
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Deep Coherent Exploration For Continuous Control

Zhang, Y.; van Hoof, H.

Publication date
2021
Document Version
Final published version
Published in
Proceedings of Machine Learning Research
License
Other

Link to publication

Citation for published version (APA):
Zhang, Y., & van Hoof, H. (2021). Deep Coherent Exploration For Continuous Control.
Proceedings of Machine Learning Research, 139, 12567-12577.
https://proceedings.mlr.press/v139/zhang21t.html

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:27 Jul 2022

https://dare.uva.nl/personal/pure/en/publications/deep-coherent-exploration-for-continuous-control(e3644d49-35a3-4378-b1d7-667258f59497).html
https://proceedings.mlr.press/v139/zhang21t.html

Deep Coherent Exploration for Continuous Control

Yijie Zhang 1 Herke van Hoof 2

Abstract
In policy search methods for reinforcement learn-
ing (RL), exploration is often performed by in-
jecting noise either in action space at each step
independently or in parameter space over each
full trajectory. In prior work, it has been shown
that with linear policies, a more balanced trade-
off between these two exploration strategies is
beneficial. However, that method did not scale
to policies using deep neural networks. In this
paper, we introduce deep coherent exploration, a
general and scalable exploration framework for
deep RL algorithms for continuous control, that
generalizes step-based and