla-
tions (see Fig. 52.7), which show the same qualitatively results as compared to
Design 1A. Interestingly, none of the newly added inhibitory parameters (y’s) nor
o, have much control over the period of oscillations.
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Figure S2.5: Time courses for Design 1B. (Top) time courses for the total con-
centrations of the three Clb/Cdkl complexes: Clb5/Cdkl, CIb3/Cdkl and
Clb2/Cdkl. (Bottom-left) time courses for total Sicl, Sicl in complex with
Clb/Cdkl complexes, and Sicl. (Bottom-right) time courses for the binary
(Clb/Cdk1) and ternary (Clb/Cdk1/Sicl) complexes.
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Figure S2.6: Sustained oscillations in Design 1B. (Left) Limit cycle for the total
concentrations of the four species. (Right) 3D view of the limit cycle in the CIb5-
Clb2-Sic1 space.
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Figure S2.7: Logarithmic period derivatives for Design 1B
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Design 1C: Neglecting Cln1,2/Cdk1 on Sicl degradation from Clb/Cdk1/Sicl
ternary complexes

To simplify the model further, we neglect the \ parameter, i.e. A\ = 0, which was
added in the Barberis 2012 model as a way to include basal levels of Sicl degrada-
tion from the Clb/Cdk1/Sicl ternary complexes (possibly due to Cln1,2/Cdk1)
(red crosses in Fig. 52.1B). However, this parameter does not change the structure
of the model, and its effect can be compensated for by € and §. In Fig. 52.8, the
transient oscillations for the canonical parameter is plotted for Design 1C. Of note,
the peaks of total Clb/Cdk1 concentrations appear later as compared to Design
1B.
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Figure S2.8: Time courses for Design 1C. (Top) time courses for the total con-
centrations of the three Clb/Cdkl complexes: Clb5/Cdkl, CIb3/Cdkl and
Clb2/Cdkl. (Bottom-left) time courses for total Sicl, Sicl in complex with

Clb/Cdkl complexes, and Sicl. (Bottom-right) time courses for the binary
(Clb/Cdk1) and ternary (Clb/Cdk1/Sicl) complexes.

To obtain sustained oscillations in Design 1C, a number of parameters had
to be altered. Ultimately, autonomous oscillations were obtained varying the fol-
lowing parameters as compared to the limit cycle parameter set for Design 1A and
Design 1B: v = 0.18, B; = 0.003, 6 = 0.1, A = 0, ¢ = 0.005. The resulting limit
cycle is plotted in Fig. 52.9, and has a period of roughly 96 minutes.

The sensitivity analysis of the sustained oscillations is shown in Fig. S2.10.
Some changes may be observed as compared to Design 1B. There is a significant
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Figure S2.9: Sustained oscillations in Design 1C. (Left) Limit cycle for the total
concentrations of the four species. (Right) 3D view of the limit cycle in the CIb5-
Clb2-Sicl space.

increase in the absolute value of the control of most parameters (note the dif-
ference in y-axis values as compared to Fig. 52.7) but especially the control co-
efficients for v,, vs, Bz, 9§, agy and o, increase in absolute value. This may be
understood by the fact that A\ had significant control in Design 1A and Design 1B
and, in its absence, other parameters have to ‘take over’ this control. It appears
that the § parameter ‘takes over’ the control that was previously of ), the other
parameters that are changed in terms of their control. Therefore, there may be
some compensation mechanism for the absence of basal Sicl degradation from
the Clb/Cdk1/Sicl ternary complex that is not dependent on the free Clb/Cdk1

concentrations.
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Figure S2.10: Logarithmic period derivatives for Design 1C. Of note, the control
in A has switched to parameter J, and the control for v, vs, 3, and «,, has signif-
icantly increased as compared to Design 1B.

Design 2: Including Clb3/Cdk1 and Clb3/Cdk1 salvaging

Design 2 includes the salvaging of CIb3/Cdk1 and Clb2/Cdkl complexes when
Sicl is degraded from the Clb/Cdk1/Sicl ternary complexes, as previously
demonstrated for Clb5/Cdk1 [72] (Fig. S2.1C) The updated equations are as fol-
lows:

% =0y — Bo[#] — Val2][y] — Vaal2][2] — KF[s][2] + k7 [s - 2]
+ 0 ([z] + [yl + [2]) [s - 2]
% = vy — Byly] + awylz] + ayyly] — vayl2] Y] — 1y (]2 — kT [s][y] + & [s - 4]

+0 ([2] + [yl + [2]) [s - ]

% =0, = Ba[2] + zz[2] + e [z] + ayaly] — 2zl = KT [s][2] + KT [s - 2]
+ 0 ([2] + [y] + [2]) [s - 2]
M vy Buls " () + )+ D 4 b (] (s 9] s 2)
% = Kt [s][a] =k [s - 2] = 5 (2] + [y) + [2]) [ - @] — e[s - ]
% = kT[s)[y] —k [s-yl — 6 ([z] + [y] + [z]) [s - ] — €[5 - v]
dfs - 2]

i KT [s)le] — k7 [s - 2] = 0 ([o] + [y] + [2]) [s - 2] —els - 2]. (2.3)
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Of note, positive J terms in the ODEs for y and z have been added. The transient
oscillations for the canonical parameter set for Design 2 are shown in Fig. 52.11

The differences with the transient oscillations observed for Design 1C are negligi-
ble.

2 T T T T T
_ Clo5.-
315 f Clb3, |
L Clb2
- T
RS
g 1 1
c
[0
[&]
S 05| .
§o
0 T | | | |
0 10 20 30 40 50 60
Time (min)
N~ T =
Sicl, Sic1 - Clbs
SAN — — Sict-Cb532] | E Siet - Cibs
;i 04 3, E 1571 Sict - Clb2
c 3l e — — Clbs
il o — — CIb3
© s 1 — — Chb2 1
5e : ~
[&] [&]
S 505 1
O1r o
=== =
0 : : : : : 0 =7 T===
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time (min) Time (min)

Figure S2.11: Time courses for Design 2. (Top) time courses for the total concentra-
tions of the three Clb/Cdk1 complexes: Clb5/Cdk1, Clb3/Cdk1l and Clb2/Cdk1.
(Bottom-left) time courses for total Sicl, Sicl in complex with Clb/Cdkl com-
plexes, and Sicl. (Bottom-right) time courses for the binary (Clb/Cdkl) and
ternary (Clb/Cdk1/Sicl) complexes.

To obtain sustained oscillations in Design 2, a number of parameters had to be
altered. Ultimately, autonomous oscillations were obtained varying the following
parameters as compared to the limit cycle parameter set for Design 1A and Design
1B: v, = 0.09, vg = 0.2, B, = 0.005, § = 0.05. The resulting limit cycle is plotted in
Fig. 52.12, and has a period of roughly 182 minutes.

The sensitivity analysis of the sustained oscillations is shown in Fig. 52.13.
The results are generally similar to those obtained for Design 1C.
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Figure S$2.12: Sustained oscillations in Design 2. (Left) Limit cycle for the total
concentrations of the four species. (Right) 3D view of the limit cycle in the CIb5-
Clb2-Sicl space.
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Figure S2.13: Logarithmic period derivatives for Design 2. Of note, despite some
numeric changes, the general direction and relative size of the derivatives are
similar as compared to the analysis of Design 1C.

Design 3: The quasi-steady-state (QSS) model

Design 3 refers to a model including a quasi-steady-state approximation on the
ternary complex formation between Clb/Cdk1l complexes and Sic1 (Fig. S2.1C).
Although this assumption involves removal of one parameter, the mathematical
description of the model is significantly altered.
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Equations for total concentrations

Starting from Design 2, the system of equations was re-written in terms of the
total concentrations of the four species considered. The total concentration of the
Clb/Cdk1 complexes, i.e. for Clb5: zp = [z] + [s - ] and analogous formulas yr

and z7, and Sicl, i.e. [s7] = [s] + [s - x] + [s - y] + [s - 2], evolve according to the
following:
dlz
1]y~ Bale] — yelely] — veclallz] — els
dlyr]

Tat v Byly] + vy 2] + gy [y] = 72y [2[Y] — Yy [W]* — €[s - 4]

% =v, — B [Z] + azz[z] + Oég:z[iﬁ] + Oéyz[y] — ’yzz[z]Q — E[S . Z]
% =vs = Bals] = (e +0([z] + [yl + [z]) ([s- 2] + [s-y) + [s - 2]) . (24)

The quasi-steady-state approximation

We assume that Clb/Cdk1/Sicl ternary complex formation and/or dissociation
(k™ and k7) happen on a faster time-scale as compared to the other processes
considered in the model. This implies that the ratio of active and ternary inactive
complexes is at steady-state for a given Sicl concentration. If we assume that
ternary complex degradation (4, €) is relatively small, the equilibrium condition
implies the following;:

bofo- 5] = ki [a]ls]

[z - s] = Kalz][s], (2.5)
with K4 = Z—J_r = KLD, where K4 and K are the association and dissociation
constants, respectively. Similar equations hold for y and z. This implies the fol-
lowing:

[xp] = [z - 5] + [x]
= [2] (1 + Kals])
_ I
=7 (2.6)
where the variable f[s] is introduced as follows:
1
D = T @7)

Of note, f is a quantity that varies between 0 and 1. Since [z] = f - 27, f
can be interpreted as the fraction of Clb/Cdk1 complex which is active, i.e. not in
complex with Sicl, and that this fraction depends on the free Sicl concentration
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[s]. Therefore, f[s] is also time-dependent since [s] is time-dependent. Kp =
1/K 4 represents the concentration [s] for which f[s] = 1/2. Of note, since x =
f - lzr]) wehave that [x - s] = (1 — f) - [x].

The quasi-steady-state model

The quasi-steady-state assumption was incorporated in the expression of the total
concentrations. The assumption can be considered for each Clb/Cdk1 species
z, y or z independently. The introduced variable f[s] depends on K 4, but K4
depends only on k* and k~, which are the same for z, y and z. Hence, f([s]
applies to all three Clb/Cdk1 complexes.

The equation for f has to be supplemented by an equation specifying the
free Sicl concentration [s] at any moment in time. From the mass-balance for s
we derive that:

[sr] =[s] +[s-a] +[s-y] +[s- 2]
= [s] (1 + Ka ([2] + [y] + [2])

= o) (1 ry el el ey 29

Multiplying out the fraction, we get a quadratic equation in [s], as follows:

[s7] (1 + [s]Ka) = [s] (1 + [s]Ka) + Ka ([zr] + [yr] + [27]))

o=bF+(§;+wﬂ+wﬂ+pﬂ—bﬂ)m—§§. 29)

We find an expression for [s] by solving quadratic equation and taking the
positive root, as follows:

o= — =5+ [or] + lyr] + [er] — [s7]
2
+J<%+Mﬂ+%quw1bﬂ>+%%_ 2.10)

Incorporating the quasi-steady-state assumption in the system for the total
concentrations is achieved by writing down the equations for the total concen-
trations of the three Clb/Cdk1 species and Sicl and replacing every occurrence
of [z] with f[xr]| and [s-z| with (1 — f)[xr]. This is done similarly for y and z. The
complete QSS model is defined by a system of four first-order non-linear ODEs
for the total concentrations of the species together with the equations for f and s.
For clarity and brevity of the equations, the expressions for [s] and f are written
separately, but they are to be simply substituted into the ODEs. In summary:
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B KLA + (7] + [yr] + [21] — [s7]

[s] =

2
e ler] + lyr) + ler) — [s7)\ . [sg)
+ i + 2l
1
f B 1+ [S]KA
d[gtﬂ = vy — Buflzr] — (1 — flrr] — Vyu 2 l2r][yr) — Vou F227][27]
d[fjf] = vy — By flyr] — €1 — H)yr] + Qwy flrr] + gy flyr] — Yy f2yr)?
- %ny [yr][2T]
d[;tT] = v, — B.flzr) — €(1 — 27| + awz flor] + ay. flyr] + s flo7)
- 'YzzfQ[ZT]z
d[;;r] = vy — Bs[s] — (e +6f ([xe] + [we] + [2]) (1 = ) ([zr] + [yr] + [27]) -

(2.11)

The concentrations of the binary (Clb/Cdk1) and ternary (Clb/Cdk1/Sic1)
complexes can be deduced by multiplying the total concentrations by f and 1— f,
respectively.

Numerical validation of the quasi-steady-state approximation

As a preliminary theoretical validation of our modeling approach, we explore
the discrepancy between Design 2 equations and the quasi-steady-state assump-
tion in Design 3. If this assumption is satisfied, by high parameter values for
Clb/Cdk1/Sicl ternary complex formation and/or dissociation in Design 2, we
would expect similar results between the two models. Conversely, if this assump-
tion breaks down and these parameters become small, the two models should
disagree in their behavior.

To test this assumption, we consider the canonical parameter set and simu-
late both models. We map the K 4 parameter in the QSS model to the £ and &k~
parameters in the standard model through the rule k&, = K4k_. In the canon-
ical parameter set K4 = 10. While keeping K 4 constant (i.e. equal to 10), we
can vary either k* or k= and keep track of the model behavior. In Fig. S2.14, the
discrepancy between the behavior of both models is shown, measured in terms

of the Average Relative Difference, i.e. ARD = Fopecies. e Steps You D |%|

for the canonical parameter set but at different values for k. and k_ at constant
ratio K 4, where x indicates the total concentrations of each of the four species
(Sicl, CIb5, CIb3, CIb2) at time ¢ in Design 2, and x* indicates the same in Design
3. t indicates the time points at which the ODE solver returns the solution. As
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shown in Fig. S2.14, for high K 4 values the QSS model numerically returns the
same behavior as Design 2. Therefore, we expect all results to be roughly similar
for both Design 2 and Design 3.
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Figure S2.14: Analysis of the validity of the QSS assumption in the parameter
space. The sum of squared errors (SSE) is measured between the model with (De-
sign 3) and without (Design 2) the assumption. The k£~ parameter is varied along
the continuous line, whereas the k™ parameter is varied along the dashed line,
always for constant K 4. The two models exhibit a similar behavior for higher
values of kT and k.

Transient oscillations for Design 3 are plotted in Fig. 52.15. To obtain sus-
tained oscillations in Design 3, we used the same parameter set as for Design 2.
The resulting limit cycle is plotted in Fig. S2.16, and has a period of roughly 226
minutes.

The sensitivity analysis of the sustained oscillations is shown in Fig. 52.17.
The results are generally similar to those obtained for Design 2 and Design 1C.

Summary of autonomous oscillations for designs 1A-3

All five models corresponding to designs 1A-3 (illustrated in Fig. S2.1) are able to
yield sustained oscillations in the form of limit cycles. For each design, initial pa-
rameter sets resulting in limit cycles were identified through a manual adjustment
of one or several model parameters through the slider functionality in COPASI
[73], starting from the canonical parameter set [10] (Table S2.1).

We quantified the control on the period of the model parameters (Fig. S2.4,
52.7,52.10, 52.13 and 52.17). The analysis of our models indicates that this control
is shared among several parameters, as it has been observed in other biochemical
oscillatory systems for which the function of the oscillation is unclear [83]. This
is the first time that a distributed control is found for an oscillation as functional
as an autonomous cell cycle. The results recover the fact that the sum of the con-
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Figure S2.15: Time courses for Design 3. (Top-left) time courses for the to-
tal concentrations of the three Clb/Cdkl complexes: Clb5/Cdk1l, Clb3/Cdkl
and Clb2/Cdkl. (Top-tight) Plot of the function f over time. (Bottom-
left) time courses for total Sicl, Sicl in complex with Clb/Cdkl complexes,
and Sicl. (Bottom-right) time courses for the binary (Clb/Cdkl) and ternary
(Clb/Cdk1/Sicl) complexes.

trol coefficients on the period of oscillations for all the parameters with dimen-
sion 1/time must equal -1 [77]. Control coefficients of ()1 indicate that the con-
trolled property is (inversely) proportional to the controlling parameter. Among
the parameters that exerted a more considerable control in Design 3 (i.e. an ab-
solute value of the control coefficient > 2), some increased (vs, 35, 8y, K4, €) and
some decreased (negative control coefficient; v, azy, oy, d) the period of oscilla-
tions. The latter correspond to the parameters that activate cell cycle progression
by decreasing the period. Indeed, they stimulate the formation of Clb5/Cdkl,
Clb3/Cdk1, CIb2/Cdkl and the degradation of Sicl, respectively. Conversely,
activation of the former should inhibit cell cycle progression, by stimulating Sicl
formation, dissociation of Clb5/Cdk1 and CIb3/Cdkl and by favoring the for-
mation and degradation of the ternary Clb/Cdk1/Sicl complex. The control that
these parameters exhibit is conserved between designs 1C, 2 and 3 (Fig. S2.10,
Fig. 52.13 and Fig. S2.17, respectively). Strikingly, the CIb3 PFL (associated to the
parameter «,,), the Clb3 NFL (v,,) — as well as the Clb2 PFL («..) and the Clb2
NFL (v,,) — and the four known Clb-regulated inhibitory regulations mediated
by both the Clb/Cdk1 complexes and Anaphase-Promoting Complex, APC (see
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Figure S2.16: Sustained oscillations in Design 3. (Left) Limit cycle for the total

concentrations of the four species. (Right) 3D view of the limit cycle in the CIb5-
Clb2-Sicl space.
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Figure S2.17: Logarithmic period derivatives for Design 3. Of note, despite some
numeric changes, the general direction and relative size of the derivatives are
similar as compared to the analysis of Design 2.

Section 2.4) exerted almost no control over the period of oscillations.
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Designs 4 through 9: Inhibitory regulations that may boost oscil-
latory potential

Below we briefly highlight the changes in the equations for Design 4 through
Design 9 as compared to Design 3.

Design 4

Design 4 entails inhibition of Clb5 synthesis by Clb2/Cdk1. The SBF transcription
factor, formed by Swi4 and Swi6, promotes transcription of the G1 phase cyclin
genes CLN1 and CLN2; the MBF transcription factor, formed by Mbp1 and Swi6,
promotes transcription of the S phase cyclin genes CLB5 and CLB6. Genetic ev-
idence indicates that CLB2 and SWI6 are functionally related [84], and Clb2 has
been shown to interact physically with Swi4, thus repressing transcription of the
G1 cyclins [44]. Inhibition of the G1 cyclins translates to an effective inhibition
of the CIb5/Cdkl activity, due to the lack of the PFL between Cln2/Cdkl and
SBF/MBF [45] and to the lifted inhibition of Sicl by CIn1,2/Cdk1 [46].
The altered ODE for Clb5 (x) is now written as follows:

d[g - 7 ff p— Baflrr] = (L= Plor] = e FPlorllyr] = veaf? [or][2r] (2.12)

2T
K.x

This structural change in the equations with the inhibitory term is represen-
tative for all subsequent designs. Of note, v,, which used to represent the synthe-
sis of CIb5, is now the V,,,4, of the synthesis, which is attained when Clb2 is not
present.

Design 5

Design 5 entails inhibition of Sicl synthesis by Clb2/Cdk1 through the SWI5
transcription factor. During the G2 phase, Cdkl phosphorylates specific serine
residues of Swib near the NLS (Nuclear Localization Sequence) at its C-terminal,
in order to keep Swib sequestered in the cytoplasm [47], effectively inhibiting
SIC1 transcription. The Cdk-dependent phosphorylation reaction may be re-
versed by the phosphatase Cdc14 [85], which thus contributes to SICI transcrip-
tion. Design 5 describes the inhibition of SICI transcription mediated by the
Clb/Cdk1 activity, reflecting the likely scenario where the most abundant Cdk1
activity is due to Clb2/Cdk1.
The altered ODE for Sicl (s) is now written as follows:

d[if . HUT;_T] — Buls] — (e + 8f ([ea] + lya] + [2) (1 = £) ([ex] + lyr] + [e2])
) (2.13)
Design 6

Design 6 entails inhibition of Sicl synthesis by Clb2/Cdkl, Clb3/Cdkl and
Clb5/Cdk1 through the SWI5 transcription factor. Design 6 describes the same
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mechanism detailed for Design 5 but mediated by the three Clb/Cdk1 complexes:

Clb2/Cdk1, CIb3/Cdk1 and CIb5/Cdk1.
The altered ODE for Sicl (s) is now written as follows:

d[sT] Vg

at 1_,_% — Bsls]
— (e+6f ([we] + [ye] + [2))) (1 = ) ([w1] + [yr] + [21]) (2.14)
Design 7

Design 7 entails inhibition of Clb2 and Clb3 syntheses by Sicl. A recent study that
integrated experimentation and computer modeling showed that Sic1 oscillations
rescue viability of cells with low levels of mitotic Clb cyclins [48]. However, the
molecular mechanism(s) at the basis of this observation at the moment remains
obscure. Here we propose that inhibition of Clb2 and Clb3 synthesis by Sicl may
rationalize this observation; both CLB2 and CLB3 genes appear to be regulated
by a similar transcriptional mechanism [32], thus we have incorporated for both
the same Sicl-mediated inhibitory regulation.

The altered ODEs for Clb3/Cdkl1 (y) and Clb2/Cdk1 (z) are now written as
follows:

Wl - % g flyn] — (1 — flyr] + auy flar] + gy flor)
dt 14 Ll
- ’)/yny [yT]Q
d[ZT] Uz

dt [sr] B.fler] — €(1 = f)ler] + au flor] + ay. flyr] + az. fler]
14 Koys

— Yor f2[2r)? (2.15)

Of note, Design 7 is slightly different from Design 4, Design 5 and Design 6,
as the inhibitory term is assumed to affect basal synthesis while there are other
synthesis terms in the equations that are not affected.
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Design 8

Design 8 entails inhibition of CIb2, Clb3 and Clb5 syntheses by Sicl. The altered
ODE:s for Clb5/Cdk1, Clb3/Cdk1 and Clb2/Cdk1 are now written as follows:

d[;;f] 1 +U1T] = Bufler] = e(1 = fler] = vye florllyr]
Kezy-
— Yoo 2 [27][27)
d[gtT] = Uy[ST] - Byf[yT] - ‘5(1 - f)[yT] + Oéxyf[l‘T] + ayyf[yT]
1+ Koys
- 'Vyny [?JT]Q
— Yy 2 [yr] 2]
d[;tT] UTST] - /Bzf[ZT] o 6(1 - f)[ZT] + O‘wzf[xT] + O‘yzf[yT] + Oézzf[zT]
1+ Kszyz
- ’7zzf2 [ZT]2
(2.16)
Design 9

Design 9 entails inhibition of Sicl synthesis by Sic1 through the SWI5 transcription
factor. This regulation does not have any experimental support; however, we
aimed to test all possible Sicl-dependent negative regulations.

The altered ODE for Sicl is now written as follows:

Al lf}(_ﬂ — Buls] — (e + 8f ([ + lye) + [4) (1 = £) (fwr] + [yr] + [21])

(2.17)

System Design Space (SDS) methodology

In this work we make an extensive use of the System Design Space (SDS) method-
ology developed by Savageau and collaborators [25-27, 62] and the associated
Python toolbox [31]. The cited papers should be seen as required reading to re-
produce the analyses presented in our work. We especially point the reader to
the Supplementary Information accompanying [27], which contains an excellent
introduction to the terminology with clear examples. The SDS methodology has
been proposed to overcome the analytical difficulty to find limit cycles. In 1900,
David Hilbert posed his 16" problem, which partially concerns the finding of
the number of limit cycles of a polynomial differential equation in the plane [28].
The Bendixson-Dulac theorem and the Poincaré-Bendixson theorem predict the
absence or existence, respectively, of limit cycles of two-dimensional nonlinear
dynamical systems. However, these theorems do not help to actually to find the
parameter sets that generate limit cycles.
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The SDS methodology has grown out of the Biochemical Systems Theory
(BST), in which every process (generalized mass-action reaction [86] is formu-
lated in a simplified way as a product of power-law functions [87]. A trade-off
exists between (i) the accuracy by which system’s complexity is modeled and (ii)
the computational cost to analyze a model and the complexity of its results. The
SDS methodology starts from a system of ordinary differential equations (ODEs),
described by using generalized mass-action (GMA) kinetics [87]. First, the set of
all combinatorically possible combinations of single dominant positive and nega-
tive terms in each ODE is generated. The reduction to dominant processes trans-
forms the ODE system into an S-system. S-systems can capture Saturable and
Synergistic (thus the capital S) properties of a biochemical system [88] and is then
referred to as a phenotype that can be used to approximate the full GMA model
[25]. In an S-system, for a particular phenotype, every ODE consists of a single
dominant positive term and a single dominant negative term. For a given set
of parameters and concentrations there exists a single dominant positive term,
i.e. largest, and a single dominant negative term in each differential equation.
The dominance of certain positive and negative terms gives rise to dominance
conditions, i.e. inequalities stating that the dominant positive (negative) term
is larger than the other positive terms in a specific ODE. Altogether, the domi-
nance conditions form a set of inequalities that are either inconsistent, i.e. there
is no set of parameters and concentrations that satisfies them all, or consistent.
When reducing the mathematical description of the phenotypes to these dom-
inant processes, a biochemical system becomes mathematically tractable, and a
consistent set of dominance conditions defines boundaries within the parame-
ter space and (reaction) state space within which the dominance conditions, and
therefore the phenotype, are valid [27, 88]. In this way, a phenotype may be
viewed as a bounded area within the parameter and state space. Subsequently,
by transforming the equations to logarithmic coordinates, the S-system becomes
linear, and an analytical solution for the steady states may be obtained [25]. In
addition to this analytical solution, properties such as the stability of steady states
may be determined. This is particularly relevant for the identification of limit cy-
cles, since Hopf bifurcations that give rise to limit cycles occur when a pair of
complex conjugate eigenvalues crosses the imaginary axis. Consequently, a fixed
point (steady state in the mathematical term) with two complex conjugate eigen-
values with positive real parts is a necessary condition for the occurrence of limit
cycles after undergoing a Hopf bifurcation. Therefore, by using the SDS method-
ology, phenotypes with unstable steady states that have two complex conjugate
eigenvalues with positive real parts may suggest bounded areas of the parameter
space that might generate limit cycles, as highlighted previously [27]. This pro-
cedure greatly reduces the area of the parameter space to be sampled, and allows
for the exploration of relatively small areas that might otherwise be overlooked.

SDS methodology and GMA casting application to Design 7

We start here by deriving the 11 different model designs that we considered in
our work. For designs 1A, 1B, 1C, 2 and 3, we show (i) transient oscillations
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using a canonical parameter set (see Section 2.4, Table S2.1), an initial parameter
set yielding limit cycles, and (ii) a sensitivity analysis for all parameters on the
period of oscillations. Design 4 through Design 9 develop on Design 3, and for
these we highlight the changes that occur in the equations.

To implement any design that we considered in our work such that the mod-
els work with the System Design Space Toolbox, these need to be translated into
their GMA (Generalized Mass Action) form. In the following, we use Design 7
to illustrate the translation from the Ordinary Differential Equations (ODEs) into
the Generalized Mass-Action (GMA) form. In the GMA form, all equations must
consist of sums of products of parameters and concentrations that may be raised
to a power.

For Design 7, the ODEs are written as follows:

d[ZT] = vy — Buflrr] — (1 — Hlrr] — Yyu F2lor][yr] — Veu f227][27)
d[gf] = ~ Al lor] = el = Hlyr] + ey fler] + agy flur] =0 ]
1+ Kogs
— Yy 2 [yr] 2]
dlzr] .
dtT N 1 + ][(STT;]Z - BZf[ZT] o 6(1 o f)[ZT] + Oéa;zf[l'T] + any[yT] + azzf[ZT]
- ’YzzfQ[ZTP
d[;tT] = v, — Ba[s] — (e +6f ([xe] + [ye] + [2)) (1 = £) ([xr] + [yr] + [27)) -
1
f([s]) = T+ 51K
&5 e+ lyr] + [er] = [s7]
[s] = — 5
R o I 77 R P B P N
+ \l ( 5 ) o (2.18)

For the GMA form, we need to get rid of any fractions, i.e. in the equations
for f and s, and we need to expand brackets, i.e. in the equations for z, y, z and
s. For the (1 — f) terms, we introduce a new variable fj,,; for the [z7] + [yr] + [27]
terms, we introduce a new variable Clbr. In the equations for f and sgee, We
introduce several auxiliary variables to satisfty the GMA form. Ultimately, the
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GMA form is written as follows:

d[;?] = vy — Bof[2r] — €finv[rr] — Wy F2[27][yr] — V2o f2 27 [27]

% = vy auxz " — By Flyr) — €finolyr) + Quy flrr] + ayy Flyr] — Yoy F2lyr)?
- %ny lyr][z1]

d[gf | = v = Befler] — efinsler] + o fler] + g lyr] + sl
— Yz f2lor)?

d[;f] — 0y — Bu[8free] — (€ + 6 fCLBr) finoCLBy

fdenom = 1+ [s]K 4

fino=1—f
CLBr = [z7] + [yr] + [27]
5)= =K' + 5+ [sr] — SCLBr + aux]
1

aux; = [sp|K ' — Zaux%

auxy = K ;' — [s] + CLBr
auxs = 1+ [s7] K} (2.19)

sYyz

In Python code that is readable by the System Design Space Toolbox, the
equations are written as follows:

Eq = [

'k, = v.x - b xx fxx - g_yx x £7°2 x x xy - g_zx x £7°2 x x x z
- e *« f_inv * x’,

"y. = v_y x aux3"(-1.0) - by * f x vy + a_xy x f » x + a_yy » f %
Yy — g_yy * £7°2 x y*"2 - g_zy * £7°2 x z x y — e x f_inv *x y’,

"z, = v_z x aux3™(-1.0) - b_z «» £ x z + a_xz x £ » x + a_yz » £ *
y +azz x £ x z - g_zz « £°2 x z"2 - e x f_inv x z’,

"'s. = v_s — b_s x s_free - e » f_inv * clbT - d * f_inv x clbT =
f « clbT’,

's _free = —(1/2.0)*K_A"(-1.0) + (1/2.0)*s — (1/2.0)*clbT + auxl
~(1/2.0)",

'f inv =1 - f7,

"f = f_denom” (-1.0)",

"f denom = (l+s_freexK_A)',

"auxl = sxK_A"(-1.0) + (1/4.0)~*aux2"2.0’,

Taux2 = K_A"(-1.0) - s + clbT’,

"clbT = xt+yt+z’,

Taux3 = 1 + s*xK_syz™(-1.0)"]
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Interaction Symbol | References Notes
Fast complex formation is in-
Sicl +» CIb5,32 | kt/— [10] corporated in Design 3-9 (Mart
Loog, personal communication)
Clb5 — CIb3 Qzy [32], [33, 89-91]
Clb5 — CIb2 Q2 [93;" 89911, [32, 92,
Clb3 — CIb3 Qyy [32], [32]"
Clb3 — CIb2 Quyz [32,92,93], [32]*
Clb2 — CIb2 Qs [93;’ 89911, 132, 92,
CIb2 - CIb2 Yy [94], [82] Absent in Design 1A
Absent in Design 1A. We hy-
CIb2 4 CIb3 Yy [10], [94], pothesize that CIb3 is targeted
for degradation by APC-Cdc20
CIb2 -4 CIb5 Ve [94], [95, 96] Absent in Design 1
Absent in Design 1A. We hy-
pothesize that CIb3 may acti-
Clb3 4 CIb3 Yoy [10] vate APC-Cdc20. We hypoth-
esize that Clb3 is targeted for
degradation by APC-Cdc20
Absent in Design 1A. We hy-
CIb3 - CIb5 Yy [10], [95, 96] pothesize that Clb3 may activate
APC-Cdc20
Clb5,3,2 —
Sicl-Cb332 | ° 146, 97]
Clb2 4 Clb5 K., [44] Present only in Design 4
ClIb2 H Sicl K. [47] Present only in Design 5-6
Present only in Design 6. We hy-
. othesize that Clb3/Cdkl and
CIb3,545icl | Kes - ClbS/Cdkl may inhibit SICI
transcription
Present only in Design 7-8. We
Sicl 4ClIb2,3 Ky [48] hypothesize that Sicl may in-
hibit CLB2\CLB3 transcription
Present only in Design 8. We hy-
Sicl 4 ClIb5 Kowy- [48] pothesize that Sicl may inhibit
CLBS transcription
Present only in Design 9. We hy-
Sicl 1 Sicl K - pothesize that Sicl may inhibit
SIC1 transcription

Table S2.2: Overview of the experimental evidence for interactions and regula-
tions in model designs 1A-9, along with the associated parameter symbol and
relevant notes. The symbol -> indicates activations, 4 indicates inhibitions, and
< indicates reversible complex formation. For clarity, the relevant references are
grouped based on the described interaction/regulation, see Table S2.3.
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Experimental evidence of the interactions and regulations in de-
signs 1-9

The known experimental evidence for the regulations across all designs used in
this work are listed in Table S2.2 and 52.3.

Reference Summary of results used in Table S2.2
[10] Sicl interacts and co-exists in time with Clb5/Cdk1, Clb3/Cdkl and
Clb2/Cdkl.
[32] Fkh2 regulates CLB3 expression.
[32]* Clb3,4/Cdk1 play a role in Fkh2 phosphorylation.
Clb5/Cdk1 and Clb2/Cdk1 interact with, and phosphorylate, Fkh2 to
[33, 89-91] i
control Clb1,2 accumulation.
[32,92, 93] CLB1,2 transcription is regulated by Fkh2 during the G2/M phase.
[94] Phosphorylation of Cdc20 by Clb2/Cdk1 activates APC-Cdc20.
[82] APC-Cdc20 degrades mitotic cyclins.
[95, 96] APC-Cdc20 targets CIb5 for degradation.
Clbs/Cdk1 phosphorylate Sicl, resulting in the recognition of Sicl by
[46, 97] . . .
the protein degradation machinery.
Clb2/Cdk1 interacts with Swi4 and represses G1 cyclins transcription.
[44] This regulation translates to an inhibition of Clb5/Cdk1, due to the
lack of the PFL between CIn2/Cdkl and SBF/MBF [45] and to the
lifted inhibition of Sicl by CIn1,2/Cdk1 [46, 97].
[47] Inhibition of SIC1 transcription is mediated by Clb2/Cdk1.
(48] Hypothetical interaction to rationalize the observation that Sicl oscil-
lations rescue viability of cells with low levels of mitotic cyclins (Clb2).

Table S2.3: Summary of the results represented by the grouped references from
Table S2.2.

Parameter correlation analysis in limit cycles

Within the set of identified limit cycles for each model design, we analyzed
whether there were correlations present between the parameters as measured by
the Pearson correlation coefficient. Figures summarizing the correlation coeffi-
cients as heatmaps between all model parameters across the seven model designs
that returned limit cycles are available through the Supplementary Code Repos-
itory. In Table S2.4, the set of combinations of two parameters that were highly
correlated (absolute value of correlation coefficient > 0.5) in three or more of the
designs are summarized.

Spread of limit cycles across the parameter space

To indicate the unlikeliness of the connectivity between the identified parameter
sets that result in limit cycles, boxplots of the parameter values in these parameter
sets for designs 3-9 were generated (Fig. 52.18). For all designs most parameter
values cover multiple orders of magnitude. We do note that the logarithmic scales
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Parameter #1 Parameter #2 | Designs # Pos. correlations  # Neg. correlations
Qryy Yay 3,4,56,7,9 6 0
Oizy Qg 3,5,8,9 4 0
Vs Vg 3,6,7,8 4 0
Ka Vs 3,4,6,8 0 4
Ve Vg 6,7,8,9 4 0
Oy By 3,567 4 0
a.’,CZ /BZ 3/ 5/ 7 3 0
B € 3,7,9 0 3

Table S2.4: Combinations of two parameters that were highly correlated (abso-
lute value of correlation coefficient > 0.5) in three or more of the model designs.

on the lower end, e.g. -3 through -9, should not be given too much weight, since
this may simply indicate that the parameter value is so small that would not affect
the model output. However, even discounting the lower range, the parameter
values in the limit cycles still cover a wide range of values.
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Limit cycles in designs 3-9 differ in period and amplitude

Fig. 52.19 and S2.19 display the periods and amplitudes (defined as the maximum
ratio across the four species of the minimum and maximum of the oscillation)
retrieved for the limit cycles of Design 1-9 respectively.
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Figure S2.18: Boxplots of the parameter values in the limit cycles identified for
designs 3-9 on log10 scale. The entire allowable range in our parameter sampling
[103,1077] is shown. The box edges indicate the 25th and 75th percentile respec-
tively and the black line within the box indicates the median of the parameter
values. The actually sampled parameter values are indicates by grey dots.
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Figure 52.19: Boxplots of the logarithm of the period of the limit cycles identified
for designs 3-9. The periods roughly cover the interval [10, 1000] minutes.
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Figure S2.20: Boxplots of the amplitude defined as the maximum across the four
species of the minimum/maximum ratio of the limit cycle time courses designs
3-9. We required each limit cycle to have a ratio < 0.9. A ratio of 0 indicates that
the concentration of each species reaches zero during each cell cycle.
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“A key aim of postgenomic biomedical research is to systematically catalogue
all molecules and their interactions within a living cell. There is a clear need to
understand how these molecules and the interactions between them determine
the function of this enormously complex machinery, both in isolation and when
surrounded by other cells.”

— Albert-Léaszl6 Barabasi & Zoltan N. Oltvai [1]

Abstract

The understanding of the multi-scale nature of molecular networks represents
a major challenge. For example, regulation of a timely cell cycle must be coor-
dinated with growth, during which changes in metabolism occur, and integrate
information from the extracellular environment, e.g. signal transduction. Fork-
head transcription factors are evolutionarily conserved among eukaryotes, and
may coordinate a timely cell cycle progression in budding yeast. Specifically,
Fkhl and Fkh2 are expressed during a lengthy window of the cell cycle, thus
are potentially able to function as hubs in the multi-scale cellular environment
that interlock various biochemical networks. Here we report on a novel ChIP-exo
dataset for Fkh1 and Fkh2 in both exponential and stationary phases, which is
analyzed using novel and existing software tools. Our analysis confirms known
Forkhead targets from available ChIP-chip studies and highlights novel ones in-
volved in the cell cycle, metabolism and signal transduction. Target genes are
analyzed with respect to their function, temporal expression during the cell cy-
cle, correlation with Fkh1 and Fkh2 as well as signaling and metabolic pathways
they occur in. Furthermore, differences in targets between Fkhl and Fkh2 are
presented. Our work highlights Forkhead transcription factors as hubs that inte-
grate multi-scale networks to achieve proper timing of cell division in budding
yeast.

3.1 Introduction

Biological systems exploit their functions across space and time, and their ro-
bustness results from the coherent integration of functionally diverse elements
(e.g., molecules, modules) that interact selectively and nonlinearly [2]. Thus, the
cross-talk between modules representing cellular layers of regulation (e.g., gene
regulation, cell cycle, metabolism, signal transduction) is crucial to achieve sys-
tem’s functions. In this context, identification of elements with high connectivity
(hubs) bridging multiple spatial, temporal and functional scales within cellular
networks is an important challenge in Systems Biology. This also holds for the
generation of multi-scale models with the aim of understanding how a function
emerges from a network of interactions [3].

Transcription factors are pivotal in gene regulation, by switching on or off en-
tire molecular pathways, thus modulating their activity or, more subtly, affecting
the timing and extent of their activation. Among these regulators, Forkhead (Fkh)
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transcription factors (Forkhead Box (FOX) in mammals) are highly conserved
across eukaryotes, and have garnered interest because of their involvement in
multiple cellular pathways that, when dysregulated, may lead to development of
pathologies such as neurodegeneration, cancer, and aging [4-7].

The homologues of the FOX proteins in budding yeast, Fkh1 and Fkh2, play
an important role as regulators of the CLB2-cluster, i.e. a set of genes transcrip-
tionally regulated after CLB2 activation [8]. This set consists of 33 genes whose
transcription peaks in late G2/early M phase of the cell cycle [8]. Fkh2 promotes
activation of the CLB2 promoter, in complex with the Mcm1 scaffold protein and
the co-activator Ndd1, leading to cell division [9-12]. Fkhl function overlaps
with that of Fkh2, but it binds less efficiently to the CLB2 promoter and represses
CLB2 transcription [13-15].

We have recently demonstrated that Fkh2 synchronizes the temporal expres-
sion of mitotic CLB genes by connecting the cyclins CLB5, CLB3 and CLB2 in a
linear cascade, and ensuring their timely activation [16]. We also showed, as have
other [17], an Ndd1/Fkh interaction, but the function of the Ndd1/Fkh complex
is currently not understood. Fkh1 is expressed during S and G2 phases, and its
transcript levels peak in the S phase, whereas Fkh2 is expressed from G1 until the
M phase, and its transcript levels peak during the G1(P) (pre-replicative G1) and
S phase [18, 19]. This relatively lengthy window of expression, in particular for
Fkh2, may allow the Fkh'’s to interact with a diverse set of temporally separated
cellular pathways.

We have also found a possible pathway for an interplay between metabolism
and cell cycle, with the NAD'-dependent histone deacetylases Sir2 modulating
the Fkh-dependent regulation of target genes [20]. Sir2 associates with Fkh in
the G1 and M phases, where it inhibits activation of CLB2 through Fkh-mediated
binding to the CLB2 promoter [20]. The NAD*/NADH ratio reflects the intracel-
lular redox state, and is a readout of metabolic activity [21].

Additional data also suggest a possible role of Fkh in cellular processes be-
side cell cycle regulation. Microarray-based RNA profiling identified four target
genes of Fkhl and two targets of Fkh2 [22]. Furthermore, chromatin immuno-
precipitation (ChIP)-based methodologies, specifically ChIP-chip [23], have re-
trieved hundreds of targets of Fkh1 and Fkh2 [24-26]. Moreover, ChIP-chip-based
computational strategies to identify sequence patterns that bind to transcription
factors (referred to as binding motifs) have identified similar binding motifs for
Fkh1 and Fkh2 [26], as also reported in the YeTFaSCo database [27].

These studies identified several potential Fkh targets in metabolism. For
example, Fkhl has been suggested to regulate FAB1, which encodes a vac-
uolar membrane kinase that generates phosphatidylinositol — the latter in-
volved in vacuolar sorting and homeostasis — and ALG5, which encodes a beta-
glucosyltransferase that is involved in asparagine-linked glycosylation in the en-
doplasmic reticulum [24-26]. Similarly, Fkh2 has been suggested to regulate sev-
eral metabolic enzymes such as GLN1, encoding a glutamine synthetase; IDI1,
encoding an isopentenyl diphosphate that catalyzes an essential activation step
in the isoprenoid biosynthetic pathway; and UTH1, encoding a mitochondrial in-
ner membrane protein implicated in cell wall biogenesis [24-26]. Furthermore,
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HOS3, encoding a histone deacetylase, has been shown as a common enzymatic
target of Fkh1 and Fkh2 [24-26]. Together, this evidence suggests a Fkh-mediated
connectivity between cell cycle and metabolism.

Here, we provide a comprehensive, up-to-date overview of the current
knowledge of Fkh target genes. First, we report on a novel dataset of Fkh tar-
gets using ChIP-exo, which combines ChIP with lambda exonuclease digestion
followed by high-throughput sequencing, that allows identification of a nearly
complete set of binding sites at near single nucleotide resolution [28]. We have
recently employed ChIP-exo to investigate targets of transcription factors in bud-
ding yeast [29, 30]. The ChIP-exo dataset generated in this study was annotated
using GEMMER, a web-based data-integration and visualization tool that we
have recently developed to integrate and visualize the large experimental data
available for budding yeast [31]. Subsequently, known and novel Fkh target
genes were analyzed with respect to their function, temporal expression during
the cell cycle as well as signaling and metabolic pathways they occur in. Em-
phasis is given to targets connecting cell cycle with other cellular processes, in
particular metabolism. Our study clarifies and expands the understanding on
the role that Fkh have as hubs that integrate multi-scale regulatory networks to
achieve proper timing of cell division.

3.2 Materials and Methods

Yeast strains and growth conditions

The yeast strain BY4741 (MATa his3A1 leu2 A0 met15A0 ura3A0) was used to
generate the respective strains Fkh1-Myc (FKHI-MYC9::kanMX6) and Fkh2-Myc
(FKH2-MYC9::kanMX6), as described [20]. Yeast strains were grown on plates
with YPD with G418 (Formedium) 200 mg/L or in liquid cultures of defined me-
dia containing NH,SO, 3.75 g/L, KH,PO,4 7.18 g /L, MgSO, 0.25 g/L, Glucose 10
g/L, Complete supplement mix (Formedium, DCS0019 - Adenine 5 mg/L, L-Arg
25mg/L, L-Asp 40 mg/L, L-His 10 mg/L, L-Iso 25 mg/L, L-Leu 50 mg/L, L-Lys
25mg/L, L-Met 10 mg/L, 1-Phe 25 mg/L, L-Thr 50 mg/L, L-Trp 25 mg/L, L-Tyr
25 mg/L, Uracil 10 mg/L, Val 70 mg/L), Vitamin solution (D-Biotin 0.05 mg/L,
D-Pantothenic acid 1 mg/L, Thiamin-HCl 1 mg/L, Pyridoxin-HCl 1 mg/L, Nico-
tinic acid 1 mg/L, 4-Aminobenzoic acid 0.2 mg/L, myo-inositol 25 mg/L) and
Trace metal solution (FeSO4 3 mg/L, ZnSO,4 4.5 mg/L, CaCl; 4.5 mg/L, MnCl,
0.84 mg/L, CoCl; 0.3 mg/L, CuSO,4 0.3 mg/L, NaMoO, 0.4 mg/L, H3BO3 1.0
mg/L, KI 0.1 mg/L, NasEDTA 19 mg/L). pH of defined media was adjusted to
6.35 by adding KOH.

ChIP-exo

To start the liquid cultures, a yeast colony carrying Fkh1-Myc or Fkh2-Myc was
picked mid-day into the above defined media and cultured with shaking at 30 °C
until the next morning. Cultures were then split to become exponential and sta-
tionary phase cultures. Cultures in exponential phase were started at ODggg ~ 0.2
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and grown until OD600 for Fkh1 replicates: 0.75, 0.72 and Fkh2 replicates: 0.80,
0.80. Cultures in stationary phase were grown until the afternoon and collected
until ODgg for Fkh1 replicates: 2.00, 1.70 and Fkh2 replicates: 1.76, 1.78. For the
ChIP-exo experiments, 100 OD units of cells were collected from each culture,
diluted to ODgog ~ 0.7 with water, supplemented with formaldehyde (Sigma
F8775) to a final concentration of 1% and left shaking at room temperature for 15
min. Glycine (Sigma G7126) was added to quench the cross linking at a final con-
centration of 125 mM and left shaking for 5 min. Cells were then washed twice
with cold TBS (Tris-HCl (Sigma 252859) pH 7.5 1 mM, NaCl (Sigma, S3014) 150
mM) and snap frozen in liquid N,. ChIP-exo was performed according to the
original protocol [28] with modifications as described [32].

Data processing

Raw reads were mapped to the SacCer3 genome!, downloaded from the Saccha-
romyces Genome Database (SGD) website? with Bowtie2 [33]. SAM files were
converted to BAM files, sorted and indexed using SAMtools 1.3.1 [34]. ChIP-exo
data analysis was performed through a pipeline that uses two existing software
tools and a novel method, which we refer to as maxPeak, for peak detection. The
existing tools, GEM (Genome wide Event finding and Motif discovery) [35] and
MACE (Model based Analysis of ChIP-Exo) [36], require the sorted and indexed
BAM files as input and use iteration schemes to identify and enrich peaks. Data
analysis by GEM and MACE was performed through the command line. GEM
and MACE require a relatively large amount of strong peaks to iterate success-
fully. MACE was able to analyze the Fkh1 data but unable to iterate on the Fkh2
data due to the relatively low number of peaks detected; it detected only 25 strong
peaks (called ‘elite border pairs’) for the Fkh2 data, while it requires more than
30 by default. Therefore, in order to analyze the Fkh2 data, the threshold was re-
duced to 25 elite border pairs. This choice comes at the cost of a higher potential
for picking up noise and low quality binding events.

The maxPeak peak detection method was applied, starting from the indexed
BAM files, using a combination of bash scripts and R scripts. Based on the princi-
ple of ChIP-exo, there is a transcription factor-specific optimal read length, where
the whole binding site is covered by reads on both DNA strands, that corresponds
to the width of the DNA covered by the transcription factor. We identified this
read length by comparing the raw read alignments for several genes exhibiting
a strong peak. We observed that a read length of 12 bp corresponds well to the
strong peaks for both Fkh1 and Fkh2 (data not shown). This is consistent with
the previously identified binding motifs for Fkh1 and Fkh2, which have been re-
ported to cover a length of 8 bp and 7 bp, respectively [26], as the ChIP-exo read
length is slightly larger than the binding motif due to additional “head room”
that the exonuclease cannot reach.

In the maxPeak method, the number of reads on both + and — DNA strands

1 5288C_reference_sequence_R64-2-1_20150113.fsa
2 See: https://downloads.yeastgenome.org/sequence/S288C_reference/genome_
releases/
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was summed up genome wide for each nucleotide position. At this stage, bio-
logical duplicates were averaged. Finally, by using the R environment for statis-
tical computing and graphics, the 65" percentile of the maximum read counts for
genes that had a maximum > 0 was calculated for each experimental condition
(exponential and stationary phases) independently, creating one noise threshold
level per experiment. The highest read count per gene was then divided by the
noise threshold for each experiment to calculate the signal-to-noise ratio (SNR).
Essentially, maxPeak ranks genes based on their signal intensity. The 65" per-
centile normalization threshold is irrelevant for the ranking of the genes, and it
only serves to set a rough threshold below which a gene’s signal is considered as
noise. We did not average the read counts among the experiments of each Fkh
transcription factor because a significantly higher signal in the stationary phase
experiments for both Fkh1 and Fkh2 was observed. This evidence suggests that
there was no equal background noise across the different conditions, and that av-
eraging may result in retrieving false positives as a consequence of the lowered
threshold for the stationary phase experiments..

To score the significance of the target genes retrieved, maxPeak and GEM
assign SNRs, whereas MACE assigns p-values. A comparison between the prin-
ciples behind maxPeak, GEM and MACE methods is in Supplementary Materials
and Methods, Fig. S3.1, whereas the specific thresholds used for each peak de-
tection method (PDM) are indicated in Fig. 3.1 and in Supplementary Materials
and Methods, Fig. S3.2-53.4. The scripts used for data processing and the unan-
notated output from maxPeak, GEM and MACE are available as Supplementary
Code Repository.

Gene annotation and data analysis

In budding yeast, the median promoter length is 455 bp [37]. To also cover the
promoter regions that are longer than this median length, we have recently con-
sidered a window length of 1,000 bp [29, 30, 32]. In this work, we analyzed the
data for binding enrichment up to 1,000 bp upstream of the start of 7,217 ORFs
(Open Reading Frames) annotated in the sacCer3 genome, possibly reaching the
coding sequence of an upstream gene. Gene annotation was performed through
GEMMER, a novel web-based data-integration and visualization tool that we
have recently developed for budding yeast [31] (Supplementary Materials and
Methods). We retrieved annotation from GEMMER for the ~ 6800 protein-coding
genes, as identified by SGD. As in GEMMER, we considered genes that have
an annotated E.C. number to be enzymes; occasionally, we referred to enzymes
that catalyze reactions in the Yeast 7.6 metabolic map [38, 39] as metabolic en-
zymes, to emphasize their specific function. The SNRs and p-values assigned
by maxPeak, GEM and MACE were all merged into one dataset together with
the annotation (Supplementary Excel Table S1). Data analysis was performed on
the processed and annotated dataset described above using Python 3.6 and the
Pandas and Matplotlib modules. A collection of Python scripts reproducing the
data integration and Jupyter notebooks reproducing the data analysis are avail-
able in the Supplementary Code Repository and as part of a Github repository
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(https://github.com/barberislab/ChIP-exo_Fkhl_Fkh2).

KEGG pathway map visualization

We used the R library Pathview to superimpose the experimental data on KEGG
pathway maps [40]. We performed the mapping two times, first by mapping the
set of targets identified in our experiments. Second, we associated each gene with
a verification score and an associated color: (i) a value of -1 (yellow) for genes not
suggested as a target by our ChIP-exo experiments, but shown by one or more
of the available ChIP-chip studies [24-26]; (ii) a value of 0 (red) for target genes
identified only by one of our ChIP-exo experiments, or (iii) a value of +1 (green)
for target genes identified by at least one ChIP-chip study and our ChIP-exo ex-
periments. The R script to reproduce the image generation (see Supplementary
Code Repository, and images (Supplementary KEGG Figures) are available.

3.3 Results

Data analysis pipeline using the novel maxPeak method to detect
high-confidence targets

ChIP-exo experiments were performed on Fkhl and Fkh2, in exponential and
stationary phases, for a total of four experiments (see Materials and Methods).
Subsequently, two existing peak detection methods (PDMs) were applied to the
ChIP-exo datasets: GEM [35] and MACE [36]. We observed a significant diver-
gence in the target genes retrieved when comparing GEM SNR > 1 and MACE
(p-value < 0.01) (Supplementary Text, Fig. S3.5). The large number of targets re-
trieved only by GEM or only by MACE led us to develop a novel ChIP-exo data
analysis method, which we have named maxPeak, which does not use iteration
and is not sensitive to a relatively low number of strong peaks. Application of
three PDMs simultaneously on the ChIP-exo dataset allowed us to identify genes
that are consistently retrieved as targets by Fkh1 and Fkh2 across multiple PDMs.
In order for a target gene to be retrieved, it had to score above (GEM and maxPeak)
or below (MACE) threshold in at least two out of three PDMs. To set thresholds
that define which genes are considered targets by each of the three PDMs, we
generated three 2x2 score comparisons (see Fig. 3.1 and Supplementary Materials
and Methods, Fig. 53.2-53.4). We considered any target gene that is retrieved as
significant by both GEM and MACE as a confident target. Consequently, we set
the threshold of significance for maxPeak to the lowest score obtained across all
four experimental conditions by any gene that was retrieved by both GEM and
MACE. Altering the 65 percentile normalization threshold that we applied for
maxPeak (see Materials and Methods) would not have an impact on the set of the
retrieved target genes. By following this approach, we could then use maxPeak to
discriminate between those target genes that are retrieved by only GEM or only
MACE. The overlap of target genes among the three PDMs is shown in Supple-
mentary Text, Fig. S3.6. Fig. 3.2 shows the data processing pipeline implementing
the three PDMs: GEM, MACE and the novel maxPeak.
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Figure 3.1: Comparison of GEM SNRs vs. MACE SNRs for target genes that
scored a MACE p-value lower than 0.01. (A) Fkhl, exponential phase. (B) Fkhl,
stationary phase. (C) Fkh2, exponential phase. (D) Fkh2, stationary phase. The
horizontal and vertical black dotted lines represent the GEM and MACE tar-
get thresholds, respectively. Blue circles represent genes that were assigned a
SNR > 1 by maxPeak. Red circles represent genes that were assigned a SNR < 1.
Genes with circles in the upper-left quadrant of each panel were considered tar-
gets. Blue circles in the bottom-left and upper-right quadrants of each panel were
also considered targets.

ChIP-exo identifies a consensus of verified and novel targets of
Fkh1 and Fkh2

The pipeline presented in Fig. 3.2 identified several hundred target genes of Fkh1
and Fkh2. An overview of the number of target genes that were retrieved in the
four ChIP-exo experiments is reported in Table 3.1 and the targets are listed per
experimental condition in Supplementary Excel Table S2. A higher number of
Fkh1 targets was retrieved as compared to Fkh2 targets, and a higher number of
Fkh targets was retrieved in stationary phase as compared to exponential phase.
CLB2 is considered to be the major Fkh target gene; thus, it has been considered as
a positive control for both Fkh1 and Fkh2. CLB2 was not considered significant as
a Fkh1 target in exponential phase by both GEM and MACE; hence this gene was
not considered a target for subsequent analyses. Conversely, in the other three
experimental conditions, CLB2 was retrieved as a Fkh target. Specifically, in all
ChIP-exo experiments, CLB2 revealed a SNR > 2 (Supplementary Excel Table S2)
assigned by the maxPeak method. Notably, in Fkh2 datasets, CLB2 scores the 4"
highest SNR in exponential phase and the highest SNR in stationary phase. These
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Figure 3.2: Illustration of the pipeline implemented for the identification of target
genes from ChIP-exo data. First, BAM files were generated, sorted and indexed,
on which GEM and MACE are run. For the maxPeak peak detection method,
the number of reads on both DNA strands for each nucleotide is counted and,
subsequently, the highest read count at a single nucleotide per gene is assigned
as the gene’s signal. Finally, the read count for each gene is normalized by the
65" percentile of all genes with a read count > 0, calculating a signal-to-noise
ratio (SNR). Finally, target genes (indicated by a “T” in the pie chart) are selected
if these are retrieved as significant by at least two out of three peak detection
methods (PDMs); conversely, target genes that are retrieved as significant by only
one PDM (indicated as ‘NT” in the pie chart) are not considered further in the
analyses.

results agree with CLB2 being the pivotal Fkh2 target required for cell division [9-
12].

A subset of target genes scored above threshold in all three PDMs (referred
to as ‘3x PDM verified” in Table 3.1); the detailed list of targets for each experi-
ment is reported in Supplementary Excel Table S3 and Supplementary Text, Table
S1. A number of available genome-wide studies provide datasets of Fkh target
genes [22, 24-26]. We focused specifically on the previous ChIP-chip studies [24—
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Target genes Fkh1 Fkh1 Fkh2 Fkh2
exponential stationary exponential stationary

Total 291 416 105 220

4x ChIP verified 29 - 15 -

3x PDM verified 31 84 6 25

Novel 43 - 38 -

Cell cycle-regulated | 84 122 46 65

Enzymes 60 (31) 103 (51) 18 (10) 50 (27)

Table 3.1: Number of target genes identified in this study for specific subgroups.
‘“4x ChIP verified’, verified targets retrieved by our ChIP-exo experiments and
three available ChIP-chip studies. ‘3x PDM verified’, targets retrieved by three
peak detection methods, PDMs (maxPeak, GEM and MACE). ‘Novel’, novel tar-
gets retrieved by this study but not by the three available ChIP-chip studies. ‘Cell-
cycle regulated’, targets retrieved by this study that have been described as cell
cycle-regulated genes [18]. ‘Enzymes’, targets retrieved by this study that are en-
zymes; specifically, the number of enzymes that catalyze reactions in the Yeast 7.6
metabolic map (i.e. metabolic enzymes) are indicated within parentheses. Since
the available ChIP-chip studies were performed in exponential phase, verified
and novel targets are not available for the stationary phase experiments.

26], where experiments were performed after growing cells in exponential phase:
Maclsaac et al. to an OD ~ 0.8 [26] (the experimental work was originally per-
formed in [41], Venters et al. to an OD ~ 1.0 [25], and Ostrow et al. to an OD ~ 0.8
[24]. For this reason, for the comparison of our ChIP-exo datasets with the ChIP-
chip studies, the experiments performed in stationary phase were neglected.

We quantified the agreement between the ChIP-exo peak locations and the
enriched regions identified in the most recent ChIP-chip dataset [24] by over-
laying them on chromosome-wide summary plots and counting the overlap (see
Supplementary Text). In Fig. 3.3, a summary plot for Fkh2 in exponential phase is
shown for chromosome XVI, which contains the CLB2 gene, a major Fkh2 target
(see Supplementary exo-chip Figures for all summary plots). We observed that, in
exponential phase, 81% and 59% of the ChIP-exo target genes show peaks within
enriched windows identified by the ChIP-chip experiments for Fkh1l and Fkh2,
respectively (see Supplementary Text, Table S3.2). The remaining 19% and 41%
of the ChIP-exo target genes are peak locations upstream of ORFs that the ChIP-
chip study did not identify. Vice versa, 51% and 46% of the enriched ChIP-chip
regions upstream of ORFs for Fkhl and Fkh2, respectively, contain at least one
significant peak event (in any PDM) as identified by ChIP-exo using our PDM
thresholds (see Supplementary Text, Table S3.3). These results highlight the in-
creased specificity achieved using ChlIP-exo as compared to ChIP-chip, and the
higher stringency applied by (i) the thresholds used in this work and (ii) the re-
quirement of passing the threshold in at least 2 PDMs.

To highlight new targets of Fkh1l and Fkh2 identified using ChIP-exo, we
compared the overlap between our ChIP-exo targets and the ChIP-chip targets
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Figure 3.3: Comparison of ChIP-exo peak locations as identified by three different
PDMs (maxPeak, GEM and MACE) and the ChIP-chip enriched regions identi-
fied by Ostrow et al. for Fkh2 in exponential phase on chromosome XVI. The hor-
izontal green dotted line indicates the threshold for GEM and maxPeak; the hori-
zontal blue dotted line indicates the threshold for MACE. All ChIP-exo peak loca-
tions with a SNR > % (for GEM and maxPeak) and/or a p-value < 0.01 (MACE)
are displayed. ChIP-exo target gene peaks are labeled as identified through the
pipeline reported in Fig. 3.2. When multiple gene names are comma-separated
in one label, the peak location was within a window of 1,000 bp upstream of all
listed gene ORFs.

from [24-26]. Strikingly, only 42 out of 2939 Fkh1 target genes and 18 out of 1553
Fkh2 target genes are in common between the three published ChIP-chip stud-
ies (see Supplementary Text, Fig. S3.7 and Supplementary Excel Table S4). This
lack of overlap among ChIP-chip studies is a general observation; for this reason,
the recently developed ChIP-exo methodology may help to clarify these discrep-
ancies. Indeed, our ChIP-exo experiments recovered the majority of the target
genes retrieved by all three ChIP-chip studies. Furthermore, it highlights a num-
ber of novel, previously not detected, Fkh target genes. Table 3.1 summarizes
the number of verified and novel target genes. The verified, thus highly repro-
ducible, target genes by all four ChIP experiments are 29 for Fkh1 (ADD37, ALGS,
ATG42, BDF1, BUD4, CDS1, CIK1, DIN7, DSE1, DYN1, EGO2, ERS1, ESP1, FHLI,
HOS3, JSN1, KIP2, MKK2, NEW1, RHO4, RPN11, SPC24, SSO2, SUB2, TDA?,
TEL2, VTI1, YBR138C, YPII1) and 15 for Fkh2 (ATG42, BUD4, CDC20, CHS2, IRCS,
JSN1, MTC6, PPN1, SCO1, SPO12, SUR7, SWI5, UTH1, YHP1, YMLO053C) (see
Fig. 3.4 and Supplementary Excel Table S5). Among these common target genes,
8 (for Fkhl) and 4 (for Fkh2) are enzymes. Three target genes are in common
among both Fkh: ATG42, coding a vacuolar carboxypeptidase; BUD4, coding for
a protein that has a role in bud site selection and is a substrate of the Clb2/Cdk1
kinase; and JSN1, coding an RNA-binding protein that interacts with mRNAs
of membrane-associated proteins of the mitochondria. Strikingly, a potential
metabolic role of Fkh target genes is suggested by the Fkhl targets CDS1, cod-
ing a phosphatidate cytidylyltransferase involved in the synthesis of all major
yeast phospholipids, and ERS1, coding a cysteine transport protein that local-
izes to membranes of organelles, and by the Fkh2 target the CHS2, encoding a
chitin synthase required for chitin synthesis prior to cell division. Moreover, a
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Figure 3.4: Reproduction of novel and verified Fkh target genes. 4-way Venn dia-
grams for Fkh1 (A) and Fkh2 (B) showing the overlap between ChIP-exo datasets
and previous ChIP-chip studies that have identified Fkh target genes [24-26].

subset of target genes highlight the known role that Fkh2 plays in the control
of cell division: SWI5, coding for the transcription factor of SIC1 - SIC1 is the
stoichiometric inhibitor of mitotic cyclin/Cdkl1 kinase activities -; CDC20, acti-
vator of the anaphase-promoting complex/cyclosome (APC/C) required for the
metaphase/anaphase transition; and BUD#4 (described earlier). Furthermore, the
Fkhl target MKK2, coding for a MAP kinase kinase (MAPKK) involved in the
protein kinase C signaling pathway and in the control of cell integrity, points to
a potential role in signal transduction. Finally, our study retrieves 43 novel Fkh1
targets and 38 novel Fkh2 targets (Fig. 3.4), among which 3 and 6, respectively,
are enzymes (see Table 1 and Supplementary Excel Table S6).

The correlation between Fkh and target expression level

To evaluate the quality of our results, we monitored the correlation between the
expression level of Fkhl and Fkh2 and their targets, by using publicly avail-
able gene expression datasets. We combined the target genes identified in expo-
nential and stationary phases (listed in Supplementary Excel Table S2) for each
Fkh transcription factor, and analyzed them using the SCEPTRANS database
(http://moment .utmb.edu/cgi-bin/sceptrans.cgi) [42]. We tabulated
the total number of genes and the number of retrieved target genes that are cor-
related with Fkh1 or Fkh2, based on correlation coefficient thresholds of 0.60 and
0.80, across the nine microarray datasets from five studies in SCEPTRANS [8, 43—
46]. The correlated genes grouped by the threshold and by microarray dataset
are listed in Supplementary Excel Table S7. In total, 305 and 157 of the retrieved
target genes (72% and 69%) correlate in terms of expression level with Fkh1 and
Fkh2 expression, respectively, in at least one of the nine datasets.

Furthermore, we tabulated the genome-wide fraction of genes correlated
with Fkh1 and Fkh2 across each of the nine datasets. By multiplying that fraction
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with the number of target genes, we calculated the expected number of correlated
ChIP-exo target genes if the target genes were randomly selected from the total
pool of genes. We then calculated the ratio of the actual number of correlated
ChIP-exo target genes and the expected number. We observed an enrichment in
correlated Fkhl target genes (i.e. a ratio > 1.5) in eight out of nine microarray
datasets. Fkh2-correlated target genes were enriched in six out of eight microar-
ray datasets (see Supplementary Excel Table S7).

Dynamics of cell cycle-regulated target genes highlight a distinct
activation of Fkh1 and Fkh2 functions across cell cycle phases

An earlier study applied a deconvolution algorithm to one of the nine microarray
datasets analyzed above (43) and has identified 1,082 genes as being cell cycle-
regulated (i.e., expressed cyclically), among which 198 metabolic enzymes, re-
porting the time of peak expression and cell cycle phase where it occurs for each
such gene [18]. Fkhl and Fkh2 were considered part of the ‘high-quality” set of
694 cell cycle transcriptionally regulated (CCTR) genes with 95% confidence or
better. Subsets of 84 and 122 target genes for Fkh1l and 46 and 65 target genes
for Fkh2 belong to the extended CCTR set for exponential and stationary phases,
respectively (see Table 3.1 ). The main expression peaks of Fkh1l and Fkh2 were
identified to occur at 67 and 3 minutes during S and G1(P) phase, respectively. In
addition, Fkh2 did exhibit a secondary expression peak at 74.5 minutes during S
phase.

We have analyzed the subset of identified targets that are cell cycle-regulated
(Supplementary Excel Table S8) in terms of their cell cycle phase of peak expres-
sion (Fig. 3.5). When comparing the distributions of the identified target genes
in the four ChIP-exo experiments to the genome-wide distribution [18], for both
Fkh1 and Fkh2 we observed an enrichment of targets whose expression peaks in
the mid cell cycle (S phase) and an underrepresentation of targets that peak in
the early cell cycle (G1, G1(P), G1/S phases), in both exponential and stationary
phases (see Fig. 3.5 and Table 3.2 ). The enrichment of targets that peak in S phase
is somewhat, yet significantly higher for Fkh1 than Fkh2. Conversely, Fkh2 but
not Fkhl targets are enriched in the late cell cycle (G2, G2/M, M, M/G1 phases),
consistent with earlier data showing that Fkh2 is expressed during the late stages
of the cell cycle [19]. Analyzing the data in more detail, we observed that both
Fkh1 and Fkh2 targets are shifted towards S and G2 and away from G1, G1(P),
G1/S and M, in both exponential and stationary phases. Moreover, Fkhl and
Fkh2 targets show an opposite trend at the G2/M and M/G1 transitions as com-
pared to the genome-wide distribution [18]: Fkh1 targets are underrepresented
in G2/M and enriched in M/G1, whereas Fkh2 targets are enriched in G2/M
and underrepresented in M/G1. Taken together, these findings highlight a ten-
dency for the Fkhl targets to peak earlier (in the S phase) as compared to the
Fkh2 targets, which peak in the late cell cycle phases (G2 through M/G1 phases).
Remarkably, these tendencies are small however. This may explained by the fact
that we here only look at the location of the peak of expression which although
indicative cannot provide a full picture. Further analysis into the complete time
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Figure 3.5: Distribution of the phases of peak expression for the mRNA of cell
cycle-regulated Fkh target genes. A genome-wide dataset [18] was compared to
the ChIP-exo Fkh dataset to identify target genes that are cell cycle-regulated.
The distribution of the cell cycle-regulated genes [18] is shown on top, whereas
the other four pie charts show the distribution of Fkh1 and Fkh2 targets, in both
exponential and stationary phases.

Condition | Early (G1,G1(P),G1/S) Mid (S)  Late (G2, G2/M, M, M/G1)
Fkh1 exponential | -12% +13% -1%

Fkh1 stationary -13% +13% 0%

Fkh2 exponential | -20% +2% +18%

Fkh2 stationary -13% +6% +8%

Table 3.2: Enrichment of targets for which mRNA expression peaks in the early,
middle or late cell cycle phases as compared to the cell cycle-regulated genes as
previously identified [18]. The percentages reported are inferred from the pie
charts shown in Fig. 3.5. The percentages for each condition are calculated as the
difference with respect to the genome-wide dataset.

course data from [18] may provide a fuller picture and is likely to complement
this view.

Fig. 3.6 visualizes the set of cell cycle-regulated targets of Fkh1 and Fkh2 in
exponential phase as a stack plot. Each target is coloured according to the func-
tion associated to the GO annotation, which was performed through GEMMER
(see Materials and Methods). The stack plot of Fkh1 and Fkh2 targets in station-
ary phase is visualized in Supplementary Text, Fig. S3.8. The position on the
y-axis within each column - corresponding to a cell cycle phase where the expres-
sion is maximal for each gene - is dictated by the maxPeak SNR of the ChIP-exo
experiments. We observe that the majority of Fkhl cell-cycle regulated targets
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show their expression peak in the S phase. Moreover, when focusing on the cell
cycle-regulated enzymes (indicated in bold in Fig. 3.6A) across different cell cycle
phases, we observe that among the 24 Fkh1 enzymatic targets the majority is en-
riched in the early and mid cell cycle (G1, G1(P), G1/S and S phases) as compared
to the late cell cycle (G2, G2/M, M and M/G1 phases). Conversely, the 8 enzy-
matic targets of Fkh2 are equally distributed throughout early and late cell cycle
phases (indicated in bold in Fig. 3.6B). These findings suggest that Fkh1 cellular
functions, mediated by the activity of its targets, are realized earlier than Fkh2
functions, which do not seem to be confined to a specific cell cycle phase.

Using the CDC28 data from [18] as an informative example (see Supplemen-
tary Text), target genes that are cell cycle regulated, with expression peaks within
a window of —25 to 45 minutes after Fkh1 and Fkh2 expression peaks, may be
considered to align with expected behavior for Fkh1- and Fkh2-regulated genes.
This implies a target window of 42 — 102 minutes (i.e. from the end of G1/S to
mid G2 phase) for Fkh1. For Fkh2, this would suggests two target windows: from
(i) 278 — 48 minutes (from the end of G1 to the start of G1/S phase) and from (ii) 50
— 110 minutes (i.e. from the end of G1 to mid G2 phase). We conclude that genes
listed in Fig. 3.6 and Fig. S3.8 that fall within these time windows show expected
behavior for genes regulated by Fkh1 and Fkh2. The well-known Fkh1/Fkh2 tar-
get genes CLB1 and CLB2 occur within these windows; furthermore, CLB3, which
we have shown to be regulated by Fkh2 [16] falls within the Fkh2 window. How-
ever, it should be noted that, given that Fkh2 exhibits two expression peaks, it
may well be present in the intermittent time-period as well so that targets peak-
ing in the window 110 — 278 should not be discounted.

Functional enrichment of identified Fkh target genes

For all identified Fkh target genes we performed an overrepresentation analysis
for GO terms with respect to the biological processes they are involved in, by us-
ing Fisher’s exact test through the PANTHER database [47]. We found several
significantly overrepresented terms for a False Discovery Rate (FDR) threshold
of 0.05 (Supplementary Excel Table S9 lists the FDR for all GO terms across all
experimental conditions). The GO terms for cell cycle and mitotic cell cycle were
enriched across all four ChiP-exo experiments. Furthermore, the GO terms for
(mitotic) cell cycle and cell division were enriched across three out of four ChiP-
exo experiments (lacking in Fkh2 stationary phase and Fkhl stationary phase,
respectively). Fkh1 has uniquely enriched terms for organelle fission, (mitotic) nu-
clear division and (mitotic) sister chromatid segregation. Moreover, the Fkh1 expo-
nential experiment showed a unique enrichment in the terms for (nuclear) chro-
mosome segregation, whereas the Fkh1 stationary experiment showed unique en-
richment in the terms for requlation of cell cycle and regqulation of (mitotic) cell cycle
process. Finally, the Fkh2 stationary experiment showed no uniquely enriched
terms, whereas the Fkh2 exponential experiment showed a unique enrichment
in the terms (fungal-type) cell wall organization and external encapsulating structure
organization. In addition to the formal enrichment test of GO terms, the Fkh target
genes identified in the four ChIP-exo experiments were analyzed for their global,
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Figure 3.6: Stack plot of target genes identified by ChIP-exo in exponential phase
that have a cell cycle-regulated peak expression level [18]. (A) Fkh1 target genes.
(B) Fkh2 target genes. Within each column a higher position on the y-axis indi-
cates a higher maxPeak SNR. The x-axis indicates the phases of peak expression as
reported [18]. The color for each target gene indicates its major biological func-
tion if identified in GEMMER [31]. Targets marked with an asterisk are verified by
all four (4x) ChIP studies, whereas targets marked with a triangle indicate novel
target genes that have not been reported in the previous ChIP studies. Targets
identified as significant by all three PDMs are shown with a dashed border.
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rather than for their specific, function, showing an enrichment of targets with a
function in cell cycle and cell division (see Supplementary Text, Table S4). This
result supports the earlier finding that Fkh targets are primarily cell cycle genes
[8].

Interestingly, even though no GO terms related to metabolism were enriched
in the analyses above, we observed that a fraction of genes with a metabolic func-
tion was present among the Fkh targets. However, statistically significant enrich-
ment of the GO terms is not required for functional impact of Fkh1 and Fkh2 on
metabolic processes. Specifically, we identified 60 and 18 enzymatic targets of
Fkh1 and Fkh2, respectively, in exponential phase, and 103 and 50 enzymatic tar-
gets, respectively, in stationary phase, most of which catalyze metabolic reactions
(see Table 3.1 and Supplementary Excel Table S10). This provides a clear indica-
tion of the potential role of Fkh1,2 as hubs connecting cell cycle and metabolism.

Fkh targets in their functional context through projection onto
KEGG Pathways

With the aim to explore the pathways where a metabolic function was observed
for Fkh targets, our ChIP-exo results were superimposed on a set of 25 KEGG
maps of interest, in order to intuitively display the (metabolic) function of Fkh
targets (see Materials and Methods), by using the Pathview library for R (see
Supplementary KEGG Figures). In particular, we focused on Fkh1 and Fkh2 tar-
gets in central carbon metabolism as identified by ChIP-exo (Fig. 3.7). In Supple-
mentary Text, Fig. S3.9 a similar overview includes Fkh targets previously iden-
tified in ChIP-chip studies that were not recovered by ChIP-exo. Noteworthy,
16 (iso)enzymes catalyzing 14 reactions in the visualized part of central carbon
metabolism are potentially regulated by Fkh. 14 enzymes out of 16 are potential
Fkh1 targets and 5 enzymes out of 16 are potential Fkh2 targets, pointing once
again to a predominant metabolic role for Fkh1 as compared to Fkh2. Remark-
ably, all three isoenzymes of the citrate synthase (CIT), the entry point enzyme of
the TCA cycle, as well as enzymes involved in ethanol fermentation from pyru-
vate were retrieved as targets. In detail, for the TCA cycle: CIT1 as Fkh1 target in
both exponential and stationary phases; CIT2 as Fkh1 target in stationary phase;
and CIT3 as both Fkh1 and Fkh2 target in exponential phase. For the ethanol
fermentation, the pyruvate decarboxylase PDC1 and the alcohol dehydrogenase
ADH4 were retrieved as Fkhl targets in both exponential and stationary phases.
All 16 enzymatic targets, with the exception of GND1 and IDH2 for Fkh2 and
CIT3 for Fkh1, have been previously reported by ChIP-chip studies [24, 25].

We annotated the ChIP-exo dataset with the KEGG Pathways that each of
the 7,217 target genes occurs in. Together, the Fkh targets in all four experimen-
tal conditions map onto 89 distinct KEGG pathways, ranging from cell cycle to
signaling and metabolism (see Supplementary Excel Table S11). In Supplemen-
tary Excel Table 510, all enzymatic targets of Fkhl and Fkh2 in exponential and
stationary phases are reported with the KEGG Pathways they occur in and their
cell cycle phase of peak expression (if available). Moreover, examples of Fkh1,2
targets in autophagy, signal transduction and cell cycle are shown in Supplemen-
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Figure 3.7: Overview of metabolic enzymes in central carbon metabolism that are
targets of Fkh1 and Fkh2. Each enzyme is associated with eight squares divided
in two rows (Fkh1, top row; Fkh2, bottom row) representing data analysis of four
different genome-wide studies: Maclsaac et al., Venters et al., Ostrow et al. and
this study. Empty squares indicate genes that were not retrieved as significant
targets, whereas colored squares indicated a positive evidence. A distinction be-
tween the results in exponential and stationary phases is visualized through the
color of the squares (see the figure insert). Isoenzymes that have no available evi-



Chapter 3. ChIP-exo analysis of Fkh1,2 103

Figure 3.7: (Continued) dence in any of the three studies were neglected. In some
cases, metabolic enzymes may have no associated squares when no isoenzyme is
available with an experimental validation.

tary Text, Figure S10. To illustrate the multi-scale nature of Fkh1 and Fkh2 target
genes, we highlighted 13 pathways and the Fkh target genes that function therein
in Supplementary Text, Table S3.5 .

Altogether, our findings provide the field with an up-to-date overview of the
current knowledge of Fkh targets within their functional context.

3.4 Discussion

As compared to previous ChIP-based methodologies, our ChIP-exo analyses
were performed for the Fkh1 and Fkh2 transcription factors in two experimental
conditions: exponential and stationary phases. Due to a relatively high number
of targets identified by the GEM and MACE PDMs we have developed a novel
PDM that we named maxPeak and used it alongside GEM and MACE for the anal-
ysis of our ChIP-exo dataset. We considered only those target genes as targets
that scored above threshold (see Fig. 3.1 and Supplementary Text, Fig. 53.2-53.4)
in at least two out of three methods. In this way we aimed at minimizing the
occurrence of false positives and false negatives and maximizing true negatives
and true positives. By basing the maxPeak threshold on the minimum score at-
tained by target genes that were predicted by both GEM and MACE given their
respective thresholds, the maxPeak score essentially forms the deciding factor that
decides whether genes that were only predicted by either GEM or MACE should
actually be considered targets. The more intuitive nature of the maxPeak tech-
nique, which looks only at the highest signal in an upstream region of the TSS of
a gene, and compares the set of these signals genome-wide, thus provides a san-
ity check on the genes for which the predictions by GEM and MACE disagree.
Given the correlations between the Fkh and their respective target genes identi-
fied using our methodology (see main text) we feel that our approach has worked
satisfactorily.

We have observed that different ChIP-based methodologies retrieve different
numbers and collections of Fkh targets. However, by analysing the verified Fkh
targets in common between various studies, we have provided a comprehensive
view of the most likely genes whose expression may be modulated by Fkh1 and
Fkh2. Noteworthy, when we conducted the data analysis comparing the outcome
of the three PDMs (maxPeak, GEM and MACE) we observed that the divergence
in the target genes retrieved between GEM and MACE as well as between both
software tools and the novel maxPeak method is substantial (a detailed analysis
is presented in Supplementary Text, Fig. S3.5-53.6). One reason for these dif-
ferent predictions is highlighted in Fig. S3.1: the algorithms differ substantially
and may pick up different features of DNA regions that show binding. This evi-
dence points out a need in the field to (i) identify the stability of the methods, (ii)
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investigate advantages and shortcomings of each method, and (iii) measure the
accuracy of the methods with regard to the identification of functional targets.

Our analysis of the targets retrieved by at least two out of three PDMs so-
lidifies and enriches the global perspective on the functions possibly exerted by
Fkh. First of all, there are sets of targets in common among multiple ChIP-based
studies (Fig. 3.4) that reinforce the role of Fkh in the cell cycle and point towards
possible roles in signal transduction and metabolism (see Fig. 3.4 and accompa-
nying text). Second, Fkh targets that have been identified as cell cycle-regulated
peak in expression level across all phases of the cell cycle but are enriched in S
phase and G2, M and M/G1 phase for Fkh1 and Fkh2 respectively (see Fig. 3.5).
The spread in timing of the expression peaks of the possible targets together with
the wide-array of functionalities of these target genes (see Fig. 3.6) hints at broad
functionalities for both Fkh. Third, even though the enrichment of metabolic
genes was not statistically significant, the high number of target genes with func-
tions in metabolism and the 89 KEGG pathways affected by their targets (See
Fig. 3.7 and Table S3.5), point to hitherto unknown roles of the Fkh. Together,
our analysis highlights the role that Fkh have as hubs that integrate multi-scale
regulatory networks, exemplified by metabolism and cell cycle, to achieve proper
timing of cell division.

Fkhl and Fkh2 are paralogs that have diverged, with a protein identity of
71% and a protein similarity of 85% [48]. The previously identified canonical
Fkh1/Fkh2 binding motif 5-GTAAACAA-3’ reported in the YeTFaSCo database
[27] and by Maclsaac et al. [26], is present in over 1400 locations throughout
the genome. To analyze the enrichment of this binding motif on our ChIP-
exo dataset, we extracted all peak locations corresponding to the target genes
spanning a -250 to +250 bp window around the peak location. We combined
the sequences for both exponential and stationary phase experiments for each
transcription factor to obtain a robust motif identification. This collection of se-
quences was analyzed using three algorithms from the MEME-suit [49] with com-
plementary characteristics: MEME [50], DREME [51] and CentriMo [52]. MEME
and DREME identify long and short ungapped motifs, respectively, whereas
CentriMo identifies known DNA-binding motifs from other transcription factors.
The top significantly enriched motifs returned by MEME and DREME either con-
tain, or are similar to, the canonical DNA-binding motif (Fig. 3.8). The DREME
motifs for Fkh1/Fkh2 are virtually equal to the canonical motif, and differ among
each other only in terms of possible alternatively preferred bases at 2 or 3 loca-
tions. The enriched sequence pattern identified by MEME is longer than the es-
tablished canonical motif (19-21 bp) but the latter can be clearly identified within
it for both Fkh1 and Fkh2. We observe that this top motif is very similar for both
Fkh1 and Fkh2, but with a changed and increased preference for the surrounding
bases for Fkh2. The presence of a longer and more specific motif for Fkh2 as com-
pared to Fkhl may translate to a different set of target genes and/or a different
affinity for such target genes.

Given the similarity of their protein sequence and DNA-binding motifs, we
were interested in exploring the overlap between targets of Fkhl and Fkh2 in
both exponential and stationary phases. The ChIP-chip studies [24-26] already
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Figure 3.8: Top DNA-binding motifs for Fkh1 and Fkh2 based on the ChIP-exo
target gene peak sequences, as identified by the MEME and DREME algorithms
using MEME-ChIP.

Targets genes | exponential Stationary 4x ChIP verified

Overlap 26 65 3
Fkh1 specific | 265 351 26
Fkh2 specific | 79 155 12

Table 3.3: Overlap between Fkh1 and Fkh2 target genes. The columns with ex-
ponential and stationary data refer to this study. The 4x verified ChIP column
refers to the experiments in exponential phase performed in this study, Maclsaac
et al. (Maclsaac et al., 2006), Venters et al. (Venters et al., 2011) and Ostrow et al.
(Ostrow et al., 2014).

showed a large set of unique targets, with only 11% — 44.1% of identified Fkh1
targets shared with Fkh2 (see Supplementary Text Table S3.6 ). In Table 3.3 we
report the number of overlapping ChIP-exo Fkh targets in the two experimental
conditions, as well as among the set of 4x ChIP verified targets. Using ChIP-
exo we observed fewer common targets than in the published ChIP-chip stud-
ies, strengthening the hypothesis of divergent functions for Fkh1 and Fkh2. The
percentage of overlapping Fkh target genes is 7% and 11% for exponential and
stationary phases, respectively. Considering the number of overlapping versus
specific (Fkhl only and Fkh2 only) targets reported in Table 3.3 , we conclude
that the vast majority of Fkh targets is unique for Fkh1l or Fkh2 specific func-
tions. A similar outcome was observed for the 4x ChIP verified targets, with a
percentage of overlapping Fkh target genes equal to 7%. These data suggest that,
regardless of the different ChIP methodologies employed, Fkh1 and Fkh2 appear
to have divergent functions.

The observation of divergent target genes for Fkh1,2 is further highlighted
by the suggestion of a potential metabolic function for both Fkh1 and Fkh2 due
to the presence of metabolic enzymes among the target genes (Table S3.1, S3.5 and
Fig. 3.7, 53.8 and S3.9). Most of these targets are not in common and their activity
is realized at different times throughout cell cycle regulation (3.6). The analyses
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of the subset of cell cycle-regulated targets (Table 3.2 and Fig. 3.5 and 3.6) indi-
cates target genes peaking in expression across the entire cell cycle. However, we
observe a major role for Fkh1 in the early cell cycle (from G1/S through S phases)
(Fig. 3.6) with an enrichment of target genes in S phase specifically (Table 3.2).
In contrast, we observe a more equally distributed role for Fkh2 (Fig. 3.6) with
an enrichment of targets active in the late cell cycle (G2 through M/G1 phases)
(Table 3.2). These findings are in agreement with early data showing that Fkh1 is
expressed earlier than Fkh2 [19].

We investigated the height of the ChIP-exo signal upstream of non-
overlapping target genes for the Fkh for which they were not considered a target.
We observed that roughly half (44% — 59%) of the genes that we list as unique
target genes in Table 3.3 cross the threshold in one of the three PDMs and that,
similarly, the other half does so in none of the PDMs. The latter subset supports
the conclusion that there are substantial differences in the set of target genes. Si-
multaneously, the former subset points out that many of the unique target genes
may show some limited, but lower binding affinity, for the other Fkh, potentially
indicating a compensatory interplay between the two transcription factors. This
result calls for a detailed investigation of the relative binding affinities of targets
shared between Fkh1 and Fkh2.

It remains speculative whether or not the differences in the observed motifs
for Fkh1 and Fkh2 contribute to the difference in target genes that we retrieved.
It has previously been observed that both redundant and different functions for
Fkh1 and Fkh2 exist, and that these differences were not attributable to the DNA-
binding domain [14]. Fkhl and Fkh2 are paralogs with a similar DNA-binding
motif, and we observed that they bind only to partially overlapping sets of a
target genes (potentially with a different affinity). This evidence suggests that the
evolutionary divergence between the two transcription factors, together with the
shift in the timing of the expression window [18], left in place a common set of
redundant functions but, over time, gave rise to more specific sets of target genes.

Aside from a difference in the main binding motif, it is possible that that
Fkh1 and Fkh2 bind different secondary motifs or interact (in complex) with dif-
ferent secondary transcription factors. Our motif analysis suggested secondary
enriched motifs which differed between Fkh1 and Fkh2 that are similar to binding
sequences of other transcription factors. Mcml1 acts as a scaffold protein for both
Fkh2 and the co-activator Ndd1, regulating the G2/M transition and, thus, cell
division [10, 12]. Since the Mcm1 motif showed an E-value of 10~'? for Fkh2, we
considered all enriched motifs above this threshold (the E-value of a motif esti-
mates the number of motifs that would have equal or higher log likelihood ratio
if the input sequences had been generated randomly). We found enriched mo-
tifs matching eight transcription factors (Ecm22, Azfl, Ixrl Hmlalpha2, Mcml,
Hmra2, Matalpha2 and Dal82) for Fkh1 and two transcription factors for Fkh2
(Gen4 and Mcml). We observed that the Azfl and Hmra2 motifs were very simi-
lar to the canonical Fkh motif, therefore disregarded these. None of the remaining
transcription factors with similar binding motifs have known physical or genetic
interactions with Fkh1 or Fkh2, with the exception of Mcm1. For several tran-
scription factors with similar binding motifs of Fkh1, genetic evidence of an in-
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teraction with Fkh2 is available. Specifically, a genetic interaction of Fkh2 was
suggested with Ixrl and Rox1 [53], transcriptional repressors that regulate hy-
poxic genes during normoxia. Furthermore, a genetic interaction was reported
between Fkh2 and Dal82 [54], regulator of allophanate inducible genes. We cur-
rently envision no reason for the enrichment of these motifs within peak regions.
However, this evidence call for detailed experimental investigations of the possi-
ble interplay between Fkh1 and Fkh2 and these transcription factors.

Interestingly, our work highlights a number of metabolic enzymes as targets
of Fkh1 and Fkh2, 16 of which play a role in central carbon metabolism (Fig. 3.6
and 3.7): HXT5, GND1, RPE1, TAL1, PFK2, PYK1 / CDC19, PYC2, PDC1, ADH4,
CIT1, CIT2, CIT3, ACS1, ACS2 (Fkh1 targets) and GND1, PYK1 / CDC19, CIT3,
ACQO2, IDH? (Fkh2 targets). The deletion of two of these enzymes is lethal: pyru-
vate kinase (PYK1 / CDC19) targets of both Fkh1 and Fkh2 and acetyl-coA syn-
thetase (ACS2) target of Fkhl. Furthermore, deletion of many among the other
16 genes results in reduced growth rates in a number of experimental conditions
(e.g. GND1, RPE1, PFK2, PYC2, PDC1, CIT1, CIT2, ACS1, ACS2 and IDH2). Con-
sequently, the altered growth rate observed in fkh1A, fkh2A and fkh1A fkh2 A mu-
tants [14] may be due to absence in the regulation of one or more of the 16 target
enzymes in the central carbon metabolism. Thus, our work suggests a potential
route for a role for both Fkh1 and Fkh?2 in central carbon metabolism.

When focusing on the 24 (Fkh1) and 8 (Fkh2) cell cycle-regulated metabolic
enzymes across different cell cycle phases (indicated in bold in Fig. 3.6 and Sup-
plementary Text, Fig. S3.8), we observed that Fkh1 and Fkh2 target several cycli-
cally expressed metabolic enzymes that are involved in membrane processes,
which are centred around the two major cell cycle transitions. Specifically, Fkh1
targets PMA1, ALG3, ERS1, ALG2, ALG5 and MNT?2 around the G1/S transi-
tion (G1(P) - G1/S -S) and EXG1, SUN4 and STE6 around the M/Gl1 transition
M - M/G1 - G1). Similarly, Fkh2 targets PMA1, UTH1 and ALG5 around the
G1/S transition (G1(P) — G1/S - S). We hypothesize that Fkh transcription fac-
tors, which are not active after cell cycle exit until the next S phase upon Ndd1
activation [55], affect the plasma membrane by: (i) switching on their targets cen-
tred around the G1/S transition, and (ii) switching these off in S phase due to Fkh
activation upon binding of the co-activator Ndd1 [9, 12]. Following this line of
thought, Fkh1 will subsequently affect the plasma membrane at the late cell cycle
phases, when Fkh are inactivated until the following S phase.

The Forkhead family of transcription factors is defined by a shared DNA-
binding motif, referred to as the winged-helix domain. The mammalian Forkhead
family encompasses 18 subfamilies [56, 57], and the human genome contains over
40 FOX genes. Of these, the FoxM1 and FoxP proteins represent the closest ho-
mologs of Fkh1,2 [48, 58]. FoxM1 was identified to have the in vitro DNA-binding
consensus site TAAACA [59]. This motif shares the core sequence recognized by
other members of the Forkhead family [59] and also matches part of the motif oth-
ers [26] and we, identified for Fkh1,2. The similarity in the binding motif suggests
that some of the target genes retrieved in this work may carry over to the FoxM1
transcription factor. FoxM1 is involved in cell cycle regulation, stress response,
chromatin silencing, and aging [58]. However, if the suggested Fkh1,2-mediated
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regulation of metabolic genes would translate to FoxM1, it would be especially
interesting since FoxM1 has already been implicated in cell division by regulating
the expression of the mitotic Cyclin B [60], homolog of Clb2, and its expression
has been observed in multiple tumor-derived cell-lines (see [61] and references
therein).

Considering that our data point to multiple roles for Fkhs in cell cycle pro-
gression, we have explored the relevance of our ChIP-exo findings for Fkh1 and
Fkh2 effects on cell cycle dynamics (Fig. 3.9). In Fig. 3.9A the regulatory cascade
driving phase-specific events in cell cycle progression is shown: in G1 phase, the
cyclin Cln2, together with the kinase Cdkl1, inhibits the cyclin/Cdk1 inhibitor
Sicl. When Sicl activity is blocked, Sicl-mediated inhibition of Clb5/Cdk1 is re-
leased, allowing it to activate substrates required for DNA replication in S phase.
Subsequently, a Clb/Cdk1 cascade is activated, involving waves of Clb5, Clb3
and CIb2 cyclins (all bound to Cdk1). These waves of cyclins are responsible for
the control of DNA replication and mitotic entry/exit from S through M [62, 63].
In Fig. 3.9B we summarize the evidence of Fkh binding at promoters of target
genes in this cascade. In our ChIP-exo study, CLB2 is confirmed to be a major
target of Fkh1 and Fkh2, as reported [9-15]. Our findings highlight that this is ev-
ident in both exponential and stationary phases for Fkh2. We also confirm SWI5
being target of Fkh2 [10, 11, 64] and FKH2 being target of Fkh1, as reported by
multiple genome-wide studies [24, 25].

Besides known verified targets in the cell cycle cascade, our ChIP-exo exper-
iments highlight three Fkh targets in the cell cycle cascade, previously identified
only by some but not all the ChIP-chip studies, for which experimental validation
is currently lacking: CLN1 and ACE2 being targets of both Fkhl and Fkh2, and
NDD1 being a target of Fkhl (not shown). Further analyses are required in or-
der to validate these findings. If validated they will shed light on possible novel
regulatory mechanisms of Fkhs in cell cycle regulation.

Our study also points to limitations of genome-wide studies, including ChIP-
exo, in the identification of targets, such as the CLB3 gene. Fkh2 binding to CLB3
promoter was shown only by one ChIP-chip study [24]. Furthermore, we have
recently demonstrated that Fkh2 binds to the CLB3 promoter and regulates Clb3
expression, thus synchronizing the temporal expression of mitotic CLB genes in
a linear cascade (Clb5 - Clb3 - Clb2) [16]. However, in our ChIP-exo data for
Fkh2, CLB3 does not score above threshold in any of the three PDMs, and there-
fore it was not considered as a Fkh2 target gene (false negative). This example
highlights that genes that show low DNA binding signal in ChIP studies should
not be regarded as not being regulated. Conversely, a potential regulation may
be suggested for high-scoring target genes. Binding data of transcription factors
provide an indication of potential regulatory activities; however, these are not
proof of such activity, for which an experimental validation would be required.

In addition, our findings do not support previously suggested Fkh targets:
SWI4 and SWI6 for both Fkh1 and Fkh2 (Venters et al., 2011), SIC1 for Fkh1 [24,
25], and CLB5 for Fkh?2 [24]. The latter scenario has been recently excluded by our
independent experimental analyses, showing that CLB5 may not be a Fkh2 target
[16], thus highlighting the occurrence of false positives identified by previous
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Figure 3.9: Fkhl and Fkh2 target genes in the molecular cascade regulating dy-
namics of cell cycle progression. (A) Molecular players driving phase-specific
cell cycle events (see text for details). (B) Overview of cell cycle regulators that
are Fkh targets. The transcription factors SWI4, SWI6, MPB1, SWI5, ACE2 and
FKH? are shown within rectangles.

ChIP-chip studies.

We observed a higher number of correlated retrieved target genes than ran-
domly expected for both Fkh1 and Fkh2 across nine publicly available microar-
ray datasets (Supplementary Excel Table S7). This work points towards future
studies aimed to the experimental validation of the targets retrieved, by assess-
ing changes in gene expression upon Fkh knockout. In our view, priority should
be given to: (i) high scoring target genes as ranked by all three PDMs (Supple-
mentary Excel Table S3), (ii) high scoring target genes identified by all four ChIP
studies available for Fkh1 and Fkh2 (see Fig. 3.6 and Supplementary Excel Table
S5), and (iii) target genes that we identified as highly correlated with Fkhl and
Fkh2 in available gene expression studies (Supplementary Excel Table S7).

Finally, by referencing the KEGG pathways the target genes mapped on, and
providing the number of metabolic targets, our analyses highlighted the poten-
tial of Fkh1 and Fkh2 to connect their specific functions within the core cell cycle
network with other regulatory processes in metabolism and signal transduction.
Altogether, the data presented in this study clearly provide evidence of the wide-
reaching influence of Fkh, and open avenues for further research by pointing to
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the Fkh transcription factors as hubs that integrate multi-scale regulatory net-
works to achieve proper timing of cell division in budding yeast.

Data Availability

A collection of Python scripts reproducing the data integration and Jupyter
notebooks reproducing the data analysis are available as Supplementary Code
Repository and as part of a Github repository (https://github.com/
barberislab/ChIP-exo_Fkhl_Fkh2).

Supplementary data, code and tables are also available at NAR online:
http://doi.org/10.1093 /nar/gkz603.
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Supplementary Materials and Methods

Data annotation through GEMMER

GEMMER is a novel web-based data-integration and visualization tool that we
recently developed for budding yeast [31] (and see Ch. 4. GEMMER integrates
protein-coding genes, interactions and general and functional annotation from
the Saccharomyces Genome Database (SGD) [65], localization and abundance
data from CYCLoPs [66] and YeastGFP [67, 68] databases, and both the time and
cell cycle phase of peak occurrence of RNA transcript levels [18, 42]. We merged
the processed ChIP-exo data for all genes with their annotations by querying the
GEMMER SQL database and merging the information into a new dataset. In ad-
dition, information about literature studies that report a gene as a target, based
on ChIP-chip data, was included [24-26]. The Maclsaac et al. data [26] was re-
trieved through GEMMER. The Ostrow et al. data [24] was retrieved from their
Supplementary Excel file S4. The Venters et al. data [25] was retrieved from their
25C_UTmax Table S4a, using a 5% FDR threshold to select targets of Fkhl and
Fkh2. The Supplementary Code Repository contains Python scripts that repro-
duce this analysis.

Conceptual comparison between GEM, MACE and maxPeak

We performed peak detection by three different methods: maxPeak, GEM and
MACE, and compared the sets of significant target genes retrieved by all of these
methods. Fig. S3.1 conceptually summarizes the principles behind the three peak
detection methods (PDMs) and their specific differences.

Setting thresholds for GEM, MACE and maxPeak

To set thresholds that define which genes are considered targets by each of the
three PDMs, we generated three 2x2 score comparisons (see Fig. S3.2 — S3.4). We
observed a linear trend between GEM and maxPeak SNRs (Fig. S3.2), as well as a
boundary (p-value ~ 0.005) beyond which MACE p-values seem to be enriched
(Fig. S3.3 and S3.4). We chose to use the GEM threshold of SNR > 1 and set the
MACE threshold to p-value < 0.005.

We considered any target gene that is retrieved as significant by both GEM
and MACE as a confident target and therefore we set the threshold of significance
for maxPeak to the lowest score obtained across all four experimental conditions
by any gene that was retrieved by both GEM and MACE. This turned out to a
threshold for maxPeak of SNR > 1 (rounded down from 1.07). Consequently,
in Fig. 53.3) genes with circles in the upper-right quadrant of each panel were
considered targets together with blue circles in the upper-left and bottom-right
quadrants of each panel. Similarly, for Fig. Fig. S3.4) and Fig. S3.5) genes with
circles in the upper-left quadrant of each panel were considered targets together
with blue circles in the bottom-left and upper-right quadrants of each panel.
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Figure S3.1: Illustration of the principles behind the three peak detection meth-
ods (PDMs) employed in this work: GEM (top-left), MACE (top-right) and max-
Peak (bottom). All methods start from sorted and indexed BAM files. The ap-
proaches taken by GEM [35] and MACE [36], are established. The maxPeak ap-
proach counts the number of reads on both DNA strands for each nucleotide
and, subsequently, assigns the single nucleotide with the highest read count as
the gene’s signal. Finally, a signal-to-noise ratio (SNR) is calculated by normaliz-
ing the read count by the 65t percentile of all genes with a read count > 0.
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Figure S3.2: Plot of maxPeak SNRs vs. GEM SNRs for all genes with color indi-
cation for the MACE p-value. (A) Fkhl exponential phase. (B) Fkh2 stationary
phase. (C) Fkh2 exponential phase. (D) Fkh2 stationary phase. The horizontal
and vertical black dotted lines represent the maxPeak and GEM target thresholds.
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Figure S3.3: Plot of GEM SNRs vs. MACE SNRs for genes that scored a MACE
p-value <= 0.01. (A) Fkhl exponential phase. (B) Fkh2 stationary phase. (C)
Fkh2 exponential phase. (D) Fkh2 stationary phase. The horizontal and vertical
black dotted lines represent the GEM and MACE target thresholds, respectively.
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Figure S3.4: Plot of maxPeak SNRs vs. MACE p-values for genes that scored a
MACE p-value <= 0.01. (A) Fkh1 exponential phase. (B) Fkh2 stationary phase.
(C) Fkh2 exponential phase. (D) Fkh2 stationary phase. The horizontal and verti-
cal black lines represent the maxPeak and MACE target thresholds, respectively.
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Figure S3.5: 2-way Venn diagram of target gene overlap among the two PDMs:
GEM and MACE. For this image genes are considered targets when the SNR > 1
(GEM) and the p-value < 0.01 (MACE). (A) Fkhl exponential phase. (B) Fkhl
stationary phase. (C) Fkh2 exponential phase. (D) Fkh2 stationary phase.
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Supplementary Text

Divergence in gene targets retrieved by GEM vs. MACE

Fig. 53.5 highlights the divergence in the targets retrieved by GEM and MACE
when using thresholds of 1 and 0.01, respectively. The majority of genes re-
trieved by either GEM or MACE are not recovered by the other method, although
there is a common set of targets predicted by both PDMs. This divergence led us
to develop the novel maxPeak method to decide whether to consider the non-
overlapping genes shown in Fig. 53.5 as targets.

Comparing target genes retrieved by maxPeak vs. GEM vs.
MACE

We explored the divergence in target genes retrieved between maxPeak, GEM and
MACE. In Fig. 53.6 the Venn diagrams of the number of overlapping target genes
are shown. Strikingly, there is a large number of genes retrieved by only one out
of the three PDMs for all four experimental conditions. We emphasize that the
divergence is not just between GEM and MACE, on the one hand, and maxPeak,
on the other hand, but actually between all the three PDMs. This result may point
to different features of the signal being retrieved by the three PDMs. Therefore,
we explicitly required that target genes need to be retrieved by at least two out of
three PDMs. Of note, by design, target genes retrieved by both GEM and MACE
were also retrieved by maxPeak (see Supplementary Materials and Methods), and
no overlap was observed between MACE and GEM.

Target genes identified by all the three methods

We observed that a small subset of target genes is in common among all the three
peak detection methods, i.e. maxPeak, GEM and MACE. Thus, we refer to these
genes as ‘3x PDM verified’. This subset consists of 31, 84, 6 and 25 genes for
Fkh1 exponential, Fkh1 stationary, Fkh2 exponential and Fkh2 stationary, respec-
tively. In total, these add up to 112 unique genes, 96 and 27 for Fkh1 and Fkh2,
respectively. The ‘3x PDM verified” targets are particularly interesting as these
are genes that are reported as significant targets regardless of the applied PDM.
In Table S3.1, 3x PDM verified target genes per experimental condition are listed
with their standard name, if available.

Quantification of agreement between ChIP-exo peak locations
and published ChIP-chip enriched regions

We downloaded the Supplementary Tables S2 and S4 provided by Ostrow et al.
2014, listing all significant binding events and the upstream regions of gene ORFs
that they considered. We then filtered out the significant binding events that fall
within the upstream region of gene ORFs, and plotted these for each chromosome



116 Chapter 3. ChIP-exo analysis of Fkh1,2

A B
76 0 0 49 0 2
31 84
256 4 308 24
2174 2061
GEM
MACE
maxPeak
C D
25 0 2 44 0 65
6 25
93 6 143 52
2359 2287

Figure S3.6: 3-way Venn diagrams of the overlap of the number of target genes
retrieved among the three peak detection methods: maxPeak, GEM and MACE.
In this image target genes are defined as having SNR > 1 (maxPeak), the SNR > 1
(GEM) and the p-value < 0.005 (MACE). (A) Fkhl exponential phase. (B) Fkhl
stationary phase. (C) Fkh2 exponential phase. (D) Fkh2 stationary phase.

and each Forkhead transcription factor separately. Finally, we overlapped those
with the peak locations that we identified using maxPeak, GEM and MACE.

We summarized all the peak location comparisons in single figures for each
chromosome and Forkhead transcription factor, and for both exponential and
stationary phases. Fig. 3.3 in the main text shows the summary plots for Fkh2
in exponential phase for chromosome XVI, which contains CLB2, a major Fkh2
target. We note that Ostrow et al. 2014 performed the ChIP-chip experiments
in exponential phase; however, we believe that images relative to the stationary
phase may provide additional insight (see Supplementary exo-chip Figures for
the complete set of summary plots).
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Experiment Target genes retrieved by maxPeak, GEM and MACE

ALGS5, BRN1, CLN1, DIN7, ECM10, EGO2, ERS1, EXG1, FHL1,
FIN1, FIR1, FLR1, FRK1, HOS3, IDI1, KIP2, NEW1, OSH?,
PES4, RCR2, RNR1, RPS1B, SAS3, SUN4, TEM1, UBP16, VIK1,
Fkh1 exponential | YDROO3W-A, YKL069W, YLR299C-A, YPL251W

ABP140, ADH4, AIM46, ALG5, APA1, ARK1, ARP7, BFA1, BRN1,
BUB1, BUD3, BUDS, CHA1, CIK1, CIT2, CLB4, CPR7, CSI1,
CSN9, DCC1, DIT1, DIT2, DSE2, ECM10, ERG26, FHL1, FIN1,
FIR1, FLR1, FRK1, GAS3, GEA1, HOS3, HTS1, HXT5, IDI1,
MKK2, MNT2, MUM3, NBL1, NDD1, NEW1, NUD1, NUP2,
NVJ3, OSH7, PDS5, PES4, PMA1, PNP1, RNR1, RPL39, RPL8A,
RPN10, RPN11, RPS1B, RPS22A, SAS3, SCW11, SEG1, SGO1,
SPC24, TDA7, TEM1, TIF1, TIM18, TMN2, TOP2, TRS85, VAC17,
VIK1, VTI1, WTM1, YCS4, YGL007C-A, YGR111W, YLR334C,
YMC2, YNLO89C, YNL174W, YOR314W-A, YPI1, YPL251W,
Fkh1 stationary YPT31

Fkh2 exponential | CLB2, ENV9, PMA1, SRL1, YGL007C-A, YOR248W

ASE1, BUD4, CHS2, CLB2, CLN1, ECM10, EIS1, ENVY, FDO1,
FRK1, HOS3, IDI1, JSN1, KIP2, MTC6, OSH7, RGI2, SCO1, SFG1,
Fkh2 stationary SPO12, SRL1, VHR1, YBR138C, YOR248W, YOR314W-A

Table S3.1: 3x PDM verified target genes, i.e. target genes retrieved by all three
peak detection methods discussed in this work. Genes encoding an enzyme are
indicated in bold. Genes that have not been reported as Fkh targets in previous
ChlIP studies [25] and /or [24] are indicated in red color.

We quantified the overlap in peak events upstream of gene ORFs between
our study and Ostrow et al. 2014. Since in the latter study a window up to 500 bp
upstream of the start of an ORF is considered, as opposed to 1000 bp windows
considered in our work, we counted the number of genes with peaks within any
enriched region identified by Ostrow et al. 2014. However, we observed no addi-
tional overlap for Fkh2 and only four additional genes that overlapped for Fkhl.
As shown in Table S3.2 , between 52% — 82% of all our target genes fall into en-
riched regions as identified by Ostrow et al. 2014. The 18% — 48% of genes that
show a peak outside of enriched regions identified by Ostrow et al. 2014 represent
target genes that we identified, but that they did not. These results highlight the
increased specificity achieved using ChIP-exo as compared to ChIP-chip. Vice
versa, 43% — 51% of the enriched regions identified by Ostrow et al. 2014 that
were upstream of an ORF contained at least one significant ChIP-exo peak (see
Table S3.3). This percentage reflects the higher specificity of ChIP-exo and the
higher stringency applied in this work.
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Fkhl exponential =~ Fkhl stationary =~ Fkh2 exponential =~ Fkh2 stationary
No overlap |54 76 43 106
Overlap 237 340 62 114
Total 291 416 105 220
% Overlap | 81 % 82 % 59 % 52 %

Table S3.2: Quantification of the number of peak events for target genes identified in this work, which do or do not overlap
with enriched regions identified by Ostrow et al. 2014.

| Fkh1 exponential ~ Fkh1 stationary ~ Fkh2 exponential ~ Fkh2 stationary

% ChIP-chip regions containing
a ChIP-exo peak 51 % 50 % 46 % 43 %

Table S3.3: Quantification of the number of ChIP-chip enriched regions identified by Ostrow et al. 2014 that contain at least
one significant ChIP-exo peak.

Functional category | Genome-wide % Fkhl exponential % Fkh1 stationary % Fkh2 exponential % Fkh2 stationary %
None 49.58 -5.93 -6.31 -8.63 -9.12

Metabolism 41.29 -2.46 -2.35 -10.82 -0.84

Cell cycle 4.89 6.45 6.41 12.25 7.38

Signal transduction | 2.29 0.81 0.84 0.57 -0.01

Cell division 1.19 1.56 0.97 7.38 2.44

DNA replication 0.76 -0.42 0.44 0 0.15

Table S3.4: Global function enrichment of Fkh target genes compared to the set of all ORFs. Percentages in the last four
columns are calculated with respect to the “Genome-wide %" column.
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Figure S3.7: 3-way Venn diagrams of the overlap of the number of target genes
retrieved among available ChIP-chip studies. (A) Fkhl exponential phase. (B)
Fkh2 exponential phase.

Overlap of target genes predicted by Maclsaac et al., 2006, Venters
et al., 2011 and Ostrow et al., 2014

In Fig. S3.7 the overlap among retrieved target genes between the three available
ChIP-chip studies [24-26] is shown.

Cell cycle-regulated target genes identified in stationary phase

In Fig. S3.8, cell cycle-regulated target genes of Fkh1 and Fkh2 in the stationary
phase ChIP-exo experiments are shown as a stack plot (analogously to the cell
cycle-regulated target genes in exponential phase shown in Fig. 3.5).

CDC28 as an informative example for expected expression win-
dows of Fkh1 and Fkh?2 target genes

If the expression of target genes that we identified is actually regulated by Fkh1
and Fkh2, those genes would more likely exhibit expression peaks in a window
surrounding, but most likely immediately after, the expression peaks of Fkh1 and
Fkh2. However, this window of gene expression is subjected to noise, since RNA
levels may peak after a delay that may be due to several reasons: (i) the transcrip-
tion factor(s) may not be the only ones regulating the promoter of target genes;
(i) the transcription factor(s) may function in a transcriptional complex where
other components bind at a different timing; (iii) the transcription factor(s) may
be secondary activating elements that cause only subtle changes in the expression
level of target genes; and (iv) the timing of the peak of expression depends on the
mRNA half-life.
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Figure S§3.8: Stack plot of targets identified by ChIP-exo in stationary phase that
have a cell cycle-regulated peak expression level [18]. (A) Fkh1 target genes. (B)
Fkh2 target genes. Within each column a higher position on the y-axis indicates
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Figure S3.8: (Continued) a higher maxPeak SNR. The x-axis indicates the phases
of peak expression of genes, as reported [18]. The color for each gene indicates
its major biological function if identified in GEMMER [31]. Targets marked with
an asterisk are verified by all four ChIP studies, whereas targets marked with a
triangle indicate novel target genes that have not been reported in the previous
ChIP studies. Targets identified as significant by all three PDMs are shown with
a dashed border.

Rowicka et al. [18] reported the timing difference between the CDC28 ex-
pression peak and the expression peak of Cdc28 targets see Fig. 4 in [18]. CDC28
showed two expression peaks at 29.5 and 154 minutes. Generally, when the ex-
pression of a transcription factor begins to increase but is not yet at its peak, acti-
vation of target genes may already initiate and then continue until after the peak
has occurred and the transcription factor is degraded. The distribution of CDC28
target gene expression showed two peaks as well, roughly around 10 — 75 minutes
and 125 - 175 minutes, respectively. Expression of target genes appears to initiate
about 25 minutes prior the CDC28 expression peak is reached, and continues up
to 45 minutes after the peak has occurred.

Global GO term analysis of Fkh target genes

In GEMMER the GO term annotations for all protein-coding genes listed in SGD
(Saccharomyces Genome Database) are retrieved and traced back through the hi-
erarchical tree of GO terms to one of the following high-level GO terms: Cellular
metabolic process (GO:0044237), Cell cycle (GO:0007049), Cell division (GO:0051301),
Signal transduction (GO:0007165), and DNA replication (GO:0006260). These terms
fall under the GO term Cellular process, with DNA replication falling under Cel-
lular metabolic process. Each such GO term annotation is assigned to one of the
high-level terms listed above. For each gene, GEMMER adds up the number of
annotations that fall under each high-level GO term. The GO term with the high-
est count is then assigned as the gene’s primary function.
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Figure S3.9: Overview of metabolic enzymes in central carbon metabolism that
are targets of Fkhl or Fkh2, as indicated by the four available ChIP studies.
Each enzyme is associated with eight squares divided in two rows (Fkhl, top
row; Fkh2, bottom row) representing data analysis of four different genome-wide
studies: [24-26] and this study. Empty squares indicate that a gene was not re-
trieved as a significant target, whereas colored squares indicate positive evidence.
Differences between the results in exponential and stationary phases are visual-
ized through the color of the squares (see the figure insert). Isoenzymes without
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Figure S3.9: (Continued) binding evidence in any of the three available ChIP
studies were neglected. Some metabolic enzymes have no associated squares
due to absence of an isoenzyme with an experimental validation.
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Figure S3.10: Fkh1 and Fkh2 target genes with wide-ranging functionality shown
in KEGG pathways. Here visualized are KEGG maps of autophagy, MAPK sig-
naling and cell cycle (see Supplementary KEGG Figures for all 25 pathways). The
left half of the rectangle representing each gene is associated with Fkh1 results,
whereas the right half is associated with Fkh2 results. Colors indicate available
experimental evidence: targets shown in one of the three ChIP-chip studies (yel-
low); targets shown only by the ChIP-exo study (red); and targets shown by both
ChIP-chip and ChIP-exo studies (green). The color of boxes representing two
genes reflects the highest score retrieved for those genes.

In addition to the formal enrichment test of GO terms among the targets (see
main text), the genes identified in our ChIP-exo experiments were analyzed for
their functional enrichment, focusing on the global rather than on the specific
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functions (see Table S3.4 ). From the analysis we observed that Fkhl and Fkh2
show an increased percentage of target genes that fall within the GO terms Cell
cycle and Cell division, both in exponential and in stationary phases, when com-
pared with the set of all protein-coding genes. In all experiments except Fkh2
stationary phase the percentage of genes with a function in Signal Transduction
was also increased. In contrast, in all four experiments the percentage of target
genes with a function in metabolism was lower than the genome-wide percent-
age. In all, the GO term analyses support the earlier finding that Fkh targets are
primarily cell cycle genes [8].

Summary of metabolic functioning of Fkh target genes

We highlighted the target genes that are metabolic enzymes in central carbon
metabolism. Fig. S3.9 explicitly shows Fkh target genes retrieved by the previous
ChIP studies [24-26] as well as by the ChIP-exo datasets generated in this study.

Functionality of Fkh target genes across KEGG pathways

Fig. S3.10 highlights the wide-reaching functions of the Fkhl and Fkh2 target
genes, visualizing examples of the Autophagy, MAPK signaling and Cell cycle
pathways as reported in KEGG.

Distribution of Fkh targets across KEGG Pathways

The KEGG Pathways were the target genes of Fkhl and Fkh2 occur were ana-
lyzed. In Table S3.5, the genes occurring in a selected subset of the KEGG Path-
ways are reported. We selected a subset of the 89 pathways that highlighted the
diversity of target functions across the cell cycle (cell cycle and meiosis), signal-
ing (MAPK signaling and mitophagy), core metabolic pathways (glycolysis, TCA
cycle, oxidative phosphorylation and biosynthesis of amino acids) and RNA and
protein synthesis, transport and degradation (ribosome (biogenesis), proteasome,
RNA degradation and RNA transport).
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Overlap in Fkh target genes identified in ChIP-chip studies

In Table S3.6 we report the overlap of Fkh target genes identified using ChIP-
chip studies [24-26]. We observe that most of the Fkh2 targets are recovered as
Fkhl targets, although we note that the number of targets reported [24, 25] is
significantly higher for Fkh1 than Fkh2.

| Maclsaac et al. 2007  Venters et al. 2011  Ostrow et al. 2014

Common targets 27 176 1081
Unique Fkh1 targets | 41 1434 1044
Unique Fkh2 targets | 52 43 326

Table S3.6: Common and unique targets of Fkhl and Fkh2 in three published
ChIP-chip studies.
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“Data! Data! Data! I can’t make bricks without clay!”

— Sir Arthur Conan Doyle [1]

Abstract

Multi-scale modeling of biological systems requires integration of various bits
and pieces of information about genes and proteins that are connected together in
networks. Spatial, temporal and functional information is available; however, it is
still a challenge to retrieve and explore this knowledge in an integrated, quick and
user-friendly manner. We present GEMMER (GEnome-wide tool for Multi-scale
Modelling data Extraction and Representation), a web-based data-integration
tool that facilitates high quality visualization of physical, regulatory and genetic
interactions between proteins/genes in Saccharomyces cerevisise. GEMMER cre-
ates network visualizations that integrate information on function, temporal ex-
pression, localization and abundance from various existing databases. GEMMER
supports modeling efforts by effortlessly gathering this information and provid-
ing convenient export options for images and their underlying data.

4.1 Introduction

Biological systems are complex systems: they exist in space and time, and their
behavior results from the coherent integration of functionally diverse elements
that interact selectively and non-linearly [2]. The understanding has emerged
that a cross-talk between molecular pathways is crucial to achieve the system’s
functions. In this context, generation of multi-scale models of biological systems,
spanning multiple spatial, temporal and functional scales, is currently a major
challenge in Systems Biology [3].

Crucial steps in multi-scale modeling are the identification and visualiza-
tion of the biological function, and spatial localization of interactions that occur
among a set of molecules. Tools that retrieve and visualize such interaction net-
works for several organisms exist. However, these are not specific for the bud-
ding yeast Saccharomyces cerevisiae, and do not combine the features of: (i) be-
ing web-based instead of a desktop application, (ii) allowing visual exploration
through simultaneous clustering, colouring and filtering of molecules and their
interactions that are (iii) based on function, localization, abundance, and timing
at which they occur.

Here, we present GEMMER, a novel web-based data-integration and visu-
alization tool for budding yeast that satisfies these three requirements. The tool
provides unique features as compared to existing web-based visualization tools
and databases (see Table 4.1 for a detailed comparison). Furthermore, through its
export options, GEMMER conveniently integrates with external tools that may
be used to build and simulate multi-scale models.
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4.2 Features

GEMMER integrates (i) protein-coding genes, interactions and general and func-
tional annotation from the Saccharomyces Genome Database (SGD) [4], (ii) local-
ization and abundance data from both the CYCLoPs [5] and Yeast GFP Fusion
Localization, YeastGFP [6, 7] databases, and (iii) the timing and cell cycle phase
of peak occurrence of mRNA levels [8, 9]. GEMMER provides distinct webpages
for each protein-coding gene, where this information may be viewed.

Features and information flow of GEMMER are summarized in Fig. 4.1. Af-
ter the user selects one or more genes, for which the aforementioned informa-
tion is retrieved, GEMMER generates an interaction network, which varies across
functional, spatial and temporal scales. Nodes in this interaction network may be
clustered and coloured based on their localization in a number of cellular com-
partments and their functional classification. In addition, interactions may be
filtered out based on: (i) type of interaction (physical, genetic or regulation), (ii)
total number of experiments suggesting them, (iii) unique experimental method-
ology, (iv) type of experimental evidence and (v) number of publications showing
it. Similarly, nodes may be filtered out based on function (process or GO term),
cellular compartment, and cell cycle phase where the peak of transcription oc-
curs. As a result, the user receives as output an interaction network which is
generated by using up-to-date literature data and filtered for their specific needs.

GEMMER provides a set of unique features as compared to existing web-
based tools that allow visualization of budding yeast-specific data, i.e. STRING
[10], BIOGRID [11], APID [12] and IntACT [13] (see Table 4.1 for a detailed com-
parison). These are: (i) Generating interaction networks seeded by > 1 protein;
(ii) Filtering interactions on the number of unique experimental methods that
have been employed to prove it; (iii) Clustering and colouring interactions based
on cellular compartments or GO terms; (iv) Displaying protein expression lev-
els; (v) Filtering nodes based on the network characteristics: degree, eigenvector
or Katz centrality. Conversely, GEMMER currently lacks different visual layouts
and certain export formats, such as PNG, JPEG and XML, features that are instead
available in some of the aforementioned tools.

4.3 GEMMER'’s methodology

GEMMER stores the integrated data from the external databases in an SQLite
database. The latter is updated by using a Python script that downloads data
from the latest available releases of SGD, CYCLoPs, YeastGFP and SCEPTRANS
databases. Periodic running of the update script provides GEMMER with up-to-
date literature data.

The GEMMER front-end provides a user-friendly interface with a set of
menus that facilitate user input. This includes the gene(s) of interest to build
an interaction network, and the filtering, clustering, colouring and scaling of
nodes in the visualized network. Upon querying, the input is processed by a
PHP script that executes the core application. This has been written in Python
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Feature

GEMMER STRING BioGRID

APID IntACT

Interaction networks seeded by two or more nodes

Browsing different organisms

Node size proportional to # interactions in the network

Edge size proportional to # experiments used to show the inter-
action

Coloring nodes based on their GO-term annotated function
Clustering nodes based on their GO-term annotated function
Clustering based on cellular compartments

Different possible visual layouts

Filtering on physical, regulatory and/or genetic interactions
Filtering on number of experiments that show an interaction
Filtering on # unique experimental methods used to show inter-
action

Filtering nodes: degree, eigenvector or Katz centrality
Displaying peaks of transcription levels

Link to original publication through PubMed

Display PDB, Pfam, post-translational modifications

Bitmap or vector image formats available for export

Table formats available for export

X X*
X X
X X
X X
X X
X X
X
VA X**
X X X
X X***
X
X
X
X X X
X X
SVG PNG, SVG PNG
XLSX TSV, TXT,
XML

X
X X
X
X
X** X**
X
JPG, PNG
TXT

Table 4.1: Feature comparison between GEMMER and existing alternative platforms. * network visualization of user-
supplied nodes only. ** visualizations via Cytoscape. *** confidence factor existing but not explicit
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Figure 4.1: GEMMER workflow. GEMMER integrates data from the SGD, CY-
CLoPs, GFP and SCEPTRANS databases, and provides a user-friendly web in-
terface to interact with this data. Physical, genetic and regulatory interactions
for protein-coding genes and their annotations from SGD are integrated with the
localization and abundance data from CYCLoPs and YeastGFP and with the tim-
ing and assignment of specific cell cycle phases of peak transcription retrieved
from SCEPTRANS. The user may query GEMMER for an interaction network ful-
filling certain requirements, and GEMMER interfaces with the SQL database to
produce a JSON file representing an interaction network corresponding to those
requirements. By using D3.js, Cola.js and Cytoscape.js libraries, GEMMER pro-
vides interactive, publication-quality visualizations of the interaction networks
that may be exported to SVG, Excel, JSON and GEXF formats. GEMMER has
been designed to aid in generation of multi-scale visualizations and models for
the budding yeast Saccharomyces cerevisiae. To this end, the exported data may be
imported into desktop applications such as Cytoscape and Gephi.

and interfaces with the SQLite database, ultimately generating a JSON file of
the network to be visualized. GEMMER then visualizes the network as a force-
directed graph by using the JavaScript library D3js, which reads the JSON file.
In addition, alternative visualizations such as hierarchical edge bundling and
a circular layout are provided, together with a constraint-based layout that im-
plements compartment separation with coloured boxes. The latter two make
use of Cytoscape.js [14] and Cola.js (http://marvl.infotech.monash.edu.
au/webcola/), respectively. Accompanying the visualization(s), tables are pro-
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vided with information about each protein and interaction within the network
as well as links via the PubMed search engine to publications with experimental
evidence.

Export options provided are: SVG for the network visualization, JSON and
GEXEF for the interaction network and Excel workbook for the raw data. The
Excel workbook and the GEXF network may be imported into Cytoscape [15] and
Gephi [16], respectively, for further analysis and model building. The webpage
design utilizes the Bootstrap library, which, together with the universality of the
D3js JavaScript library, allows the user to run GEMMER on any of the modern
browsers such as Firefox, Google Chrome, and Safari.

GEMMER is freely available at http://gemmer.barberislab.com.
Source code, written in Python, JavaScript library D3js, PHP and JSON, is freely
available at https://github.com/barberislab/gemmer.

4.4 Conclusions

GEMMER has been developed to integrate existing data on proteins in budding
yeast, by providing publication-quality visualizations of their interactions. The
tool serves as a data-integration hub, and its visualizations should aid exploration
and understanding of complex networks encountered in multi-scale models. The
currently available data and the implemented features, expandable in the future,
achieve this goal. We aim for GEMMER to become a go-to tool in support of the
yeast community.
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“Microbes make up 80 percent of all biomass, says Carl Woese. In one fifth of
a teaspoon of seawater there’s a million bacteria (and 10 million viruses), Craig
Venter says, adding, "If you don’t like bacteria, you're on the wrong planet. This
is the planet of the bacteria." That means most of the planet’s living metabolism
is microbial. When James Lovelock was trying to figure out where the gases
come from that make the Earth’s atmosphere such an artifact of life (the Gaia
Hypothesis), it was microbiologist Lynn Margulis who had the answer for him.
Microbes run our atmosphere. They also run much of our body. [..] This
biotech century will be microbe enhanced and maybe microbe inspired. [...]
Confronting a difficult problem we might fruitfully ask, "What would a mi-
crobe do?”’

— Stewart Brand’

Abstract

With the genome sequencing of thousands of organisms, a scaffold has become
available for data integration: molecular information can now be organized by
attaching it to the genes and their gene-expression products forming maps that
enable functional interpretation of the fitness of the genome. Classical thermo-
dynamics restricts such network-engineering. These restrictions are independent
of mechanism and kinetics, and thereby inescapable. Forgetting these restric-
tions can lead to over-optimistic network designs: is every biochemical network
design feasible, provided one puts classical thermodynamics in place? Or, are
there other, ill-recognized, generic restrictions to bioengineering? We here dis-
cuss how processes away from equilibrium must indeed depend on kinetics and
mechanism, but, importantly, not on all kinetic and mechanistic details: There are
limitations to what the engineering of mechanisms and kinetics can achieve. Im-
portantly, the Non-Equilibrum Thermodynamics (NET) methodology also shows
that system properties that are possible, can be engineered only in certain ways.
The NET methodology enables understanding and perhaps engineering a per-
formance that, by adjusting the network, remains optimal when conditions are
changing. We introduce ‘variomatic” gear shifting as a way that some cells may
use to self-engineer their ways to maximal growth rates in environments that lack
robust resources, such as in environments with fluctuating oxygen levels. Four
billion years ago, bioenergetics may have shuffled ‘electron-writers’, producing
various networks that all served the same function of anaerobic ATP synthesis
and carbon assimilation from hydrogen and carbon dioxide, but at different AT-
P /acetate ratios. This would have enabled organisms to deal with variable chal-
lenges of energy need and substrate supply. The same principle might enable
‘gear-shifting” in real time, by dynamically generating different pseudo-redox
enzymes, reshuffling their coenzymes, and rerouting network fluxes. Using in-
silico analyses, we show that gear-shifting may indeed occur in Clostridium ljung-
dahlii and S. solfataricus. We shall address how Clostridium ljungdahlii may use at

!In response to the 2011 question posed by Edge.org: What scientific concept would improve every-
body’s cognitive toolkit? https://www.edge.org/response-detail/11863
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least two special features and one special pathway to this end: gear-shifting, elec-
tron bifurcation and the Wood-Ljungdahl pathway. Additionally, we find that
there should be a definite effect of the choices of redox equivalents in the Wood-
Ljungdahl pathway and the hydrogenase on the yield of interesting products like
hydroxybutyrate.

5.1 Introduction

Molecules are composed of neutrons, protons and electrons. Due to the electric
charges of the latter two elementary particles, different molecules have different
energies. Energies also differ between different dynamic conformations of the
molecules. Usually there is an equilibration between these conformations such
that a molecule can be characterized by an average energy. The important corol-
lary is that the impact of the molecule on the performance of any system of inter-
est can be described in terms of that average energy rather than in terms of the
impacts of all the molecules of the same identity but in the different conforma-
tions. With the myriads of individual molecules in living organisms with millions
each of conformational states, the phenomenon that impact can be described in
terms of averages is essential for both bioscience and bioengineering. Not even
the fastest computer will ever be able to compute the behaviors of all the individ-
ual molecules of a living cell, first because its capacity is too small, and second
because information is lacking on the initial state of all the individual molecules:
we would not even know where to start computing.

However, we are not interested in the behavior of every individual molecule
of a living cell. We are usually interested in the behavior of populations of cells
that perform a certain function either in the sense of biotechnology or in the sense
of pathophysiology. Accordingly, understanding the behavior of populations of
cells as a function of the average properties of all the molecules of a given identity
within them, is close enough to what we really want. With the added acknowl-
edgement that the molecules of the various identities are engaged in dynamic
networking that through nonlinear interactions gives rise to new functional prop-
erties, this understanding is the ambition of systems biology. The ambition to
predict and engineer towards a useful behavior is then the ambition of systems
bioengineering.

Molecular mechanics or molecular dynamics is the discipline that studies
the dynamic behavior of individual molecules. Statistical mechanics deals with
the statistical properties of ensembles of such molecules. It argues in terms of
probabilities and probability distributions. Whenever the average behavior of
an ensemble of molecules can be described in terms of averaged properties such
as averages, variances and skewness, the discipline becomes statistical thermody-
namics, and when averages suffice, generalized thermodynamics is the discipline
in charge. What is commonly called ‘kinetics” discusses reaction rates in terms of
ensemble averaged concentrations or, if more sophisticated, in terms of activities.
In this sense it is a branch of generalized thermodynamics. In practice kinetics
also has an empirical or a quasi-probabilistic basis and in its extrapolations it is
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not necessarily weary of limitations imposed by thermodynamic principles.

Equilibrium thermodynamics champions at least two such principles. One,
which it shares with (quantum) mechanics, is the law of conservation of energy
(U). Energy U can be brought into a system through heat import, by doing work
on the system, or by importing substances with high energy content [1]. It can-
not be produced or annihilated (dissipated) however. The other is the law of
entropy production, which states that entropy (S5) can only be produced and not
consumed or destroyed. Entropy is the logarithm of the number of realizations
of a system multiplied by the Boltzmann constant. The second law of thermody-
namics basically rewords a probabilistic law i.e. ceteris paribus (i.e. in splendid
isolation) a system will move from a state with lower probability to a state with
higher probability, whenever such movement is possible, and not in the opposite
direction. Movement in this opposite direction would destroy entropy. Ordered
states usually have a smaller multiplicity and hence a lower probability and en-
tropy, than chaotic states of a system at the same energy. Hence this second law
maintains that systems in splendid isolation cannot become more ordered and
the first law states that they cannot grow from low to high energy content. The
paradox that the development of an adult organism from a fertilized egg should
then be impossible, is resolved by acknowledging that such developing living
systems must be open, in order to import energy and to export more entropy
than the order (negative entropy) they create internally. For open ‘metabolic” sys-
tems the two laws of thermodynamics reduce to the requirement that ‘metabolic’
(approximately equal to Gibbs’) free energy can only be dissipated and must in
fact be dissipated to maintain and proliferate the living state [1]. At equilibrium
the free energy differences of all reactions that are possible should equal zero.
Autonomous reactions, i.e. reactions not coupled to any other processes cannot
run uphill in terms of the free energy. This second law of thermodynamics is gen-
eral, i.e. independent of mechanism. No enzyme or network mechanism can be
engineered so that it circumvents this limitation: equilibrium thermodynamics
has the strength that it is completely independent of mechanism.

An underlying and often overlooked limitation is however that the validity
of this thermodynamics itself and therewith the validity of its second law, de-
pends on the proviso mentioned above that dynamic behavior can be described in
terms of average concentrations. In this chapter we shall effectively demonstrate
that if that proviso is not met, the second law per se may not be valid for some
important biological systems.

The coupling of anabolism and catabolism

In its first incarnation, non-equilibrium thermodynamics (NET) dealt with the
paradox how Gibbs energy could be dissipated yet increase at the same time. We
shall envisage two processes in terms of fluxes J, and J., positive when proceed-
ing in the forward direction, i.e. from substrates to products (which for growth
is biomass), each associated with a AG equal to the Gibbs energy of the products
minus the Gibbs energy of the reactants. The two processes represent growth (or
anabolism) and catabolism, as indicated by subscripts a and ¢, respectively. Note
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that a negative value of AG indicates a thermodynamically favorable reaction
through which free energy is dissipated.
Assuming that there is only growth, the rate of Gibbs energy dissipation (®)
should equal [1]
def  diG
ST
;G ;

“= is (an incomplete differential) equal to the Gibbs energy increase due to Gibbs
energy production, which has to be negative according to the second law of ther-
modynamics [2]. Because AG, is positive (usually, though not always [1]), J,
must be negative, implying that growth of a microorganism, or analogously, the
production of value added compounds, should be impossible (in fact negative,
corresponding to death) according to this equation alone. This leads to the para-
dox that life cannot exist (or persist) although it does.

The resolution to this paradox that is practiced emphatically by living sys-
tems is that the thermodynamically uphill and thereby forbidden anabolic pro-
cess is coupled to a thermodynamically downhill process, often called catabolism
(referred to by subscript c), at positive flux J. that dissipates more free energy
than the anabolic process consumes when J, is positive. Consequently, in total
the Gibbs energy is then dissipated at a positive rate ®:

= J, - —AG, > 0. (5.1)

&=J, —AG, + J.- —AG. >0, (5.2)

under the condition that
Jo. - —AG. > J, - AG,.

The coupling does not occur automatically however. It requires some cou-
pling mechanism by which the anabolic flux is pushed towards biosynthesis
by the thermodynamic driving force provided by the free energy of catabolism.
Thereby the anabolic flux becomes a function of both free energy differences. Ac-
cepting that this may be so for both fluxes, expanding both functions as Taylor
series around equilibrium, using that at zero free energy differences the fluxes
must be zero, and neglecting all higher than first order terms, the coupling can
be described by phenomenological coefficients L. and L., in the phenomenological
flow-force relations:

Ja = Laa : _AGa + Lac : _AGC
J, = Leg - —AGy + Lee - —AG,, (5.3)

where AG,, —AG., Laq, Lee, Lea, Lac and J. should be positive, so that also J,
becomes positive, implying the occurrence of growth (see below).

Stochastic fluctuations, attractors and Onsager reciprocity

Eq. 5.3 describe the deterministic behavior of the average system in terms of av-
erage Gibbs energy differences. The molecular world is more variable than this
deterministic behavior however. It is subject to quasi-random reaction events
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that may transiently violate the second law of thermodynamics. Such transitions
must be followed by transitions that return the overall behavior of the system
to the deterministic behavior. The underlying reason for this is that although
systems tend to move from a low to a higher probability state, this probabilis-
tic law is itself subject to stochasticity: systems can transiently move to a less
probable state; the law of movement towards higher probability is only true on
average. Both the deterministic behavior and the behavior that is in transient vi-
olation of deterministic behavior are due to the same processes of rapid energy
exchange between molecules and their environments that occurs at temperatures
above zero Kelvin. In this sense the beautiful figures in cell-biology textbooks fall
short of the reality that is much more chaotic. Only the average could behave in
accordance with the diagrams.

At some initial time point, any real system may be in any state of any prob-
ability [3]. With time it will then, on average, move to more probable states and
as time progresses it will be ‘caught’ by an environment of states that are highly
probable, i.e., by a so-called attractor. These attractors need not be the most prob-
able states but they should be situated on a hill in the probability landscape, sur-
rounded on most sides by states of lower probability. Stable steady states are
such attractors. In such steady states all concentrations are often said to be inde-
pendent of time, but in reality they are not precisely so: They still fluctuate and
are thereby varying with time. It is their time average over some limited time
span that is independent of time. Both thermodynamics and kinetics deal with
such time averaged fluctuating concentrations and they may do this even outside
steady states, as many fluctuations are faster than the times characteristic of the
evolution of the system.

When systems are not yet close to an attractor, there are often great differ-
ences between individual systems, making such conditions unattractive and un-
useful for scientific analysis or engineering. Engineering only one out of every
one million cells in a population in terms of producing something useful is not
usually relevant for bioengineering, because the corresponding productivity will
be low. Existing methods of kinetics and non-equilibrium thermodynamics there-
fore only address systems that are already in densely-populated attractor states
or attractor trajectories. Because of the closeness of those systems and because
of the property that they tend to remain close to the attractor, the fluctuations
around the attractor state are regular [3] (in the sense that they constitute rela-
tively narrow Gaussian distributions).

The fact that most observable and relevant systems are stably in attractor
states, leads to an important law: the system under consideration is stable to-
wards all actual fluctuations. Refining the definition of stability in the sense of
Lyapunov, this means that after any possible fluctuation, the system will on av-
erage ultimately return to a state that is infinitesimally close to the attractor itself
[1]. The return to the attractor state after the fluctuation follows deterministic be-
havior; or perhaps rather vice versa: the deterministic behavior follows the same
path as the response to a fluctuation [4].

The equilibrium state is an attractor. In the above described example, equi-
librium is where both AG are equal to zero and therefore ®., = 0. Considering
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fluctuations, or corresponding variations in the free energy of catabolism only, to
be indicated by 6AG., the excess free-energy dissipation subsequent to the fluctu-
ation is:

§® = 6J, - 0(—AG.) = Le. - (0AG,)?. (5.4)

dJ. represents the catabolic flux that arises immediately after the fluctuation (or
variation) in the Gibbs energy of catabolism, i.e. as a result thereof. Subsequent
to the fluctuation or variation the system must return to the attractor as a deter-
ministic process and must therefore have a positive free energy dissipation, i.e.:

B,y + 6D > 0.

Because the fluctuation or variation started at equilibrium where free energy dis-
sipation ® was zero, the excess free energy dissipation must be positive on aver-
age

0® > 0.

Accordingly, given eq. 5.4, the second law of thermodynamics implies that the
phenomenological coefficient L.. must be positive.

The same argument requires that L,, be positive and sheds light on a para-
dox provoked by the phenomenological equations (5.3): In the absence of cou-
pling of anabolism to catabolism, i.e. when the cross coefficient L,. = 0, there can
be no growth, i.e. J, must be negative as AG,, is (usually [1]) positive. Growth
thereby depends on a positive cross coefficient L,.. Assuming that the magni-
tude of this cross coefficient is subject to catalysis, one might propose to add a
high amount of the corresponding catalyst and thereby obtain as much growth
as one would want. Could such a miraculous growth machine exist?

The answer is negative because the cross coefficients are limited in magni-

tude:
Lac + Lca <2 V Laa : Lcc~

This is because also after any combined fluctuation in the two free energies the
free energy dissipation should be positive. Writing such fluctuations as dAG,,
and dAG, and using the phenomenological flow-force relations, ones finds for
the Gibbs energy dissipation after the fluctuation:

0<od

— (VEun 68y + VT - 65G,)’

+ (Lae + Lea = 2+ VEoaa - Lec) - 8AG, - 6AG,
We define y and the degree of coupling ¢ by:

def VLg. - 0AG,
Y= T 5AG.

def Lac + Lca
1 2- Laa ' Lcc,
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so that the free energy dissipation becomes a parabolic function of y:

5P
< 2
Lec - (6AG,)

=(y+1)*+2 (¢—1) .

Because the free energy fluctuations can be arbitrary, also y can assume any
real value. The parabolic function however is always positive for ¢*> < 1. A
necessary condition for this is that:

‘Lac’ S 2- V Laa : Lcc

This then proves that the cross coefficient L, is limited in magnitude and that the
miraculous growth machine above proposed is in conflict with the second law of
thermodynamics.

More generally, the matrix L of phenomenological coefficients should be pos-
itive definite, as for any set of values of the thermodynamic forces:

T _ Loa Lea G,
o ra=@ 6 (pn i) (Gr) =0
Where the middle part of the equation exemplifies for the two-dimensional case.

Fluctuations versus deterministic behavior

It was Onsager [5] who introduced the principle that we employed above when
mentioning fluctuations, i.e. the principle that the deterministic behavior of a sys-
tem initially displaced somewhat from equilibrium due to a perturbation, should
be equal to the system’s average behavior when relaxing back through fluctua-
tions from that same initial state. This should also be so if that initial state had
arisen through a fluctuation (see equation 3.1 in [4]). The time average in equa-
tion 1.1 of [4] is over an infinitely long period over which the initial displacement
may occur spontaneously through a fluctuation, implying that the principle ad-
dresses the average behavior of lots of occurrences, which is what we here call the
deterministic behavior. This principle may seem obvious because the determin-
istic autonomous behavior of a system can only be due to fluctuations; because
there is no other “force’, it is the fluctuations that are responsible for any dynamics
of the system after a transient perturbation or fluctuation, and this includes the
average dynamics, which is what we observe as the deterministic behavior [1].
As this principle seems obvious, it is worth our while to examine when it
should fail. It should fail if the system were subject to persistent external forces
differentiating between the deterministic and the fluctuation case, or if the system
has a memory of how it arrived at its non-equilibrium state, i.e. if it is non Marko-
vian. If in the deterministic setting an active transcription state were achieved by
a chromatin modification that persists but is not explicit in the description of the
system’s state, whereas in the fluctuation setting it was achieved by a mere struc-
tural fluctuation induced by Brownian motion energy, the principle might fail.
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Onsager reciprocity

The catabolic reaction may consist of the breakdown of a substrate S to a product
P, so that:

AGc = up — HUs,

where ;s and pp refer to the chemical potential of catabolic substrate S and
catabolic product P respectively. Eq. 5.3 states that around equilibrium the
catabolic flux is proportional to this free energy drop of catabolism. This implies
that the dependence of the flux on the chemical potential of the substrate is equal
to minus its dependence on the chemical potential of the product. Assuming that
this is not the case, would lead to the equation

Jc = Lcc,P “HP — Lcc,S “US,

with L. p differing from L., s. In an open network, S and P can fluctuate in-
dependently and also in such a way that their difference is not affected by the
fluctuation. For such an equal fluctuation (dys) in the chemical potentials of the
substrate and the product one finds

5Jc = (Lcc,P - Lcc,S) : 6MS

Because AG. has remained equal to zero, there is no driving force for a catabolic
flux in either direction, so that .J. must remain zero. Hence for a non-zero dys:

LCC,P - Lcc,S d:ef Lcc- (55)

This confirms that one can write the two fluxes in eq. 5.3 as linear functions of
the free energy differences rather than of the individual chemical potentials. Eq.
5.5 thereby serves as an example of Onsager’s reciprocity relations [5].

The anabolic reaction may consist of the conversion of substrate for an-
abolism A into biomass B, so that the fully coupled reaction between anabolism
and catabolism is

S+A+=P+B,

with fluxes:
Jo=J, =L -—AGts = L-(—AG. — AG,)

For the same reasons as above we can write the flux as a linear function of the
overall free energy difference rather than of its individual components. Hence:

dJ, I 0Ja

Lea = TOAG, 7T T OAG.

Lqe,

which, more than the eq. 5.5, is known as Onsager reciprocity. If there are ad-
ditional catabolic and anabolic processes that are not coupled to anabolism and
catabolism, respectively, then these should be added to the equations. This will
not affect the Onsager reciprocity [1].
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The Onsager reciprocity discussed above, is valid close to equilibrium. Fur-
ther away from equilibrium the proof for it breaks down, as:

0<®+0® = (J.+0J.) — (AG. + 6AG,)
= —J. - AGe —6J, - AGe — Jo - 0AG. — 8J, - 6AG,
= —J, - AGe + Lee - AG. - 6AG, — J. - SAG. + Lec - (0AG,)?

In this case there is no reason for L. to be positive, as the leading term —J.. - AG,.
already guarantees a non-infinitesimal positive free energy dissipation whilst the
other terms are infinitesimal. Indeed, Onsager reciprocity has been shown to
be absent in actual cases of mitochondrial oxidative phosphorylation, where the
phosphorylation flux hardly depended on the free energy of respiration whilst
the respiratory flux was greatly reduced by increased phosphorylation potential
[1]. Yet the coupling, i.e. the positivity of L., and of, though perhaps less quanti-
tatively so, L, persists qualitatively.

Returning to near equilibrium conditions, Onsager reciprocity is also an ex-
ample of non-equilibrium thermodynamics (NET), in the sense that it (i) ad-
dresses systems that are not at equilibrium, (ii) describes the system in fewer
than the total number of independent variables (i.e. AG, rather than the indi-
vidual chemical potentials with as corollary Onsager reciprocity) and (iii) omits
some mechanistic detail such as the precise way the coupling (positivity of L.,)
is achieved. Yet this NET differs from equilibrium thermodynamics in that it ad-
mits some mechanistic detail, i.e. the phenomenon and extent of coupling; the
statement that there must be a mechanism making L. > 0.

Microscopic reversibility

As shown in [1] and exemplified above Onsager symmetry is maintained if re-
action systems consist of a sum of chemical reactions in which a defined set of
substrates is converted to a defined set of products, each at a well-defined reac-
tion stoichiometry. Although in the first of his two 1931 papers on the recipro-
cal relations [5], Onsager did use chemical reactions to illustrate the principle of
detailed balance, he did not use this additive property of chemical reaction sys-
tems. Instead he generalized the principle of detailed balance (or ‘microscopic
reversibility’) from a similar principle in chemistry. In the proof of Onsager reci-
procity that we formulated above, this detailed balance principle was used only
implicitly, i.e. when we observed that because A.J. must be zero L.. p must equal
L...s. We there implicitly assumed that there was no other process converting S
to P running at a rate AJ, such that the AJ, jot1 = AJ. + AJ. was zero with
L. p differing from L.. s, whereas in realistic biochemical networks there could
well be such a parallel process. Needed here is indeed detailed balance, i.e. the
phenomenon that for every individual process the net Gibbs energy dissipation
should equal zero.

This has two corollaries. The first is that at equilibrium no futile cycle of
the type A - B — C — A can occur, even though this would not decrease
the Gibbs energy of the system and would not seem to violate the second law
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of thermodynamics. The equilibrium condition does not only require that the
system is minimal in terms of Gibbs energy such that the latter cannot decrease
and therefore remains constant. It also requires that all net fluxes through all
processes equal zero.

Here an equilibrium system differs in an important sense from a system at
steady state. In the latter, the Gibbs energy of the system is constant, but at least
some net fluxes differ from zero and Gibbs energy is being dissipated. (It may be
noted that mathematicians often use the word ‘equilibrium’” for steady state, as
the fluxes balance (‘equilibrate’) such that the net flux into any node of the system
becomes equal to zero. We will discriminate however between non-equilibrium
steady states and equilibrium states, as the fluxes in the former is what makes life
live.).

The second corollary is that already here a mechanistic aspect enters non
equilibrium thermodynamics: it does not only suffice to know that in a system a
substance A can be converted to a substance B, but also whether or not the con-
version can be executed by one, or by more actual molecular processes. Suppose
one observes that in the reference state there is no net flux converting A to B and
then infers that the flux from A to B following a minor increase in the concentra-
tion of A (and a concomitant decrease in the concentration of B) should depend
as much on the chemical potential of A as on minus the chemical potential of B.
For this inference to be valid, one needs to know that there is no additional mech-
anism where the reaction from A to B is coupled to a second process that is not
neutral in terms of Gibbs free energy.

But where does the phenomenon of microscopic reversibility come from?
Onsager [5] presented it as a principle adhered to anyway by chemists. The prin-
ciple requires that for the system A <+ B <> C' <+ A, at equilibrium (for instance)
there should not only be a balance for every metabolite, e.g.:

dA
0=—=(kap+kac) A=kpa-B—kca C
but also a balance between the forward and the reverse flux through any process
between any two metabolites, e.g.:

O0=kap-A—kpa-B.

Let us consider a deterministic situation where there is no such detailed bal-
ance, whilst all concentrations are time independent. Then at equilibrium there
should be direct fluxes between each combination of the three compounds A, B,
and C, and these three fluxes should be equal to one another:

def def def def
© = PAB = UAB — UBA = YBC = UBC — UCB = YcA = Uca — uap > 0.

(We assume that the phantom flux ¢ runs in the direction A — B — C. If not then
the arguments should be redressed accordingly). The u’s refer to the direct unidi-
rectional rates of the reactions. In case of first order reactions, the corresponding



150 Chapter 5. Gear-shifting

kinetic equations are:

def def
©= oA = kap-A—kpa-B

def

= opc = kpc - B —kep - C
def

= ocA = kea - C—kap- A

> 0.

If they are not already present, we now add specific catalysts, such as enzymes,
one for each of these reactions. These catalysts will be highly active but only
present at concentrations much lower than those of the molecules A, B, and C.
Consequently, they cannot alter the chemical potentials (molar Gibbs energies,
related to activities and concentrations) of the three compounds. The equilib-
rium concentrations of the metabolites A, B, nor C should be affected therefore.
A phantom flux may or may not increase in magnitude, but in the consequent
equilibrium the three phantom fluxes should again equal each other. The three
reactions in this network are independent of each other and also their catalysts
can be manipulated independently. Accordingly we now inhibit the catalyst of
the reaction B <+ C so as to reduce the corresponding flux by 50% with the in-
stantaneous effect that:

YBc = paB/2=pca/2

and consequently:

dB _ dC ¢pc _ . dA
@ a2 VT w
and dA (G /(R-T)) 11
—GBc ) _¥YBCc (L1 1
dt 2 <B+C>>O'

Here we have used the usual expression for the chemical potentials for B and C,
e.g.
def ( oG

1B = ) =g+ R-T-In(B/V)
(9713 P,T

More in general one would use the fact that the dependence of chemical potential
on concentration is positive because the dependence of specific molar entropy on
concentration is always negative; with increasing concentration of a solute, order
increases [1].

The result implies that whilst the Gibbs energy of the C' — B reaction started
out as zero, it now increases with time to positive magnitudes. Even though the
increase in the concentration of B and the decrease in the concentration of C may
cause a flux from B to C through A, this flux requires the increase in that Gibbs
free energy and can thereby not prevent it.

Now one could add a catalyst of a new reaction that converts B to C whilst
performing work on some external system, or synthesizing ATP from ADP and
phosphate. This reaction should harvest some of the Gibbs energy in B with re-
spect to C and convert some of that to an external Gibbs energy or to Gibbs energy
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in the form of ATP. The result would be a perpetuum mobile, i.e. a machine per-
forming net mechanical or chemical work, without any Gibbs energy input. Per-
petua mobilia violate the second law of thermodynamics and thereby the under-
lying statistical mechanics principle that autonomous systems never move from
high to lower probability [1, 3]. The implication is that the phantom flux should
be zero and that detailed balance should indeed apply due the second law of ther-
modynamics, which in turns stems from the definition of probability in statistical
thermodynamics.

Gibbs energy dissipation as driver

Indeed, in a usual formulation of the second law of thermodynamics the Gibbs
energy is thereby at a minimum, so that there is no reaction left (within the reac-
tion possibilities) that could lead to dissipation of Gibbs energy. In view of the
above, a better formulation is that for any deterministic (and isothermal, isobaric)
process to proceed, Gibbs energy needs to be dissipated at a positive rate . We
here exemplify this for the chemical conversion of substance X to substance Y
which has progressed to the extent . The rate of the reaction is:

def d
Jxoy = d_i

What is usually called the Gibbs free energy difference of reaction is then:
def dG

AGx_y = €& Ly — jhx

The second law of thermodynamics requires that the dissipation (loss) rate of

Gibbs energy

dG
o L = Jxoy - —AGx_y >0

hence

—AG 1
X—=Y d:ef d:ef RXY > 0.

Ix 5y Lxy

In words, a reaction cannot have a zero resistance or an infinite conductance, i.e.
a net reaction cannot proceed if there is no net driving force for it. The Gibbs
energy dissipation ®, which equals the entropy production [1], keeps processes
running, but we identify the Gibbs energy dissipation per unit process, usually
called the free energy difference across the process, as the driving force. If suc-
cessful because there is a nonzero conductance L, this force causes change, i.e. a
process at flux J. This generalizes the Newtonian force concept that is associated
with the cause of the displacement (when there is lots of friction, or acceleration
in vacuo) of macroscopic objects in time. The above analysis has the corollary that,
as in macroscopic mechanics, systems do not change in the absence of any such
a force. Since Biology requires change in the sense of growth and development
and growth.
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Figure 5.1: Scatterplot to illustrate the (sampled) relationship between ® and q.
1000 parameter samples for AG, € [0,40], AG. € [—40,0] (with their ratio con-

strained such that log 10 ‘ 28“ ’ € [—1,1], i.e. a maximum of ten-fold difference in

either direction), and L,,, L. and L. constrained to the interval [0, 2] were used
to calculate corresponding values for ¢ and ®. Only for ¢ < 1 are ¢ values all
above 0. This simulation does not constitute a proof but merely serves to illus-
trate the relationship between ® and ¢ for the specified ranges of the free energies
and the coupling coefficients.

The phenomenological stoichiometry

The degree of coupling [6] is quantified by the ratio of the cross coefficient L, to
the straight coefficients and has been defined, for near equilibrium steady states,

as
def Lac

= V Lcc ’ Laa .
As illustrated in Fig. 5.1 on the basis of eq. 5.3, this degree of coupling ¢ has to lie
between 0 and 1 for it to be guaranteed that the free energy dissipation is positive

(a proof is not given here but is available (Westerhoff, unpublished)).
With Z defined as [6]:

(5.6)

Laa
Y
LCC
Lac

and noting that ¢ - Z = 72, the so-called flow(J)-force(—AG) relations in eq. 5.3
can be rephrased as [1, 6]

J =

(5.7)

Ja . 2 AGCL
L. _Ac. 147 TAG,

J. AG,
—Lcc-—AGc_l_q'Z.—AGC' (5.8)



Chapter 5. Gear-shifting 153

~1
These equations show an asymptote when Z > (q : _AAG(C;C) (see Fig. 5.2). For

q close but not equal to 1, the flow ratio J,/.J. becomes more substantial with
increasing Z until it reaches a maximum well before the asymptote, after which it
decreases with Z: then the amount of slippage becomes more and more excessive.
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Phenomenological stoichiometry (2)

Figure 5.2: Plot of the ratio of anabolic and catabolic fluxes as a function of Z
as defined by eq. 5.8. The flow ratio (solid lines) has a vertical asymptote (dotted

—1
vertical lines) at Z = (q . —AAG§C> where J. = 0. In the scenario where ¢ = 1

(black line) the flow ratio increases linearly with Z and at the vertical asymptote
both fluxes pass through 0. When ¢ is almost but not quite equal to 1 (colored
lines) as the phenomenological stoichiometry increases towards the asymptote,
the anabolic flux decreases and even becomes negative implying that biomass is
being degraded instead of synthesized whilst at the same time catabolism con-
tinues though at a slowing rate. At the asymptote the catabolic flux becomes
zero and changes sign so that for even higher phenomenological the negative
anabolism drives the reversal of catabolism: nutrition is rebuilt driven by the
degradation of biomass, i.e. not a highy biological state (not pictured). When the
free energy of anabolism is increased the vertical asymptote moves left and the
flow ratio decreases (blue vs. green vs. red line).

Anabolism (J,) decreases linearly with the back pressure exerted by its own
free energy (Fig. 5.3). Growth comes to a halt at a ‘static head’ free energy ratio

of: AG
a q
- (5.9)
< _AGC ) static head Z

Catabolism then still continues (Fig. 5.3) unless there is complete coupling (¢ = 1).
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Figure 5.3: Plot of the relationship between the anabolic flux J, and catabolic

flux J. and the ratio of free energy absorbed and released, respectively, by these

processes _AAGC‘;C. For this plot we used L., =1, AG, = —40,¢ =09and Z = 1.5

which according to eq. 5.9 imply that the static head occurs at _AAG(‘;C = 0.6.

The flow ratio J is given by:

Ja ~7- 5%
gdtde _z. 4 G (5.10)
Je l—q- 7 - =X&

This equation, together with Fig. 5.2 (see the black line in Fig. 5.2 or anywhere
sufficiently far away from the asymptotes, i.e. in all cases where there is no sub-
stantial slippage), explains why Z is called the phenomenological stoichiometry:
at full coupling it equals the ratio of growth rate to catabolic flux, i.e. J = Z
and at very low free energy of anabolism fAGé’c ~ 0), it roughly equals the ra-
tio of growth rate to catabolic flux, i.e. J ~ ¢Z, which also equals Z if there is
little effective uncoupling. The equation also implies that, unless ¢ is close to 1,
at low free energy of anabolism the flow ratio should decrease almost linearly
with increasing free energy of anabolism (Fig. 5.4). Because the denominator in
this equation goes to zero, at higher such free energies of anabolism, this decrease
should become progressively stronger (Fig. 5.4).

The thermodynamic efficiency, equal to the product of the flow ratio with the
ratio of free energy differences,

2
AG, AG,

_ Ja-AG, _y q'—AGC_Z'(fAGC> (5.11)

n_Jc'_AGC_ ]_—qZ AG, :

—AG,

thereby exhibits an optimum in its variation with the free energy of anabolism
(Fig. 5.4).
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Figure 5.4: Plot of the relationship between the flow ratio and thermodynamic
efficiency and the ratio of free energy release. For this plot we used L.. = 1,
AG, = —40,q = 0.9 and Z = 1.5.

Above we saw that anabolic flux, flow ratio and efficiency all increase with
tighter coupling. After billions of years of evolution one might therefore ex-
pect the degree of coupling to equal 1 meaning that coupling would be com-
plete. In reality coupling is less than complete [1]. The reason is of interest to
bio-engineering, as ¢ might be a parameter to use in engineering towards better
productivity. There are at least three feasible explanations for this lack of com-
plete coupling. The one referring to physical-chemical limitations to stability, is
perhaps most pertinent for the many cases where ion-gradient dependent free
energy transduction is involved: it may be impossible to make membranes fully
tight with respect to ion leakage. A second explanation referring to other free en-
ergy dissipating processes that are essential to maintain the living state, so-called
maintenance processes, is also feasible. Perhaps a more intriguing explanation
was developed by [7]: incomplete coupling might itself be optimal. Determining
for each degree of coupling the anabolic free energy optimal for achieving maxi-
mum thermodynamic efficiency, and then plotting anabolic flux or flow ratio (all
normalized in some way by Z) for varying degrees of coupling as a function of
the optimal free energy of anabolism, optima were found at incomplete coupling
([1] page 374). The values found for free energy of anabolism, degree of coupling
and efficiency did make sense for mitochondrial oxidative phosphorylation [7]
and microbial growth [1]. The success of this theory was surprising because its
computations used the above proportional relationships between fluxes and free
energy differences, as well as Onsager symmetry, whilst the systems addressed
were too far from equilibrium for the proofs of these properties to persist. Any-
way the concept that living systems may adjust the degree of coupling in order to
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attain optimality, and the idea that there could be more objective functions than
growth rate or growth yield, will inspire us below, when we consider adjustment
of the phenomenological stoichiometry Z.

In the rest of this chapter, we shall develop a NET approach that should en-
able us to deal with biological systems which adjust stoichiometries of reactions
(or the more closely related phenomenological stoichiometry Z) rather than the
degree of coupling. We shall identify a ‘variomatic” strategy, i.e. one in which
an organism optimizes the stoichiometries. With this we shall show how, useful
NET approaches can be developed by allowing a limited amount of mechanis-
tic detail to enter the considerations. We will then illustrate that this variomatic
gear-shifting principle may have been adhered to by early life forms on earth:
e.g. the acetogenic bacterium Clostridium ljungdahlii and the Archaea S. solfatari-
cus through in-silico analyses.

5.2 Results

NET works after all? Stability criteria

Metabolic networks exhibit relationships between so-called elasticity coefficients
and control coefficients [8, 9]. The most relevant example here is the concentration
control connectivity law for systems at steady state [8]

Yoo ek, =, (5.12)
=1

The left hand-side describes the summation over all m reaction processes, of the
multiplication of the control exercised by process i over the concentration (chem-
ical potential) of metabolite X; with the elasticity of process i with respect to the
concentration of metabolite X};,. The right-hand side of the equation is minus the
Kronecker delta, which equals 0 for j # k and 1 for j = k. Elasticity coefficients
are local derivatives of the logarithm of any process rate with respect to the loga-
rithm of the chemical potential of any freely fluctuating metabolite. They contain
the summaries of the kinetic details of the processes that suffice to determine the
control of the network. They harbor some kinetic detail but not all. The control
coefficients are the dependencies of the logarithm of the chemical potentials at
steady state on the logarithm of any of the process activities. Logarithms are here
natural (In), and chemical potentials are normalized by RT. When emphasiz-
ing the thermodynamic nature of this law even further, the term ‘concentration
of” is replaced by ‘chemical potential of’. The law has been proven by using
the requirement that the deterministic response of the system to a fluctuation in
the chemical potential of X, alone, must be such that that chemical potential re-
turns on average to its initial value, whilst all other chemical potentials remain
unchanged [8]. Inverting the argument, we here propose that this connectivity
property is the stability criterion for non-equilibrium steady states, also for those
beyond the Onsager domain.
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The variomatic strategy

When plotting the anabolic flux as a function of the free energy of anabolism
(taken relative to the free energy of catabolism, i.e. ) for various values of the
phenomenological stoichiometry Z, one obtains (Flg 5 5) a family of downward
straight lines, running from (0, ¢ - Z) to (£,0). At lower values of the free energy
of anabolism, higher phenomenological stoichiometries lead to higher anabolic
fluxes (green line vs. blue and black lines), but at more challenging free energies
of anabolism, the systems with lower values of Z lead to faster anabolism (black
line vs. green and blue line). This is akin the effect of shifting to lower gear
(decreasing Z) when driving a car (flux) up a steeper and steeper mountain road
(higher free energy ratio).

2.51
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2.0 — £=2
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Figure 5.5: Normalized anabolic flux versus ratio of free energy differences.
Straight lines: Anabolic flux J, (normalized by L.. - —AG.) as a function of the
free energy of anabolism (normalized by the free energy of catabolism, i.e. AAGG

for a degree of coupling ¢ = 0.9 at various values (i.e. 0.5, 2 and 4) of the phe-
nomenological stoichiometry Z. The red curve connects the states produced by

the so-called variomatic gear shifting defined in the text.

What we here call the variomatic strategy would optimize the gear shift-
ing so that always the highest anabolic flux is attained at every free energy of
anabolism. Equating the derivative of the anabolic flux with respect to the sto-
ichiometry, to zero, one finds the optimal phenomenological stoichiometry for
every free energy of anabolism:

1 —AG,
Zoptimal = 9 “q- AG, (5.13)

This confirms that with increasing slope (AG,,) it is better to shift to lower gear,
i.e. to pathways in the metabolic network that have a reduced phenomenological
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stoichiometry. It also shows that if more input free energy is applied, it is better
to operate at higher gear. Inserting this expression into the anabolic flow-force
relationship for the optimal phenomenological stoichiometry:
Ja ¢ —AG.
= 1. 14

Le-—AG. 4 AG, 6-14)
This variomatic curve is shown as the hyperbolic decrease with anabolic free en-
ergy in Fig. 5.5. The ratio of the anabolic flux of the fixed stoichiometry network
to that of the variomatic network is:

AG,
Ja, fixedz 4 AG, 4 Z- Zj —AG. <1 (5.15)

J a, variomatic _AGC q

which is always smaller than 1 except for when Z precisely corresponds to the
optimal gear setting at that anabolic free energy (see above). Variomatic gear
shifting in anabolism should be beneficial for anabolic flux, especially under con-
ditions of variable free energies.

When discussing ‘gears” we may seem to refer to mechanism, whereas 7 is
a phenomenological stoichiometry that is only indirectly related to the mecha-
nistic stoichiometries. Moreover, this relationship depends on the mechanism of
uncoupling (see page 385 in [1]). Yet, in all mechanisms of uncoupling exam-
ined [1], the phenomenological stoichiometry increases monotonically with the
mechanistic stoichiometry, if the uncoupling mechanism is constant in activity
(see page 385 in [1].

Gear-shifting in acetogenic bacteria?

Our understanding of the origin of life during the early periods of our planet is
still lacking [10]. In the early soup of chemicals, some billion years ago, no organic
carbon compounds may have been abundant, there was no oxygen [11] and the
question of how life got going is therefore intriguing [10]. A critical question in
this regard is how the early organisms could produce their ATP or at least extract
free energy from their environment and convert this into some utilizable form,
and grow autotrophically on the available mixtures of CO, CO; and Hs.

C. ljungdahlii is one of the few organisms that are able to grow under the
highly challenging conditions that may characterize the early billenia of planet
earth, in which there was neither organic carbon abundant, nor any other com-
plex source of Gibbs free energy, nor molecular oxygen, or other suitable electron
acceptors. Microorganisms called acetogens, like C. l[jungdahlii, may have been
important for the origin of life on this planet [10, 12]. They can fix carbon dioxide
anaerobically using hydrogen as the electron donor in processes coupled to the
synthesis of ATP [13, 14]. Specifically, C. [jungdahlii and other acetogens are able
to produce acetate from CO, and molecular hydrogen:

It has been discussed that acetogens have this fairly unique capability not
by possessing a unique protein, but rather by having a unique pathway, i.e. the
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Wood-Ljungdahl pathway [15]. We examined whether the information com-
prised in the genome sequence of C. l[jungdahlii and the annotation thereof, con-
firms this capability. To do this, we used the genome-wide metabolic map
(GeMM) already published in [16] and applied flux balance analysis (FBA) [17].
We changed medium conditions and the objective function to reflect the aceto-
genesis problem. We also added any missing reactions that were considered in
[15] but not in the published GeMM, see the Methods section 5.4. This involved
5 redox-coenzyme variants of existing reactions in the reconstruction (Table 5.3).

Schuchmann and Miiller [15] highlighted the Wood-Ljungdahl pathway
(WLP) as a network feature enabling to overcome the difficulties faced by early
colonizers of Earth. Since the WLP is ATP-neutral, an additional “trick” is also
required however so as to be enable the organism to harvest the limited amount
of Gibbs free energy made available by the WLP. This trick has been identified as
electron bifurcation.

Acetogens are home to redox enzymes that interconvert coenzymes such as
NAD(H), ferredoxin, a quinone, or NADP(H). These include so-called electron
bifurcating enzymes [18], which have three ‘writer’ domains, enabling them to
carry out two different redox reactions starting from the same electron donor but
running to two different electron acceptors in the two remaining writer domains,
one thermodynamically uphill and the other thermodynamically downhill; the
third theoretical reaction should be forbidden by some mechanism: they do this
in a coupled way, enabling the first of the three reactions to proceed using the
driving force of the second. An example is the non-membrane bound hydroge-
nase Hyd ABCD of A. woodii, which has electron centres (cofactors or prosthetic
groups that can store electrons) on board, i.e. iron-sulphur centres and flavins,
and three writing domains [19], i.e. for the oxidation of hydrogen, ferredoxin
and NADH. By proper coupling of these writings the enzyme can reduce ferre-
doxin (uphill) at the same time as NAD (downhill) whilst oxidizing hydrogen.
Two thirds of the reduced ferredoxin and NAD are next used to reduce carbon
dioxide to acetate therewith providing the carbon building blocks necessary for
growth biochemistry. One third of the reduced ferredoxin is oxidized by RnfB,
a writer in the membrane bound Rnf complex. A second writer in this complex
(RnfC) uses the electrons to reduce another molecule of NAD. Possibly also for
the earliest bioenergetics of this planet, these writings may have been coupled to
the action of a third writer (RnfD), i.e. one that enables the outward movement
of sodium ions across the membrane. This generates an electrochemical potential
difference for Na™ across the bacterial membrane, which can then be used by the
sodium motive ATPase of the organism to drive the synthesis of ATP [20]. The
Rnf complex lacks the cytochromes of the better known, more “‘modern’, electron
transfer chains, and may thereby constitute one of the earliest mechanisms for the
generation of an electrochemical potential difference able to drive the synthesis
of ATP.

Schuchmann and Miiller [15] described how the WLP and electron bifurca-
tion could lead to the production of ATP from ADP and phosphate provided use
of two more transmembrane enzyme complexes is made, i.e. the H*-ATPase and
the Rnf complex. They did not show whether other solutions to the ATP synthe-
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sis problem may be possible, and whether what they proposed was in immediate
concordance with the knowledge integrated through the genome-wide metabolic
maps of the organisms [16].

Here, we wish to compare the analysis by Schuchmann and Miiller with
the predictions of maximal ATP synthesis emanating from the genome-wide
metabolic reconstruction of the model acetogen Clostridium ljungdahlii through
flux-balance analysis (FBA) [17]. Some analysis on the effect of redox equiva-
lents on growth and product synthesis was already present in [16]. Specifically,
it was shown that the genome-wide map predicts the possibility of growth on
CO2/Hjy and CO and the effect of various options in redox equivalents were ana-
lyzed under the knockout of acetate kinase. We extend on that analysis by includ-
ing various reactions that were considered in the treatment by Schuchmann and
Miiller but were not in the GeMM constructed by Nagarajan et al [16]. Specifi-
cally, we will investigate the various alternatives in the electron donor-acceptor
combinations for various enzymes and their effect on ATP yield coupled to ace-
togenesis. Additionally, we will focus on the importance of the Wood-Ljungdahl
pathway as opposed to single enzymes, the need for electron bifurcation and the
Nfn complex, the concept of gear-shifting, the requirement of low gear and ad-
vantages of high gear operation, and how much product yield might be attained
when engineering C. ljungdahlii with two additional genes for producing poly-
hydroxybutyrate (PHB) under various redox alterations.

The WL pathway and a hydrogenase are essential

In line with the analysis in [15] we asked the genome-wide metabolic map to
produce acetate rather than biomass at zero maintenance choosing the variant of
the formate dehydrogenase that oxidizes ferredoxin. This indeed yields a flux
distribution with positive flux through the Wood-Ljungdahl pathway plus the
hydrogenase, Nfn and Rnf complexes and the H*-ATPase. We next deleted every
enzyme of this pathway one by one and confirmed that in all cases except the
formate dehydrogenase this eliminated the production of acetate. The formate
dehydrogenase is not essential because the formate may be alternatively synthe-
sized through the pyruvate formate lyase. This shows that the total genomic
information on C. ljungdahlii contained in the annotated map, confirms the no-
tion that almost the entire Wood-Ljungdahl pathway is essential for autotrophic
growth of C. ljungdahlii in the presence of hydrogen gas. It is the pathway that
matters, not just a single enzymatic step.

Furthermore, we investigated the essentiality of the hydrogenase. When
deleting both variants of the hydrogenase (i.e. the one with Fd + NAD acceptors
and the one with Fd + NADP as electron acceptors) the organism was predicted
to be unable to make acetate. With either of these hydrogenases the organism
was predicted to be able to produce the acid. This shows that the network prop-
erty allowing for acetate production autotrophically is the presence of the full
Wood-Ljungdahl pathway and a hydrogenase.

In these computations, we configured the Wood-Ljungdahl pathway so as to
use reduced ferredoxin both to reduce carbon dioxide to formate and to reduce
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a second such molecule to carbon monoxide. In the former, ‘methyl” branch of
the pathway, two molecules of NADH were used for the further reduction of the
formate to the methyl group. The hydrogenase reduced two oxidized ferredoxin
molecules and two NAD molecules by using molecular hydrogen as the electron
donor. In these processes one ATP is used in the formyl-THF synthetase reaction,
whereas a second one is produced by the reverse operation of acetate kinase.
Consequently, the process merely dissipates the 40 k] /mol of Gibbs energy that
the 4 hydrogen molecules plus 2 CO; molecules have in excess compared to the
acetate molecule [15]; it does not capture part of this Gibbs free energy in the
form of phosphorylated ADP. Since some ATP is necessary for the conversion
of acetate to biomass according to the biomass synthesis equation, the pathway
shown in 5.6 can produce acetate but cannot produce growth. It cannot even take
place in realistic organisms that are not growing, since these require Gibbs free
energy for maintenance.

ATP coupled to the acetogenesis pathway

In figure 3 of [15] the ATP yield per acetate is considered for 6 different combina-
tions of 2 hydrogenases and 3 forms of the formate dehydrogenase. The chemical
reaction 5.16 may be coupled to the generation of up to roughly 1 ATP. The pre-
cise yield of ATP per acetate depends on the electron donors and acceptors used
in various steps in the WPL and the hydrogenase and on the presence or absence
of electron bifurcating steps. Figure 3 in [15] therefore considered the question of
finding the unknown coefficient X in

2CO, + 4H, — CH3COO™ + H" + 2H,O+ X ATP (5.17)

or at least find a pathway for which X is positive.

It is not trivial that asking the extended genome-wide metabolic map for
maximum ATP yield starting from 2 CO, + 4 Hy would yield the same results
as the theoretical analysis in [15]. First of all, reactions may be encoded with
different stoichiometries and co-factors. Secondly, the complete genome might
contain reactions not considered by Schuchmann and Miiller. And thirdly, the
GeMM constructed by Nagarajan et al. lacked reactions that were considered by
these two authors.
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Figure 5.6: Visualization of the flux distribution when asking for ATP and acetate on a CO; and Hy mixture. CO; and H,
are taken up in a 4:2 ratio and together reduce to 1 mole of acetate. Reactions carrying no flux are colored in grey, reactions
carrying flux are colored from low (yellow) to high flux (red). The molecule of acetate is exported in symport with a proton,
but is not consumed on the inside and is not electrogenic, hence cannot drive ATP synthesis. To reproduce one of the scenarios
in the analysis of Schuchmann and Miiller, we allowed only the formate dehydrogenase alternative oxidizing ferredoxin, the
hydrogenase reducing NAD* and the methylene-THF dehydrogenase and reductase as described in [15] to carry flux. The
combination of enzyme alternatives shown here does not have any further ability to couple this process to ATP synthesis, as
also shown in the 0 (0) containing box in Table 5.1.
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As a preliminary check we made sure the model was not capable of gen-
erating ATP from nothing in any of the scenarios, see methods section 5.4. We
then performed FBA with the maintenance reaction (ATP — ADP + phosphate)
as the objective function, i.e. requiring the network to phosphorylate ATP. We
presented the GeMM with the CO,/Hs medium described before and forced the
organism to complete the reaction 2 COy + 4 Hy — 1 CH;COO~ + H™ +2H50
for the redox reactions that were considered by Schuchmann and Miiller but were
not in GeMM and compared the results. The corresponding maximal ATP yields
are listed in the first two columns of Table 5.1 and the predictions agree perfectly
with the ones by Schuchmann and Miiller [15].

We extended the scenarios considered in [15] by adding variations of the
methylene-THF reductase and the methylene-THF dehydrogenase reactions that
were included by Nagarajan et al. [16] (see methods section 5.4). This yields
a total number of 3 x 2 x 2 x 2 = 24 scenarios (Table 5.1). We included the
flux through the Nfn complex in parentheses in Table 5.1. With respect to the
suggestion by Schumann and Miiller that electron bifurcation is essential for ATP
production, our results show that if so, this need not be electron bifurcation at
the Nfn complex. There were multiple scenarios in which positive ATP yield was
obtained whilst the Nfn was inactive (Table 5.1). Also note that the direction of
the flux through the Nfn complex flux differs between scenarios.

Judging from the simulation results and from careful manual bookkeeping,
the electron bifurcating MTHER reaction structurally yields an additional 0.5 ATP
per acetate. Rather than using a single molecule of NADH to reduce methylene-
THF to methyl-THF, it couples this exergonic reaction to the endergonic reduc-
tion of ferredoxin by NADH. This electron-bifurcating reaction yields a mole of
extra NAD™ and a mole of reduced ferredoxin per mole of flux through the WLP.
Through the Rnf these can together pump 2 additional protons across the mem-
brane which yields 0.5 ATP through the H*-ATPase. Similarly, the methylene-
THF dehydrogenase oxidizing NADH that was envisioned in the analysis by
Schuchmann and Miiller yields 0.25 ATP more than the NADPH variant which
was encoded in the GeMM. In the latter the NADP needs to be re-reduced at
the cost of oxidation of NADH costing one half mole of reduced ferredoxin and
NADH, which are made available by half a turnover less of the Rnf complex.
This results in one proton less being pumped over the membrane by the latter
and therefore a 0.25 loss in ATP.

As highlighted by the orange boxes, the FBA computation can violate the
second law of thermodynamics, by predicting and ATP/acetate yields > 0.8, the
ratio allowed by the energetics of 40kJ in the overall process reduction of CO,
by hydrogen to acetate relative to the Gibbs energy of ATP synthesis from ADP
and phosphate which may be close to 48k.J per mole [1]. Accordingly, the results
in these boxes are unrealistic. The results in the yellow boxes are also unrealistic
as they do not yield any ATP for cell maintenance metabolism. The results in the
red boxes are unrealistic because they only cost ATP.
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MTHFR NADH 2 NADH - FDV
MTHFD NADH NADPH NADH NADPH
HYD FD + NAD | FD + NADP | FD + NAD | FD + NADP | FD + NAD | FD + NADP | FD + NAD | FD + NADP
= | FD*~ 0(0) 0.5 (-1) 0.25 (-0.5) 0.5 (0) 1(-1) 0.25 (0.5) 0.75 (-0.5)
8 [ FD?~ + NADPH | 0.125(0-25) | 0.625(-0.75) 0.375 (-0.25) | 0.625(0.25) | 1.125(-0.75) | 0.375 (0.75) | 0.875 (-0.25)
Ho 0.25 (0) 0.625 (-0.75) | 0(0.5) 0.375 (-0.25) | 0.75 (0) 1.125 (-0.75) | 0.5 (0.5) 0.875 (-0.25)

Table 5.1: Predicted moles of ATP produced per acetate when performing FBA on the extended genome-wide reconstruction of C. ljungdahlii for the Wood-
Ljungdahl pathway. We performed the analysis for various electron donors and acceptors, i.e. the donor for the formate dehydrogenase (FDH; for which
the electron acceptor is always CO2, which is reduced to formate), the electron accceptor from the hydrogenase (HYD; its electron donor is always molecular
hydrogen), and the electron donor to the methylene-THF reductase (MTHFR; the electron acceptor is always methenyl-THF which is reduced to methylene-
THF) and the electron donor to the methyl-THF dehydrogenase (MTHEFD; the electron acceptor is always methylene-THF which is reduced to methyl-THF), as
indicated by the row and column headers. The electron donor to MTHFR indicated as 2 NADH - Fd" refers to an enzyme complex such as the one in Moorella
thermoacetica [15] where 2 molecules of NADH serve as electron donor and oxidized ferredoxin and CH2-THF as electron acceptors, which is then another
electron bifurcating reaction. The - in front of Fd refers to its use as electron acceptor, not donor. The superscript refers to its formal electric charge. The results
in the two left-most columns are in agreement with the analysis by Schuchmann and Miiller (their figure 3) and here extended to include the methylene-THF
dehydrogenase and reductase alternatives. In parentheses we show the flux through the Nfn complex reaction (relative to the acetate production flux of 1),
counted positive when in the direction of oxidizing Fd> and NADH. Cells colored red have a negative ATP yield and signify it was not feasible to produce
acetate. Cells colored orange are produced by the FBA simulations but thermodynamically not feasible. Cells colored yellow correspond to situations in which
acetate may be produced but not coupled to ATP production. This similarly cannot occur alone in living organisms due to their maintenance ATP requirement.

MTHFR NADH 2 NADH - FDV
MTHFD NADH NADPH NADH NADPH
HYD FD + NAD | FD + NADP | FD + NAD | FD + NADP | FD + NAD | FD + NADP | FD + NAD | FD + NADP
= | FD- 0.29 (0) 047 (-0.65) | 0.22(0.22) | 0.35(-0.24) | 05(0.25) | 0.5 (-0.13) 043 (05 | 0.5(-0.13)
o [ FD?” +NADPH | 036(025) | 0.5(025) 0.25 (0.38) | 0.41 (0.06) 05(0.75) | 05(0.12) 05075 | 05(0.12)
Ha 0.43 (0) 0.5 (-0.25) 0.29 (0.29) | 0.41 (0.06) 0.5 (0.5) 0.5 (0.13) 0.5 (0.5) 0.5 (0.13)

Table 5.2: Hydroxybutanoyl-CoA yields per acetate under the same scenarios as in Table 5.3 when C. ljungdahlii is grown in silico on a CO/Hz mixture in
the ratio 2:4. Again, in brackets we highlight the flux through the Nfn reaction.
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BHB yield coupled to acetogenesis for plastic production

Betahydroxybutyrate yield coupled to acetogenesis for plastic production C.
ljungdahlii is currently also investigated with the perspective of producing pre-
cursors for biodegradable plastics from waste, for example in the context of
the SYNPOL project (http://www.synpol.org ), by growing the organism
on syngas (CO/CO;/Hs;) and having it produce beta-hydroxybutyrate, possibly
after inserting one or two reaction capabilities into its genome. Genome-wide
metabolic modeling, like shown here, may help strain-design for improved yield
and growth rates.

Table 52 shows a similar scheme to Table 5.1 for the objective of
hydroxybutanoyl-CoA synthesis from a CO/H, mixture. We conclude that the
variants among the WPL enzymes and the hydrogenases and formate dehydro-
genases could impact the yield of the product. This suggests that model-assisted
genome-editing or over/under-expressing the optimal variants with high yield
in Table 5.2, or in vitro selection amongst the variants using an appropriate selec-
tive condition could help improve the real-world yield of desired products like
hydroxybutyrate and its product poly-hydroxybutyrate (PHB), a biodegradable
plastic. For C. ljungdahlii this would require the engineering in of an epimerase
and a polymerase for the organism to be able to proceed from the beta-butanoyl
to the PHB. There may be similar implications for the possible production of other
products of possible interest such as butane-2,3 diol and for ethanol as shown in
[16].

Potential for gear shifting in C. ljungdahlii

The genera Acetobacterium and Clostridium, to which most acetogens belong,
are highly versatile in how they bring about the synthesis of acetate coupled to
the phosphorylation of ADP. They appear to avail of a redox protein construction
kit [21] of enzymes that are similar, except that writer domains [19] of one speci-
ficity (e.g. for NAD) have been exchanged with ones of a different specificity
(e.g. for Fd). This may enable Clostridium ljungdahlii to oxidize hydrogen with
either ferredoxin plus NAD or ferredoxin plus NADP as electron acceptor, and to
reduce carbon dioxide to formate with ferredoxin, hydrogen, or ferredoxin plus
NADPH (1/1) as electron donor. The consequence is that acetogens may function
at a variety of yields of ATP per acetate produced (see [13] and Table 5.1).

A formate dehydrogenase that uses ferredoxin rather than hydrogen as elec-
tron donor would lack a functional writer that can accept electrons from hydro-
gen. In terms of its ability to oxidize hydrogen it would appear to be a dead
enzyme, a pseudoenzyme indeed [19, 22]. We here propose that many pseudoen-
zymes are cases of the enzyme construction kit [21] of evolution, where we simply
have not yet recognized the writer or reader domain an original reader or writer
domain has been replaced by.

The complex formate dehydrogenase of C. ljungdahlii that was mentioned
above exists in a complex gene cluster (Clju_c06990-07080), but the same organ-
ism contains another gene cluster (Clju_c20030-20040) that appears specific for
ferredoxin as electron donor. This suggests that the diversity of redox enzymes
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with the corresponding diversity in ATP /acetate ratios is not just a diversity of
species within genera but may constitute a more dynamic diversity within a sin-
gle species, such as C. [jungdahlii. Such diversity would enable the organism to
function at a variety of ATP/acetate production ratios. This would correspond
to dynamic gear shifting, which should be useful when the going gets tough for
the organism in the sense of an increased ATP/ADP ratio to work against. The
organism would then continue to be able to synthesize ATP but at a lower rate by
shifting to lower gear.

Given the results in figure 3 of [15] and Table 5.1, why would the organism
contain alternatives in its genome for the various redox reactions other than the
combination yielding maximal ATP/acetate yield? Our analysis of the genome
wide network of C. l[jungdahlii above, has shown that due to the redox enzyme
variety and the number of possible ways the redox enzyme can be networked, a
combinatorial explosion emerges, leading to no fewer than 24 possible ATP/ac-
etate stoichiometries. After eliminating some of these because they are smaller
or equal to zero and others because they are inconsistent with the second law
of thermodynamics, 15 feasible gear states hence ATP/acetate production ratios
remain. One could argue that the less optimal alternatives are left-overs from a
distant past in which life was more difficult. However, over the billions of years of
evolution these unused genes would not have any selective advantage and have
obtained many mutations rendering them inactive. Perhaps they are inactive, en-
coding pseudo enzymes [23]. An alternative is that these genes and the proteins
they code for still serve some catalytic function yielding a selectable advantage.
What could this function be? We posit that these less optimal alternatives might
serve as lower speed gears in what could effectively be considered a gear-shifting
energy system. Many of the alternatives computed in Table 5.1 should thereto
be at the disposition of acetogenic organisms, allowing them smartly to regulate
their expression in order to generate appropriate ATP yields, possibly enabling
almost seamless gear shifting.

Why would an organism not always go for the most ATP? Gibbs energy
dissipation, which goes at the cost of thermodynamic efficiency, is the thermo-
dynamic driver of processes; more than just serving as the arrow of time, flux
tends to increase with the increase in Gibbs energy dissipation over a process
[24]. Producing more ATP at the same ATP/ADP ratio, coupled to acetogenesis,
reduces Gibbs free energy dissipation and as a consequence decreases reaction
rates. Thereby living organisms face a rate/efficiency trade-off [1].

To examine this in a simplified setting, we asked the genome wide metabolic
map to optimize ATP output flux while producing acetate from CO, and hy-
drogen gas for a range of values for AG 4rp, the Gibbs energy required in ATP
synthesis, representing a changing ATP/ADP ratio, see Figure 5.7. We then recal-
culated the ATP synthesis flux as a decreasing function of AG 47 p. By step-wise
increases in AG arp the gear-shifting phenomenon can be enforced and shows
a sequence of optimal pathways among those highlighted above (Table 5.1) that
favor a lower ATP /acetate ratio as the AG 47 p increases. Although we in a sense
artificially construct this sequence of pathways, it shows that if the organism were
to maximize a different objective (more on one side of the trade-off) different
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pathways (gears) could pop up.
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Figure 5.7: Proposed gear shifting for C. [jungdahlii: the optimal ratio between
ATP and acetate production fluxes for various Gibbs energies of ATP hydrolysis.
A genome wide metabolic map for C. ljungdahlii [16] was extended with redox
reactions identified by Schuchmann and Miiller [15] and for a fixed lower bound
of carbon dioxide (2) and hydrogen influx (4), requiring the acetate flux to be > 1
(which set that flux at 1), the flux pattern was optimized for ATP output flux.
This was done for each combination of electron donors and electron acceptors for
hydrogenase, formate dehydrogenase, MTHFR and MTHFD, as present in the
extended genome wide metabolic map (see Table 5.1), thus fixing the redox route
for each calculation. Calling the ratio of ATP synthesis flux to acetate flux n, the
ATP synthesis flux was modelled as Jarp = n-(1—n-(AGarp/AG 4)) with AG 4
representing the Gibbs energy released in acetate synthesis from C'O; and hydro-
gen (2COy+4Hy; — CH3COOH+2H50) of -40 k] /mol taken from Schuchmann
and Miiller [15]. For each AG srp the n with the highest Ja7p was selected as
the optimum n and plotted as the ordinate with AG 47 p as the abscissa.

This degree of dynamics in intracellular bioenergetics through the shuffling
of writer domains between enzymes, remains speculative however: it is unclear
whether indeed, enzymes can re-associate different writer domains dynamically
at a time scale of less than a cell cycle time. Or alternatively, whether they may
do this more statically, i.e. during synthesis of the enzyme complexes make their
composition depend on post-translational regulation or on relative abundance
and transcriptional regulation. Less extensive examples of such gear shifting may
have arisen later in evolution where different cytochrome oxidases with different
H /e~ stoichiometries absorb electrons from the bcl complex of the cytochrome
containing electron transfer chain [25], leading to different growth yields.



168 Chapter 5. Gear-shifting

Gear-shifting in S. sulfataricus

There are other cases in biology where such gear shifting, or at least the possibility
to use low gear becomes important under some conditions. An example is again
a case where an organism has to deal with extreme conditions, now those of high
temperature, the pathway being the lower half of glycolysis. At moderate tem-
peratures the step from glyceraldehyde 3-phosphate to 1,3-bisphosphoglycerate
is already problematic in terms of the standard Gibbs free energy difference. This
problem is solved by S. cerevisiae and by the human, by a proficient subsequent re-
action maintaining the concentration of 1,3-bisphoshoglycerate low and thereby
the Gibbs energy change across the GAPDH reaction negative. However, at 80 °C
this fails to work. By using a dynamic computational model [26, 27] we found
that the hyperthermophylic Archaea S. solfataricus then, at least in silico, chooses
a lower gear (in terms of the number of ATP molecules made per pyruvate pro-
duced) by enlisting the non-phosphorylating GAPN reaction for the flux.

We did this as follows: we varied the ATP/ADP ratio by modulating the
uni-molecular rate constant of ATP hydrolysis and calculated the fluxes through
the GAPDH + PGK route (the pathway with an ATP/pyruvate ratio of 2) and
through the GAPN (the non-phosphorylating glyceraldehyde 3-phosphate dehy-
drogenase which this organism hosts as well) route (the pathway with an AT-
P/pyruvate ratio of 1). Fig. 5.8 shows that the fraction of the flux between GAP
and pyruvate that runs through the low stoichiometry pathway increases with
increasing ATP/ADP ratio, hence with increasing free energy of ATP hydrolysis:
in silico the organism shifts to lower gear when the thermodynamics gets tougher.
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Figure 5.8: The flux fraction from GAP to pyruvate running through the GAPN
pathway rather than the GAPDH + PGK pathway, for the in silico model of [27].
GAPDH = glyceraldehyde 3 phosphate dehydrogenase. PGK = phosphoglycer-
ate kinase. GAP = glyceraldehyde 3 phosphate. The GAPN activity was set to
0.165 mM/min, the rate constant of the first order ATP hydrolysis reaction was
modulated and the ATP/ADP ratio and steady state fluxes calculated.
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5.3 Discussion

In this chapter we have revisited non-equilibrium thermodynamics, now in view
of metabolic networks that enable various alternative routes and an accompa-
nying variation of stoichiometry at which a desired commodity (such as ATP,
biomass or a metabolic product) is produced. We found that variation of the
stoichiometry, akin to gear shifting, should enable an organism to produce its
commodities at higher rates in changing environments. For one particular con-
dition of anabolic free energy, an organism may have set its network routing so
as to achieve the optimal stoichiometry. When conditions are varying such that
also the anabolic free energy is affected, e.g. in case of nitrogen starvation setting
in, metabolic rerouting such that the stoichiometry shifts, may be advantageous.
If such variation in conditions occurs frequently, a continuously varying stoi-
chiometry in accordance with the variomatic principle developed here, might be
best: We showed that there should be an optimal mode of rerouting flux through
the metabolic network, corresponding to varying the stoichiometry continuously,
such that anabolic flux should always be maximal. We call this the ‘variomatic’
or gear-shifting mode.

We then studied the potential for such stoichiometry variation in the ace-
togen C. ljungdahlii. In this text we have shown that the two propositions by
Schuchmann and Miiller [15], i.e. that early life on this planet, if exemplified
by the acetogen C. ljungdahlii, depends on the Wood-Ljungdahl pathway and
on electron bifurcation through the Nfn complex, require ramifications if judged
from the genome-wide knowledge as associated with the present genome-wide
model [16]: The ATP synthesis required can be facilitated by the electron bifur-
cation in the Nfn complex, but the same result could also be attained by other
reactions in the absence of Nfn activity or with reverse flow through Nfn. In
some of these cases electron bifurcation then occurs in other reactions such as
the methylene-THF reductase. The strict requirement of the Wood-Ljungdahl
pathway can also do with some ramification: it is actually the network consist-
ing of the Wood-Ljungdahl pathway, a hydrogenase, the Rnf complex and the
H*-ATPase that is required, where it seems that the formate dehydrogenase can
actually be missed, when pyruvate formate lyase digs in (but then additional en-
zymes are needed as well in order to synthesize the pyruvate from acetylCoA
using reduced ferredoxin as electron donor to drive the CO; fixation). The ATP
yield per acetate through the WLP predicted in [15] can be reproduced using
the genome-wide metabolic map of C. [jungdahlii, but only after many of the re-
dox enzymes have been bestowed with the substrate and product specificities
assumed by Schuchmann and Miiller. Furthermore, one should be very precise
about proton stoichiometries.

A key assumption in the flux balance analysis portion of this chapter is that
we forced the flux through the exchange reaction of acetate to be equal to 1 flux
unit in the outward direction. Note that given the medium composition this does
force the organism to make full use of both CO; and H; in the medium: i.e. this
confines the GeMM to make acetate from CO, and H, only and fully. The results
presented here would likely change if other compounds would be allowed to be
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taken up or secreted.

The main take-away from this is that indeed acetogenic bacteria such as C.
ljungdahlii (and Archaea such as S. solfataricus) may be capable of life at the edge of
what is energetically possible by appropriating the optimal gear settings and gear
boxes (in terms of electron bifurcation) of the redox network. Therefore, the work
shown here may help highlight differences between the current genome-wide
reconstructions’ predictions and those made by precise microbial biochemistry,
and show how differences may be resolved. Finally, the analysis here (and in [15])
suggest multiple interesting targets for strain-design: singularly expressing only
those enzyme variants that generate the highest yield of biomass, or of desired
metabolic products (Table 5.2).

Pseudo-enzymes and pseudo-signalers may be tips of the iceberg of an evo-
lution that moved forward through shuffling of networks into optimality rather
than by evolving proteins to their individual optimality. The reader-writer con-
cept mentioned here and discussed in detail in [19] may help understand the
corresponding plasticity, which may also explain the phenomenon of pseudo-
enzymes and pseudo-signalers. It should be worth our while to examine further,
whether this concept applies to the emerging plethora of pseudoenzymes [28].
The focus on interactions between functionalities that has been introduced by
systems biology may improve our understanding of molecular biology, where
the word biology is then related to function and fitness.

5.4 Methods

Flux balance analysis

For many simulations in this chapter and the next two chapters, we apply a com-
putational technique called flux balance analysis (FBA) [17]. Briefly (more details
are given in the later chapters), this technique concerns the following linear pro-
gramming problem:

maximize or minimize Y = ¢!v, such that for all &
Sv=20
ap < v < By

where S is the stoichiometric matrix for the metabolites, v is the column vector
of fluxes through all reactions including exchange reactions with the environ-
ment of the system considered, ¢ is a column vector of weights generating the
linear combination of fluxes that make up the objective function Y and o and 3
are the vectors of lower and upper bounds on these fluxes. Superscript T refers
to the matrix transpose. A flux distribution returned by FBA is therefore such
that each metabolite is produced and consumed or exported in equal amounts,
the flux boundaries are accommodated and the flux distribution maximizes (or
minimizes) a linear combination of fluxes in the model.
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Extending the C. ljungdahlii GeMM by Nagarajan et al.

Our starting point was the previously published genome-scale metabolic recon-
struction of Clostridium ljungdahlii [16]. We obtained the SBML file of the re-
construction from the BiGG database [29] through http://bigg.ucsd.edu/
models/iHN637 on August 251 2016. This reconstruction covers 698 metabo-
lites, in 785 reactions, encoded by 637 genes. The map had been shown to pro-
duce experimentally measured growth rates on various media compositions [16].

In this work we are concerned with reproducing and understanding in
more detail the analysis provided by [15] for C. l[jungdahlii with its genome-wide
metabolic reconstruction (abbreviated GeMM for Genome-scale Metabolic Map).
To that end we made sure all reactions considered in that study also came to exist
in a (slightly) enhanced version of the GeMM, adding reactions where necessary,
and we set the simulation conditions appropriately for the acetogenesis problem.

We adjusted the in-silico medium to be a mixture of CO; and H in a 2:4 ratio
by setting the lower bounds on the CO, and H; exchange reactions to -2 and -4 re-
spectively, where the negative direction indicates uptake of the metabolites. We
set the ATP maintenance reaction (ATP — ADP + phosphate) as the objective
function with a lower bound of zero, thereby asking with which flux distribution
the network could make the ATP synthesis reaction as high as possible. Addi-
tionally, we forced the flux through the exchange reaction of acetate to be equal
to 1 flux unit in the outward direction. Note that this does force the organism to
make full use of both CO, and Hj in the medium: i.e. this confines the GeMM to
make acetate from CO; and Hj only and fully. If simulation conditions deviate
from those described here, we explicitly highlight the new conditions.

Several reactions described in [15] were added to the metabolic reconstruc-
tion to enable the simulations in the scenarios we considered. In Table 5.3 we
listed the reactions that were manually added to the reconstruction but which
are slightly different in terms of protons from those considered in [15]. In tradi-
tional biochemistry considering a single compartment, it is of no importance to
keep clear track of protons across reactions since the pH-buffer of the medium is
large enough to assuage any problems. When chemiosmotic coupling plays a role
however, one needs to keep track of protons that move across the membrane and
because membrane potential is often the more important component of the pro-
ton motive force other charged species that move across that membrane should
also be taken into account. However, because flux-balance analysis requires all
species, i.e. also the protons, to be balanced, even one wrongly annotated pro-
ton can lead to problems including inaccurate bioenergetics/ ATP synthesis. The
modeler must account for each of these protons i.e. perform accurate bookkeep-
ing of protons and do so while taking into account the protonation of the metabo-
lites already existing in the reconstruction. Alternatively, one should become ex-
plicit in transmembrane charge movement, which is not customary in existing
flux balance analysis.

In the reconstruction downloaded from the BiGG database, the ACACT1r
(Acetyl-CoA C-acetyltransferase) and HACD1 (3-hydroxyacyl-CoA dehydroge-
nase) reactions had been blocked, i.e. the lower and upper bound had been set
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Reaction ID | Formula

FDHH2 CO; + Hy — Formate™ + H

FDHFDNADPH 2 COz + Fd*~ + NADPH + H* — Fd + 2 Formate™ + NADP*
MTHFD_alt Methenyl-THF?>~ + NADH + Methylene-THF?~ + NAD™"
MTHEFR5_alt Methylene-THF*~ + NADH + 2 Ht — Methyl-THF*~ + NAD"

Table 5.3: Reactions added to the genome scale reconstruction from [16].

to zero, for unknown reasons. We unblocked these to allow flux into the beta-
hydroxybutyrate synthesis pathway. Finally, we added a demand reaction for
removing (S)-3-hydroxybutanoyl-CoA (recycling the CoA) from the cell, so that
we may predict its maximal production flux for various network perturbations.

Model checking and visualization

In the main text we perform FBA simulations with various combinations of en-
zyme alternatives. Ensuring our added reactions did not introduce errors in the
energetics, we checked in all considered scenarios of Table 5.1 and 5.2 that the
model could not generate Gibbs free energy from nothing. This was accom-
plished by preventing all medium components from being taken up and then
asking for flux through the ATP maintenance reaction. In all cases this returned
a maximal yield of zero, meaning the model is not capable of generating Gibbs
energy from nothing.

Using the Escher [30] we produced a static map of a subset of the reactions
encoded in our (updated) genome-scale metabolic model of C. l[jungdahlii. This
static map can be used, with help of the COBRApy module [31], to visualize
flux distributions for any number of situations the modeler may wish to explore.
Hence it becomes a fluid map that may generate new visualizations on the fly.
Various such images featuring in this work are provided as supplementary files
in SVG format. We hope this map may be utilized and extended by others to aid
in future work making use of the ljungdahlii genome-wide metabolic map.

Reproducibility

All changes to the published reconstruction were performed through a Python
script that loads the original model, performs the changes with aid of the CO-
BRApy package [31] and exports the updated model in SBML version 3 with
the FBC package [32, 33]. The Python script, the original and modified model
are available as supplementary files. Furthermore, we provide, as a supplemen-
tary Github repository, Jupyter notebooks with Python code that reproduces all
the analyses discussed in this work. All the discussed models, model analysis
code and the visualizations are available on a publicly available Github reposito-
ries at: https://github.com/ThierryMondeel /FOSBE_2016/, https://
github.com/ThierryMondeel /BST_2017_Gear-shifting and https:
//github.com/ThierryMondeel /FOSBE_2018/.
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“Remember that all models are wrong; the practical question is how wrong do
they have to be to not be useful.”

— George Box [1]

Abstract

Glutathione conjugation in liver is one of the main pathways for the detoxifi-
cation of reactive metabolites in the liver. Before dosing patients with drugs or
other xenobiotics, it should be good to assess the glutathione status of their liver,
which is however inaccessible to direct measurements. Instead, metabolites in
blood might be used as biomarkers of the liver’s glutathione status, but only if
they are monotone functions of liver glutathione levels or of capacity. We here
test whether a previously proposed method for biomarker prediction that uses
flux variability analysis (BPFVA), correctly predicts the suitability of serum oph-
thalmic acid (OPA) and 5-oxoproline (OXO) as robust biomarkers. We provide
the first proof of validity for this method for a subset of possible pathway topolo-
gies and then show that the BPFVA method is incorrect in its predictions for a
different topology: BPFVA predicts OPA and OXO as biomarkers that decrease
in concentration with increasing paracetamol dosage, whilst in both the dynamic
computer replica of the network and in experimental datasets, OPA and OXO
tended to increase with applied paracetamol, at least in the lower concentration
ranges of the latter. The BPFVA method does not reveal that at higher paraceta-
mol concentrations OXO fails as biomarker, and predicts neither the direction of
the response of OPA nor that OPA falters as biomarker when the methionine lev-
els are unknown. The results suggest that the BPFVA method is subject to strong
limitations, at least for some pathways. We identify a network topology inherent
in the glutathione conjugation network that is responsible for the failure of the
BPFVA method. The kinetic model of the glutathione pathway, the details and
predictions of which are improved here and have been partially validated before,
may hold a brighter future in this respect.

6.1 Introduction

The functioning of living cells and organisms is determined by the make-up of
their genome, by their immediate environment as well as by the histories thereof.
With a genome of roughly 20,000 genes [2], multiple different instantiations of
most gene products, and a variety of environmental conditions, this leads to a
high-dimensional state space. Although the dimensionality of the total functional
space, i.e. the total number of output functions, tends to be much smaller than
this, it can still be rather substantial. Due to the extensive networking of most
internal processes, the effect of a change in the activity of a gene or in an envi-
ronmental condition on an output function will depend on the state of all other
genes and environmental conditions. It is no wonder therefore that pathologies,
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physiologies, as well as responses to medicines differ widely between human in-
dividuals [3].

This complexity presents us with a challenge when aiming to predict the ef-
fect on health of a genetic variation or change in diet, or when embarking on the
inverse problem of network-based identification of drug targets. On the other
hand the tools that would seem to enable us to meet this challenge have also be-
come quite impressive. Computation has vastly expanded in terms of speed,
storage and accessibility. Genomes can be sequenced, and virtually complete
transcriptomes, proteomes and metabolomes may be assessed [4, 5]. The ques-
tion may therefore be not if, but how one could achieve the predictions aimed for
above [6].

The metabolome alone already reveals the dynamics of hundreds of dimen-
sions, probably more than the number of external functions of the network. The
metabolome tends to be ‘loud” when the fluxome is ‘silent” due to redundancies
[7]. The metabolome is also pervasive, connecting metabolism and signaling as
well as gene expression [8] but not all-encompassing, so that many but perhaps
not all genetic or environmental effects on functions should be accompanied by
changes in the metabolome.

It is therefore of interest to establish whether and if so, how we are already
able to complete tasks such as to (i) predict the effects of a genetic or environmen-
tal change on the metabolome, (ii), inversely, infer from an altered metabolome
what changes could have caused the alterations, (iii) if one were to know which
environmental or genetic change was occurring, infer the extent of the result-
ing network stress from the measured change in one or a few measurable ex-
ternal metabolite concentrations, which would thereby serve as biomarkers, (iv)
predict which changes in environmental conditions could redress a pathological
change in network function and (v) predict which internal molecular processes
one should affect and how, in order to restore network function (drug therapy
design).

Have any modeling methods already been used, or can they be used, to try
and accomplish the five tasks mentioned above? The answer is: yes, but always
with strong limitations. A ‘watchmaker” or ‘silicon-cell” dynamic model of the
entire intracellular network would be able to simulate the network behavior com-
pletely and thereby be able to accomplish all five tasks [9]. Such comprehensive
models do not exist although substantial progress has been made, but this has
merely resulted in models that were not kinetic at the level of metabolism [10],
or in kinetic models of sub-networks only [11, 12]. The underlying limitation is
the lack of precisely known rate equations and values for the kinetic constants
in them, for the multitude of processes in cell biochemistry. Although requir-
ing fewer parameters, approximate models such as those using power-law rate
equations [13] or non-equilibrium thermodynamics-based lin-log equations [14,
15] require fewer parameters, but still more than have been determined experi-
mentally.

What we shall call ‘reduced ambition modeling methods” (‘RAMM), have
been able to reach conclusions that were incomplete but, for some questions
asked, complete enough. One such method, Metabolic Control Analysis (MCA)
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has enabled the prediction of the extent to which enzymes control fluxes or con-
centrations, on the basis of limited information about the components of the net-
work, i.e. the so-called elasticity coefficients, and flux ratios [16]. Through the
concentration control coefficients that it computes, MCA should be able to pre-
dict which metabolite concentrations increase and which decrease, and even to
what extents they should do so, when one reduces the activity of an enzyme in
the network [17] (task i) and inversely infer which enzyme activity change had
caused an observed change in metabolomics (task ii). Still, for genome scale net-
works, this would require knowledge of many more elasticity coefficients than is
practical.

Because biological functions mostly operate at time scales longer than
metabolic transient times, Flux Balance Analysis (FBA) [18, 19] has been able to
generate models for the genome-wide analysis of how fluxes might depend on
environmental conditions. FBA has been used to predict, successfully, the effect
of mutations on growth rate and metabolite production [20]. FBA alone is ag-
nostic of concentrations and describes networks only as fluxes running through
them at steady state. Limitations are that those conditions should pertain to fixed
input fluxes rather than concentrations and that, still, too many fluxes should be
known to be able to solve for the others. The usual approach therefore limits itself
to finding the optimal flux patterns with respect to an assumed objective function
for constant input fluxes. This predicts maximum yields and the corresponding
flux patterns. Even then, for genome wide networks, a great many flux distribu-
tions may produce the same maximum yields. Flux Variability Analysis (FVA)
[21] then determines the range of every flux in the network that is consistent with
attaining that same maximum, allowing other fluxes to compensate. This gives
some insight into essentiality and redundancy of specific reactions.

The kinetic modeling methodology has been used for instance to identify
limitations to proposed serum biomarkers of glutathione drug detoxification ca-
pacity [22, 23]. This was done for a substantial but not yet genome-wide network
however and the identification of better combined biomarkers should be treated
with the corresponding caution.

Shlomi et al. have developed a way in which FVA [21] is used to predict the
effect of mutations on proposed biomarkers [24]. For any network, this approach,
which we here call BPFVA (for Biomarker Prediction using FVA), focuses on any
‘exchange’ reaction in the existing network that connects an extracellular metabo-
lite to a reservoir that we will refer to as the ‘medium’. Constraining all network
reactions fluxes by upper and lower bounds, the method then determines in silico
the range of this exchange’s efflux that is compatible with steady state. Shlomi et
al. proposed that if this range shifts downward convincingly upon the implemen-
tation of a mutation (through inactivation of the corresponding chemical reaction
in the network), the concentration of the corresponding metabolite is predicted
to decrease with the mutation; the concentration range of the metabolite in the
reservoir should shift downward in parallel and the latter concentration may then
serve as the biomarker of the effectiveness of the mutation.

Shlomi et al. tested their technique in silico on a kinetic model of red blood
cell metabolism [25]. The BPFVA method failed to find most biomarkers: only
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40% of the biomarkers evidenced by the kinetic model were identified as such
by the BPFVA method (‘recall rate’). The biomarkers they did identify were fairly
robust however: 73% of the biomarkers predicted by the BPFVA method was also
evidenced by the kinetic model (“precision’), i.e. a false positive rate of 27% (100
— ‘precision’). Shlomi et al. then applied the BPFVA method to a manually cu-
rated set of known inborn-errors of metabolism affecting amino acid metabolism
using the OMIM database [26] and found roughly the same false positive rate of
biomarker prediction (24%) and an even better (56% ‘recall rate”) recovery of the
experimentally known biomarkers of known inborn errors of metabolism. Thiele
et al. [27] found an even better 78% precision using essentially the same BPFVA
methodology.

Shlomi et al. did not provide an explicit rationale behind their method nor a
proof, not even for a subset of cases. As a consequence, the basis of the method is
unclear and thereby it is indeterminate whether the results of the BPFVA method
should be expected to depend strongly on particular parameter settings used,
such as the on upper and lower bounds of all the reaction rates and whether
for some topologies or types of network the method will more successful than
for others. In the present study, we shall therefore first examine whether the
predictions of the method depend on particular settings of the FBA model, e.g. on
the range of admissible velocities of the various reactions (see the Supplementary
Information and [28]). In order to provide some more systematic appreciation of
when and why the PBFVA method should work, we shall develop a mathematical
proof of the validity of the method for a subset of cases.

Extending on this, we shall perform a second in silico validation but now in
a network that is home to various mass-balanced cycles, and thereby much dif-
ferent from the erythrocyte metabolic network, i.e. one of the key detoxification
pathways for reactive metabolites: glutathione conjugation in the liver. Given
that individuals may differ in glutathione levels for various reasons [29, 30] it is
crucial not to overdose glutathione-depleting drugs in individuals with low lev-
els of glutathione. It should therefore be important to be able to predict biomark-
ers of glutathione levels to filter out such individuals before they are treated.
These predictive biomarkers could aid in foreseeing an individual’s responses
to drugs and thereby allow prediction of maximum drug dose levels ultimately
assuaging negative consequences.

Biomarkers for the glutathione level have already been predicted using a
core kinetic model of glutathione detoxification of acetaminophen (paracetamol)
[22, 23]. Here we make use of the first of these published mathematical mod-
els [22]. The model represents the essential components of the glutathione con-
jugation pathway, with connections to proposed biomarkers 5-oxoproline and
ophthalmic acid and explicates the interaction with NAPQI (N-acetyl-p-quinone
imine), a toxic by-product produced during the metabolism of paracetamol. In
the model by Geenen et al. NAPQI is referred to as ‘para’ to indicate the source
which is considered to be paracetamol. It should be noted that the dose rela-
tionship between acetaminophen and NAPQI is not necessarily linear because
there are competing metabolic reactions for acetaminophen such as glucuronida-
tion and sulfation and NAPQI may additionally be conjugated by proteins rather
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than glutathione.

We revisit the question of whether one should expect 5-oxoproline and oph-
thalmic acid to be robust biomarkers for glutathione depletion and compare
the predictions of the kinetic model with predictions obtained by applying the
BPFVA method devised by Shlomi et al. [24] to the same pathway as addressed
by the kinetic model.

6.2 Methods

In this work we utilize two biomarker prediction approaches for the same net-
work and intervention therewith: one based on flux balance analysis and flux
variability analysis, and one based on kinetic model analysis. Below we will in-
troduce the details of both approaches.

Biomarker prediction with flux variability analysis for IEMs

This section starts by describing the terminology and algorithm of the flux vari-
ability analysis (or FVA) approach as originally proposed by Shlomi et al. for
finding biomarkers for inborn errors of metabolism [24, 28].

Exchange reactions allow import and/or export of metabolites of the
metabolic map. Exchange reactions are represented by non-mass-balanced pseu-
doreactions, e.g. X <> (. Positive flux indicates net secretion of X by the cell and
negative flux indicates the net uptake of X.

We define a boundary metabolite to be a metabolite of which it is known
that it may be taken-up by the cell from, and/or secreted to, the medium, which
might correspond to the blood or to a reservoir such as the urine. Some boundary
metabolites correspond to medium components that are required as input for
the cell, e.g. glucose. Others may be produced as waste products, e.g. acetate,
whereas yet other species may be subject to either import or export, depending
on the specific situation.

Each boundary metabolite will here be associated with an exchange reaction
and an exchange interval indicating the enabled range of uptake and secretion
fluxes, biochemically set by the total V,,,,.’s of all the metabolite’s importers and
its exporters. This exchange interval is computed through flux variability analysis
(FVA) [21], which calculates the range of flux its exchange reaction supports un-
der the following constraints for the flux distributions in the model: (i) network
topology, (ii) mass-balance for all internal metabolites, (iii) flux bounds (Vinax’s)
of reactions in the network. Optionally, there is an additional constraint of being
optimal with respect to attaining a minimal or maximal flux in certain reactions
(e.g. growth), the “objective”, in the model.

Mathematically flux variability analysis for a specific exchange reaction v;
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entails the following linear programming problem:

maximize or minimize v;, such that for all &
S-v=0
ar <vp < B
Zmax 2 Z 2 ¢+ Zmax-

Here v is the column vector of fluxes representing all reactions in the model in-
cluding the exchange reactions. v; is one such an exchange flux of a given bound-
ary metabolite i, o, is the, possibly negative, lower bound for reaction £ and simi-
larly fy, is the, possibly negative, upper bound for reaction k. The reaction bounds
are the Vinax's of the reactions and are part of the metabolic network definition.
Typically they are set to either —1000, 0 or 1000 if the true, biological, Vinax's are
not known. These values allow specification of irreversible reactions by setting
the lower bound (or upper bound) to zero and specification of reversible reac-
tions by setting both the lower and upper bounds to non-zero values. The index ¢
specifies a single reaction that is to be maximized, whereas the index £ is used to
index the flux bound constraints that exist for each reaction, including reaction v;.
v; may be maximized in the forward (positive flux) or the reverse (negative flux)
direction if allowed by the bounds on v;. For a network with m metabolites and
r reactions, i.e. fluxes, S is the stoichiometry matrix for the network of size m x r.
The numeric, typically integer, elements of S represent the stoichiometry coeffi-
cients of each metabolite m in each reaction r. Z = c¢”'v is the objective function
defined for the map, entailing a linear combination, defined by column vector c,
of one or more reactions. The vector c is an indicator of objective reactions, i.e. it
contains a value, typically a positive integer (e.g. 1), in rows corresponding to
fluxes that are to be included in the objective, and zeros in all other rows. Due to
the vector multiplication ¢ - v, the objective Z sums the fluxes of the reactions
that correspond to rows containing a value of 1 in c. Zn,x denotes the maximal
value of the objective function. We define 0 < ¢ < 1 to be an arbitrary minimal
fraction of the maximal objective function value that has to be achieved. When
¢ = 1 we ask for the range of flux allowed for reaction v; while maintaining the
maximal value of the linear combination of objective fluxes. When setting ¢ = 0,
one is asking for the allowable flux range through reaction v; regardless of the
value of the objective function. The latter, i.e. ¢ = 0, is the case considered in the
method by Shlomi et al. and here. The choice of ¢ matters because when ¢ > 0 we
are requiring flux to flow through the set of objective reactions (unless Zyax = 0).
This may entail a forced directionality through reactions that is required to ulti-
mately produce flux in the objective reactions. These additional limitations in the
freedom of the flux pattern may subsequently impact the biomarker predictions.
The approach discussed here entails predictions purely based on the network
topology and therefore uses ¢ = 0.

Computationally this method entails first calculating the optimal solution
value Znax for the objective function Z through flux balance analysis (FBA) and
then proceeding to solve the previously described linear programming problem
two times for each reaction v;, once performing a maximization and once per-
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forming a minimization of v;. When ¢ is set to zero the result is independent of
the chosen objective fluxes.

This approach allows one to predict exchange flux intervals for each bound-
ary metabolite in a metabolic reconstruction for both standard (wild-type, WT)
and variant (e.g. mutant) cases. Shlomi et al. referred to these as the healthy and
diseased cases respectively, which was appropriate for the case of genetic muta-
tions leading to inborn-errors of metabolism (IEM). In the results section 6.3 we
will at times resort to the general standard (WT) and variant (mutant) terminol-
ogy with an eye on our drug detoxification application. Shlomi et al. proposed
that if any such ranges shift convincingly when the network contains a mutation,
the concentration ranges of the corresponding metabolites in the reservoir should
shift in parallel and these metabolites would therefore be biomarkers. In other
words, biomarkers are those boundary metabolites the range of exchange flux
of which differs between the wild-type (WT) and mutant simulations. Shlomi et
al. proposed a threshold of at least 10% difference in the lower or upper bounds
of the wild-type vs. the mutant flux intervals. Each biomarker will be associated
with a prediction for being either elevated or decreased in the mutant case, as
compared to the wild type. A biomarker is considered to have an increased, or
reduced, extracellular concentration in the mutant case if, when plotting the wild-
type and mutant flux-variability intervals on a horizontal axis, both the lower
and upper boundary of the mutant interval are shifted to the right, or left, respec-
tively (see Fig. S6.6B and S6.7B). If the two borders of the mutant interval move
in opposite directions with respect to the wild-type interval, the result is scored
as ‘unchanged” and the boundary metabolite is not considered to be a biomarker.

For further details about the implementation of the biomarker prediction al-
gorithm, see the Supplementary Information.

Biomarker prediction for drug-metabolism with flux variability
analysis

In the context of inborn errors of metabolism one assumes a specific enzyme to
function in the wild-type and to be dysfunctional in the mutant. In the mathe-
matical modelling thereof, one then adjusts the simulation settings to match these
conditions [24, 28]. The BPFVA method then computes, for a metabolic reaction
r, the exchange flux interval of every boundary metabolite m, both when 7 is
forced to be active (representing the wild-type case), and when r is forced to be
inactive (representing the mutant case). However, here we are interested in the
network response to influx of a drug compound, which requires a slightly altered
approach.

We here extend the BPFVA approach towards drug-metabolism where a
drug of interest is taken up by the cell through an exchange reaction. Most details
of the approach discussed above for inborn errors of metabolism remain valid. In
contrast to the IEM biomarker simulation discussed above, here the standard sit-
uation would refer to a case without influx of the drug and the variant situation
to a case with influx of the drug. The positions of standard and variant type are
thus reversed in terms of presence and absence of a flux. In the drug-metabolism
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application of the FVA method, we therefore simulate the WT without forcing
any fluxes and by not allowing any drug compound to be taken up by the cell.
The mutant simulation is then characterized by forced influx of the drug com-
pound. One of the detoxification strategies in biology involves conjugation of the
drug, the conjugate being subsequently exported. As an alternative to drug in-
flux, we might then require the export of the conjugate compound in the mutant
simulation.

Implementation and robustness of the FVA-based approach

We implemented the constraint-based biomarker prediction algorithm by Shlomi
et al. [24] in a Python function that returns a table with predicted biomarkers. The
function has several input parameters most of which are optional but enable the
user to perturb the network in various ways and to try different variations of the
method, including the drug-metabolism approach. Internally, all flux-variability
analyses are performed using COBRApy. [31]

We tested our implementation by reproducing Figures 1, 2 and 3 of Shlomi
et al.[24] which entailed an illustrative network and an analysis on biomarker
predictions for a selected set of IEMs affecting amino acid metabolism. Our im-
plementation is able to reproduce the original results accurately. We did however,
observe that the method is sensitive to various different possible settings of pa-
rameters, see Supplementary Information 6.4 and [28].

Kinetic biomarker prediction method and simulations

The kinetic approach to biomarker prediction relies on predicting steady state
fluxes of extracellular metabolites towards a reservoir metabolite. One can com-
pare two network configurations one with and one without a specific alteration
(e.g. gene deletion, V,,,4, reduction or V,,,4, activation) and compare the resulting
steady state fluxes. Comparison of the two steady state solutions also yields a
prediction of the potential change in the biomarker levels. The perturbation we
consider is the influx of paracetamol set by the fixed concentration ‘para’ in the
Geenen et al. model.

For kinetic model simulations of glutathione metabolism we used the pub-
lished glutathione detoxification model [22]. The SBML file was obtained from
JWS-ONLINE [32] and imported, run, and analysed in COPASI [33].

Using the steady state results for methionine at 30 uM we reproduced fig-
ures 2-4 from Geenen et al. (here: Fig. 56.1B,C,D) and for figures 6 and 7 (here:
Fig. 6.2C,D) several methionine values were utilized 1 uM, 15uM, 30 uM, 60 uM,
100pM and 150 uM. Additionally, in order to reproduce figures 5 and 8 (here:
Figures S6.2A and S6.2B respectively) of Geenen et al., we randomly generated
1000 parameter sets by selecting from uniform distributions of paracetamol in
the interval 0 pM to 1200 uM and methionine ranging from 0.5 uM to 100 pM. For
these parameter sets the resulting steady states of the model were calculated.
In all cases, the resulting steady state fluxes for ophthalmic acid, 5-oxoproline,
GCS, and the intracellular concentration of GSH were recorded and imported into
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MATLAB (http://www.mathworks.com/). Using MATLAB, we reproduced
the various images that appeared in the original publication. Some differing re-
sults were obtained however, see Results section.

Generating the FBA-capable Geenen et al. network

To enable flux variability analysis calculations on the Geenen et al. network,
downloaded from JWS online, we had to adjust the network somewhat. This
entailed adding paracetamol explicitly as a metabolite (as opposed to a param-
eter in the kinetic model), and making sure reactions 1, 2, 3, 4 6, 12, 13, 14, 15,
16,17, 23, 25, 33, 34, 40 and 41 were made irreversible in agreement with the rate
laws of the kinetic model. Additionally, we identified a chemically imbalanced
reaction 29 where cys = cysgly. We remedied this by adding glycine as an explicit
substrate to this reaction. In the kinetic model, bgly (blood glycine) is considered
to present at a fixed concentration and is taken into account in the rate-law of
the reaction but not explicitly in the reaction itself. More such cases exist in this
model but then not related to explicitly modeled species.

To aid in understanding the model predictions we used Escher [34] to draw a
scheme of the network onto which we projected the flux patterns we calculated.

Computational reproducibility

Several Jupyter notebooks [35], MATLAB analysis scripts and COPASI [33]
model files used to produce the results and figures in this work are avail-
able from the Github repository: https://github.com/ThierryMondeel/
Glutathione_biomarkers and will be made accessible through the ISBE in-
frastructure (see www.ISBE.NL. The repository links to a “MyBinder” project
(http://www.mybinder.orqg) that enables the user to run the Jupyter note-
books without the need to install any software locally, and to reproduce sev-
eral figures and tables of this paper through an unequivocal procedure. To
reproduce the figures made with MATLAB or the analyses performed in CO-
PASI the reader will need the relevant software. The kinetic model from Gee-
nen et al. may additionally be accessed and used from the JWS-ONLINE website
(http://jjj.biochem.sun.ac.za/). With this we adhere to desired compu-
tational reproducibility practices [36, 37].

6.3 Results

Assessing the validity of the BPFVA method: Theoretical valida-
tion for simple linear pathways

Shlomi et al. did not discuss in detail the effects of changing parameter set-
tings of, and assumptions inherent to, their FVA-based method. In the Supple-
mentary Material and [28] we therefore discussed the example of the IEM PKU
(phenylketonuria) to highlight that changing parameters and conditions, such as
the flux forced through the enzyme in question and the medium definition in the
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metabolic map, has potentially large effects on the biomarker predictions. This
perspective of biomarkers being potentially less robust than hoped for, calls for
methods that readily enable variation of settings such as synchronicity of reac-
tion blocking, the size of the forced flux in the WT, and the cultivation media.
Our Python implementation of the algorithm at least partially foresees in these
needs.

The algorithm implementation used here expands on this by furthermore
allowing biomarker prediction in situations relating to drug metabolism where
there is no drug influx into the system in the healthy (WT) conditions whilst in
the diseased (mutant) systems there is such an influx (see Methods).

The Shlomi et al. method for predicting biomarkers of reduced activity of
metabolic genes has not been proven to be of any kind of general validity. The
sole evidence for its at least occasional validity is that it confirms empirically
known biomarkers of IEMs [24] as we confirmed in the Supplementary Informa-
tion. We are here interested in how robust the method is in principle. Perhaps
strangely enough the, limited experimental validation of the method is not con-
clusive then, as it depends on the BPFVA methodology as well as on the complete-
ness of the metabolic map and on the effectiveness of the experimental method-
ology. It cannot be excluded that failure of both the FVA method and incom-
pleteness of the map would compensate for each other and still lead to correct
predictions.

There are only two ways to assess the correctness of the BPFVA method. One
is through a proof obtained by analytical mathematics and the second is by ex-
amining whether the BPFVA method would successfully predict biomarkers in a
completely known system, where the complete knowledge refers to everything
needed to describe the relevant variables in the system, i.e. both to carry out the
BPFVA and to calculate the behavior of the concentration of proposed biomarkers
upon inactivation of any of the reactions. Such systems exist in so-called silicon
cells or watchmaker models [9]. These are realistic and complete kinetic descrip-
tions of actual biological systems, which are internally consistent although not
necessarily a correct representation of biological reality.

We here start by indeed first providing a novel, but limited, proof of validity
of the BPFVA method and then continue by taking the second approach and com-
pare the predictions from the BPFVA approach with those from a kinetic model
of glutathione detoxification of paracetamol.

We consider the general case where a metabolite X is synthesized by
many reactions ‘upstream’ and degraded by many ‘downstream’ reactions, see
Fig. 6.1A. We shall also consider the aggregated case (Fig. 6.1B) where all up-
stream reactions have been taken together in a single reaction and the same for
all downstream reactions. We here focus on the case (different from the case stud-
ied by Shlomi et al.) where cytosolic X is not necessarily transported to the ex-
tracellular compartment (denoted by X.) and is not necessarily exchanged. In
cases where in reality there is such an efflux, we use the existing transport and
exchange reaction(s) (Fig. 6.1C). Excluding any other reactions, the exchange flux
and the transport flux will have the same range of possible values so that we
may focus on the transport reaction leading directly out of X.. When such an
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Figure 6.1: Network diagrams for which a rationale for the BPFVA method for
predicting biomarkers of activity changes in network enzymes such as in IEMs is
here provided. (A) Metabolite X exists in a network with various upstream and
downstream pathways, the connection between upstream and downstream run-
ning through X uniquely. (B) The aggregated case where the whole surrounding
network has been taken together as a single upstream and a single downstream
reaction. The reactions in Fig. 6.1A are delineated such that the concentrations
of the substrate of the upper reaction and the product of the lower reaction in
Fig. 6.1B are fixed properties. (C) When the network contains existing transport
and exchange reactions for metabole X we utilize those. X, refers to the intracel-
lular form of X, X, refers to the extracellular form of X, which may be exchanged
with the environment. In brackets we indicate how the FVA intervals of the trans-
port and exchange reactions depend on the upper bound V; of the upstream reac-
tion and the upper bound V; of the downstream reaction. (D) When no exchange
reaction exists for metabolite X we define a virtual exchange reaction (indicated
by the dashed line).

efflux is missing in the network, we introduce a virtual exchange reaction for X,
(Fig. 6.1D), which has zero flux at the default steady state. This exchange reaction
is not considered real but only used computationally in the FVA. The case consid-
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ered here allows us to additionally predict intracellular biomarkers that are not
exchanged with e.g. the blood, in contrast to the more limited approach taken by
Shlomi et al.

As shown by Westerhoff and Van Dam [15], in terms of metabolic control
analysis Fig. 6.1A can be reduced to Fig. 6.1B, if modulations are kept small. Any
inactivation of a reaction in the upper set of reactions will therefore correspond to
a reduction in the overall afferent flux and hence to a reduction in the aggregated
activity, the upper arrow in Fig. 6.1A, and similarly for the efferent reactions.
Hence for our purposes here we may focus our attention on Fig. 6.1B.

Focusing on Fig. 6.1B, we assume that the upper reaction has a Vinax of V7 and
the lower a Vinax 0of V5, whilst both are irreversible. Carrying out a flux variability
(Figs. 6.1C and 6.1D) analysis we find that the exchange flux must reside in the
interval (-V5,V1). Reducing the activity of the upper step by decreasing V; will
decrease the upper bound, whilst reducing the activity of the lower step will
bring the negative lower bound closer to zero.

Inspection of the scheme suggests that inhibiting the upper reaction will de-
crease the concentration of X, whilst inhibiting the lower reaction will increase
X. This then provides an intuitive basis for why a decrease in the upper bound
of the upper reaction should be coupled to a decrease in X, making the latter a
biomarker of an inhibitory effect on a reaction upstream of X.

We can formalize this intuition as follows: Under the proviso that the elas-
ticity of the lower reaction towards X is positive (i.e. that its rate increases if only
the concentration of its substrate is increased, and the elasticity of the upper re-
action towards X is negative (i.e. that its rate decreases if the concentration of its
product is increased), the control coefficient of the upper reaction on X is positive
and the control of the lower reaction negative, for:

1
CX v = —Ciser = 35— >0 (6.1)

upper 6%( _ 6%

This result uses the summation and connectivity laws for concentration control
coefficients [16] and is strictly valid if there is no flux through the exchange
branch (see below). The condition on the elasticities is “usual” in the sense that
substrates usually stimulate reactions and products usually inhibit them. In fact
the necessary condition on the elasticities is weaker; merely the difference be-
tween the two elasticity coefficients needs to be positive:

€% — e > 0. (6.2)

This means that there may even be substrate inhibition of the lower reaction pro-
vided that the product inhibition of the upper reaction is stronger.
With the above, we deduce that:

Decrease in upper FVA bound <= Decrease in V; <= Decrease in X (6.2b)

Hence a decrease in X is a biomarker for inhibition of a step upstream of X.
Similarly, an increase in X is a biomarker for inhibition of a step downstream of
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X. We are only considering inhibitors here, which may be checked by assessing
a reduction in the main pathway flux.
This ‘BPFVA method’ can even be made quantitative:

dX N dIn(V;)
Y = dln(X) = Cupper . dln(‘/]_) = H

For the simplest case of little product inhibition (¢} = 0) and approximately lin-
ear kinetics (i.e. v2 = k2 *X), this implies that the relative change in the biomarker
concentration X is predicted to be equal to the relative change in the upper bound
of the FVA, i.e. the change in V; brought about by the inhibitor. Should the above
approximations not be realistic, then one may still predict the relative change in
the biomarker concentration but then requires the magnitudes of the elasticities.
For Michaelis-Menten kinetics (i.e. vo = [‘?“AZX—;“_))((), it holds that €3 = KI]; M+ so
that when X = K, the relative change in the biomarker is twice as high as the
relative change in FVA bound.

The limitation of the validity of the rule is based in normality (i.e. negativity
and positivity, respectively) of the two effective elasticity coefficients (or alterna-
tively, of their difference) and on the scheme of Fig. 6.1A not being completely
general.

There is no loss of generality in this proof when considering the trans-
port/exchange reactions as actual rather than “virtual” efflux reactions, which
is the approach pioneered by Shlomi et al. without proof. If the flux into the ex-
change branch is a fraction j of the influx into the system, the two relevant control
coefficients are (see supplementary material):

O er = !
e = (=) ek Tk

C'l)cfwer = _(1 - j) ) Cfﬁ)per

and are “normally” again positive and negative respectively. Even if j is negative,
i.e. there is flux into the system through the exchange branch, this result remains.
In the case of linear kinetics, and negligible product inhibition, the two control
coefficients are 1 and —1 respectively, independent of the magnitude of the branch
flux.

We therefore conclude that predicting biomarkers using the BPFVA method
will yield correct results in cases with the above topology and usual elasticities.

Kinetic biomarker predictions for glutathione drug-detoxification

We now turn to our second approach towards assessing the correctness of the
FVA method for biomarker prediction, i.e. comparison with a kinetic model, i.e.
the model by Geenen et al. To start, we require the kinetic model predictions
of how glutathione, oxoproline and ophthalmic acid vary when paracetamol is
introduced in the system.

Since these results were already reported by Geenen et al. we worked to re-
produce the seven main figures they produced but discovered that some of the
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original results were wrongly plotted. In the Supplementary Information we go
into detail on the differences between our predictions and the original predic-
tions.
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Figure 6.2: Results of computations using the model of Geenen et al. [22]. (A) The
steady state dependence of glutathione concentration on paracetamol concentra-
tion for various concentrations of methionine. (B) A 3D plot showing the relation-
ship between ophthalmic acid efflux, 5-oxoproline efflux and steady state intra-
cellular glutathione concentration coloured according to the extracellular methio-
nine level as specified in the colored bar on the right-hand side. (C + D) Predicted
steady state variation of ophthalmic acid efflux (C) or 5-oxoproline efflux (D) with
intracellular glutathione concentration, as paracetamol input was modulated be-
tween 0 uM to 1200 uM. In panels A, C and D methionine blood concentration
was taken as 1 M (magenta), 15 uM (red), 30 uM (yellow), 60 M (green), 100 pM
(blue) and 150 pM (black). Note that not all curves address the same range of glu-
tathione concentrations because the parameter being scanned is the paracetamol
concentration, for which each value results in a different steady state glutathione
level. These glutathione steady state levels are also affected by the methionine
concentration and therefore the curves do not span the same domain.

Here, we report on Fig. 6.2 where we jointly display (corrected) reproduc-
tions of figures 6, 7 and 8 from Geenen et al. (Figs. 6.2B to 6.2D respectively). To
produce Figs. 6.2A, 6.2C and 6.2D we calculated the steady state of the kinetic
model for several methionine levels (1,15, 30, 60,100 and 150 uM). To produce
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Fig. 6.2B (and Fig. S6.2A) we randomly generated 1000 parameter sets by select-
ing from uniform distributions of paracetamol in the interval 0 pM to 1200 pM
and methionine in the interval 0.5 uM to 100 uM. For these parameter sets the
resulting steady states of the model were calculated.

Fig. 6.2A reports the predicted relationship between paracetamol and glu-
tathione for various level of methionine. As can be seen from Fig. 6.2A glu-
tathione steady state levels decrease monotonically with increasing paracetamol
for all depicted methionine levels (even for 1 uM although it is not clear visu-
ally). Futhermore, from Figs. 6.2C and 6.2D we conclude that efflux of ophthalmic
acid reduces monotonically with increasing glutathione, in fact for a large range
of methionine levels it does so almost linearly, whereas oxoproline varies non-
monotonically with increasing glutathione levels depending on the methionine
level. The levels of both oxoproline and ophthalmic acid are predicted to depend
on methionine levels, but only if the latter are below 0.06 mM. Fig. 6.2B confirms
that given the efflux rates of both oxoproline and ophthalmic acid there exists a
uniquely predicted intracellular glutathione level as also reported by Geenen et
al.

The oxoproline loop at the heart of the detoxification pathway in
the Geenen et al. network

Inspired by the reversibility of the ‘exchange reactions’ in the kinetic model we
performed flux balance analysis on a medium that allows uptake of glutamate,
glycine, ophthalmic acid, oxoproline and methionine, but not cysteine, all with
uptake limits of 10 artificial units (a.u.). We allowed uptake of up to 1000 a.u. of
paracetamol and we optimized for the efflux of the cysteine-adduct of paraceta-
mol (i.e. reaction EX_v37). We thereby obtained the flux distribution indicated
by the orange arrows in Fig. 6.3. This straightforward application of flux bal-
ance analysis to the network yielded an unintuitive result: 10 a.u. of paracetamol
could be metabolized but only paracetamol and methionine were taken up and
an “oxoproline loop” was active utilizing reactions 24 and 31. At steady state
in the presence of paracetamol, flux balance analysis predicted that net input of
neither glutamate nor glycine is required. This is understandable because the
loop recycles the glutamate and glycine contained in the glutathione. Either cys-
teine or methionine uptake is required since there needs to be a source of the
cysteine component in glutathione as this eventually leaves the cell in complex
with paracetamol. The computations did not predict cysteine uptake because no
such uptake was allowed.

This result is to be juxtaposed with the flux distributions predicted by the ki-
netic model where the uptake fluxes of glycine and glutamate were active but the
oxoproline loop also carried flux. In Fig. 56.3 and Fig. S6.4 we show two steady
state flux distributions from the kinetic model both with a blood methionine level
of 30 pM and for 0 uM and 250 pM of paracetamol uptake respectively. The 250
pM of paracetamol shifts flux to the detoxification pathway, reduces the steady
state level of glutathione (solid curve in Fig. 6.2A) and consequently greatly in-
creased ophthalmic acid production (yellow curve in Fig. 6.2C), and slightly de-
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Figure 6.3: Flux distribution, calculated using parsimonious flux balance anal-
ysis, of the network from Geenen et al., functioning on a medium with up to
10 a.u. glutamate, glycine, ophthalmic acid, oxoproline and methionine and up
to 1000 a.u. of paracetamol. Note the loop-like salvaging of glycine and glu-
tamate from the glutathione-paracetamol complex ()acetaminophen glutathione
adduct, abbreviated as ASG), with the remaining cysteine-paracetamol complex
(cysASG) being secreted. The fluxes are colored in the spectrum from gray to
green to orange where orange indicates high flux, green mean flux (not present
in this figure) and gray low flux. Similarly, the arrow thickness increases with the
flux magnitude, which is also indicated as a number alongside the arrow. Arrow-
heads are colored in the direction of the flux (except for EX_para due to technical
issues); empty arrowheads refer to the flux running in the opposite direction.
Exchange reactions are drawn as if coming from “nothing” in the extracellular
compartment. This simply indicates import of the substance into the cell.

creased the 5-oxoproline production (yellow curve in Fig. 6.2D). Additionally, in
the kinetic model, the uptake of paracetamol decreases cysteine production be-
cause the glutathione is rerouted to paracetamol detoxification.
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Drug-induced metabolic changes

Next, we applied the FVA biomarker prediction method using the on/off switch
of the paracetamol influx reaction as the modulation point for generating two sets
of flux variability intervals.

Importantly, we are not comparing the exact same things between the ki-
netic and BPFVA methods. In the kinetic case, both Geenen et al. and we looked
at biomarkers of steady state cystosolic glutathione levels. Variations in the glu-
tathione levels are obtained by perturbing the network with increasing paraceta-
mol concentrations. In the BPFVA approach we look at biomarkers of the con-
sumption flux of glutathione. Only if glutathione levels vary monotonically with
paracetamol influx, the two methods could be the same. As may be inferred from
Fig. 6.2A, glutathione decreases monotonically with increasing paracetamol for
the whole range of realistic methionine concentrations; this condition is therefore
met, at least whenever the system is modulated through varying the concentra-
tion of the xenobiotic being detoxified.

To perform the BPFVA we again allowed glutamate, glycine, ophthalmic
acid, oxoproline and methionine to be taken up with bounds of 10 a.u. and to be
secreted virtually unlimited at an upper bound of 1000. Application of the BPFVA
method resulted in the prediction that methionine, methylene-THF (CH2THF in
Fig. 6.3) and cysteine are affected (all with reduced extracellular levels) by the
increased paracetamol uptake. BPFVA also predicts that glutamate, glycine, oxo-
proline and ophthalmic acid are not affected. Since methionine (or alternatively
cysteine but we did not allow this by setting the lower bound of its exchange re-
action to zero) is the only required component to produce glutathione (due to the
oxoproline loop) this stands to reason. Methylene-THF shows up because since
methionine is required to produce glutathione, less of it may flow to methyl-THF.

But why do 5-oxoproline and ophthalmic acid not show up? An inspection
of the network in Fig. 6.3 reveals that both these proposed biomarkers may be
readily produced from glutamate and glycine and will therefore only be affected
by the addition of paracetamol if these precursors are affected by that addition.
The glutamate and glycine salvage loop might therefore be the key reason for this
absent prediction prediction of 5-oxoproline and ophthalmic acid as biomarkers.
We conclude that for this network topology and for this reason the kinetic and
constraint-based approaches of biomarker prediction yield radically different re-
sults. This is also supported by the fact that the proof for the validity of the FVA
approach given above, does not hold when there are loops and feedbacks in the
system that connect subnetworks upstream of the proposed biomarker to subnet-
works downstream.

Bypassing the oxoproline loop

Following this result our hypothesis was that if the paracetamol-glutathione
(ASG) complex, prior to the salvaging of the glycine and glutamate residues
deriving from the glutathione moiety, were exported from the cell this should
reveal some effect of increased paracetamol dosage on ophthalmic acid and 5-
oxoproline. This situation is more akin to that embodied by the second kinetic
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model published by Geenen et al. [23]. We implemented this scenario by adding
a reaction to the model that removes the ASG complex and by blocking export of
the cysASG complex.

When we applied flux balance analysis to this new situation uptake of gluta-
mate and glycine was mandatory to be able to detoxify paracetamol. The BPFVA
method applied to this new scenario revealed that 5-oxoproline and ophthalmic
acid should be reduced in the extracellular fluids when paracetamol is added. In
addition, glutamate then showed up as biomarker of glutathione levels. These
predictions are not in agreement with the kinetic model since in the latter, the 5-
oxoproline levels may increase or decrease, depending on the methionine status
and on the amount of paracetamol (Fig. 6.2D). The ophthalmic acid prediction is
the opposite of the prediction by the kinetic model since Figs. 6.2A and 6.2C of the
kinetic model together show that increased paracetamol decreases glutathione
levels and therefore should increase ophthalmic acid efflux.

We additionally tested if the flux variability method predicts, like the kinetic
model, that the relationship between ophthalmic acid and glutathione depends
on the methionine level. We found that increasing the methionine uptake bound
in FVA allows more paracetamol to be detoxified, which affects the size of the
predicted reduction in ophtalmic acid and oxoproline effluxes but lacked a qual-
itative effect that flipped the prediction from a reduction to an increase in extra-
cellular levels. Also here the BPFVA fails to predict behavior seen in the kinetic
model.

We summarized the results of the predictions of the kinetic and flux-balance-
based approaches in Table 6.1.

Biomarker Kinetic FVA with efflux FVA with efflux
‘ as cysASG as ASG

5-oxoproline Increased /Reduced - Reduced

Ophthalmic acid | Increased - Reduced

Table 6.1: Comparison of biomarker predictions from the kinetic model and the-
FVA method for the Geenen et al. network upon increasing the paracetamol up-
take. For the kinetic model we deduce the predictions from Fig. 6.3. For the FVA
predictions we used the biomarker prediction method comparing exchange in-
tervals before and after adding paracetamol uptake for the case of efflux as ASG
and efflux as the cysASG complex. The terms ‘increased” and ‘reduced’ reflect
the predicted changes to the extracellular level of the biomarker. For the kinetic
model the oxoproline results depend on the methionine and paracetamol levels.

6.4 Discussion

A kinetic model of glutathione metabolism and its detoxification pathway
for paracetamol [22] was used here to investigate the reliability of two po-
tential biomarkers, 5-oxoproline and ophthalmic acid, and to investigate the
(dis)agreement between a kinetic and an FVA-based biomarker prediction
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method for the same network. The work delivered many assets in addition: (i)
a Python implementation of the BPFVA method that is applicable to both IEMs
and drug metabolism (modeled as a demand for drug excretion as opposed to
network mutations) was presented; (ii) insight in the inherent liabilities of the
BPFVA method applied to IEMs were discussed in detail and we observed sim-
ilar issues with the drug metabolism predictions; (iii) a proof of the validity of
the BPFVA method was given; (iv) results put forth by Geenen et al. based on a
kinetic model of the glutathione metabolism network were revisited, leading to a
revision of one of its main conclusions, and (v) a network topology was identified
as the culprit of discrepancies between the BPFVA and kinetic model predictions.

In this work we aimed to juxtapose the kinetic model predictions for
biomarkers with a method that does not take into account kinetic parameters
in any form. To that end we discussed and implemented the constraint-based
biomarker prediction methodology proposed by Shlomi et al. and added various
options to perturb the network and method. In the Supplementary Information
we detailed how we managed to reproduce Shlomi et al.’s results and also illus-
trated that this method is sensitive to the settings of various of its parameters
(e.g. the size of the forced flux, the medium and (a)synchronously blocking af-
fected reactions) and to the network it is applied to. Specifically for the case of
phenylketonuria (PKU), the method is sensitive to the details of the model (e.g.
Recon 1 vs. Recon 2), the amount of flux forced through the reaction(s) under
investigation (or equivalently the setting of the minimal change of the exchange
interval) in the wild-type, and the medium settings used in the model. Building
on our Python implementation of the BPFVA biomarker prediction method for in-
born errors of metabolism we here introduced its extension to drug metabolism.
The availability of the implementation we presented here enables other research
projects to extend this work.

To predict biomarkers for paracetamol detoxification, we implemented the
BPFVA approach to either require the uptake of the drug or, equivalently be-
cause there is only 1 detoxification route, the export of the conjugate compound,
in the mutant simulation. The latter is effectively a drain of resources on the
network resulting in predicted decreased extracellular levels of certain metabo-
lites (in the glutathione case it is a drain on its constituent parts: methionine or
cysteine, glutamate and glycine). Note that this is similar to but different from
the IEM biomarker prediction case: forcing flux through a typical reaction in a
metabolic network (e.g. phenylalaninehydroxylase in PKU) does not (only) force
influx of a particular upstream compound (e.g. phenylalanine) but may also lead
to forced downstream secretion of another compound (e.g. tyrosine). Lacking
the latter property of forced downstream efflux of a compound (other than the
conjugate paracetamol complex), the result we found for the BPFVA approach,
with all biomarkers that show up being reduced upon increased detoxification, is
understandable.

We provide the first public proof of the BPFVA approach correctly predicting
qualitative (and even the quantitative) changes in biomarker fluxes, but this proof
is only valid for a limited set of network topologies. There may be more topolo-
gies for which a proof can be given of the validity of the BPFVA method but we
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expect that these proofs are conditional upon elasticity coefficients between the
upstream and the downstream modules being small enough or of particular sign.
In practice, these elasticities may be unknown, and the BPFVA thereby unreliable.

Of further interest is our finding that the medium defined for the metabolic
network, the threshold settings, and the amount of flux forced through the net-
work in the algorithm, all affect the BPFVA outcome significantly (for IEMs in
particular). Since the basis for all these settings is feeble, this adds another con-
cern with respect to the robustness of the BPFVA method. These results suggest
that the BPFVA is not robust. This emerges both for the case of drug-metabolism
modeled as an influx or efflux of a species in the network as introduced here and
for the inborn-error of metabolism scenario we dealt with (see the Supplementary
Information and [28].

Taking the kinetic model of the glutathione detoxification network for a
proof of principle, we found that this network is too complex for the BPFVA
method to deliver. This sheds doubt on the BPFVA method. The result how-
ever does not address the robustness of the kinetic modeling method. Because
the latter comes to subtler conclusions, it may be better in terms of warning for
lack of robustness of predicted biomarkers. On the other hand, the kinetic proper-
ties that the kinetic method depends on are ill-known for most pathways so that
at this stage the kinetic modeling method might be robust in principle, but not
usable in practice. The kinetic model considered here did not take into account
the distribution of the drug and biomarkers around the body. Such a model does
exist and predicted qualitatively similar results as the model considered here [38].
In conclusion, more work is also needed to make the kinetic biomarker prediction
method more robust.

The liabilities inherent in the BPFVA method open up the possibility of indi-
vidualized biomarker predictions. Given an individual- ized metabolic landscape
(e.g. by mapping transcriptomics data onto the generic metabolic reconstruction),
defining a realistic set of input and output fluxes for a given cell type and indi-
vidual might enable individualized biomarker predictions, precisely because the
method is sensitive to such settings.

An additional outcome of the present work is that some of the (erroneous)
results published in the paper Geenen et al. [22] were found to be erroneous and
were then revised into corresponding correct results (see Fig. 6.2 and the Sup-
plementary Text): In the original work it was concluded, on the basis of model
predictions, that (i) measurement of the secretion flux of either 5-oxoproline or
ophthalmic acid in isolation alone is not capable of uniquely identifying the glu-
tathione level within a cell. Moreover, (ii) the relationship between steady-state
glutathione levels and the biomarker secretion flux depended on the methionine
concentration and (iii) a combined use of both biomarkers resulted in a unique re-
lationship between their secretion fluxes and the glutathione concentration, and
that this relationship was independent of the methionine status of the cell. This
suggested that only the co-measurement of the two biomarkers should deliver
the identifiability of the quantity of interest.

The revision of the Geenen et al. [22] results achieved by the present paper,
led to maintenance of conclusions (i) and (iii) (see Fig. 6.2B and 6.2D) but to a
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quantitative revision of conclusion (ii): ophthalmic acid continues to be predicted
to have a monotonic relationship with glutathione steady state concentration and
the relationship can depend on methionine levels (see Fig. 6.2C), but it should
not do so for the usual levels of methionine in the blood, which are below 0.03
mM [39]. However, the quantitative character of the modelling results should be
dependent on many parameter values that are uncertain. Therefore, quantitative
predictions using such a model offer limited certainty. For slightly different pa-
rameter values, the dependence on methionine of the covariation of ophthalmic
acid flux with glutathione might resurface at lower methionine concentrations
than predicted here.

From the updated kinetic analysis we conclude that 5-oxoproline and oph-
thalmic acid might be candidate biomarkers for glutathione levels. For typical
blood levels of methionine, opthalmic acid might be virtually independent of
those levels. However, 5-oxoproline does not vary uniquely with glutathione lev-
els and for this reason it is not suitable as biomarker. When measured together
5-oxoproline and ophthalmic acid are predicted to provide a unique predictor
of glutathione levels. We do not need to measure methionine in addition to the
two biomarkers to predict variations in glutathione levels with varying loads of
xenobiotics.

Defining the kinetic model as correct, we found that, and why, the FVA-
based method was not robust for this glutathione-based drug detoxification net-
work. There exists, in the known glutathione xenobiotic detoxification network,
a cyclic recycling of some of the components of the glutathione-ASG complex.
At steady-state this removes the connection of the excretion of this product to 5-
oxoproline and ophthalmic acid levels and fluxes. In combination with the steady
state condition used in flux balance analysis, this recycling motif (or ‘oxoproline
loop’) leads to unintuitive and false predictions. In a parallel analysis, where
the glutathione-ASG complex is secreted prior to such recycling steps (as pro-
posed by Geenen et al. in a later model), [23] ophthalmic acid and 5-oxoproline
are correctly predicted as biomarkers, however, their qualitative shift is wrongly
predicted. This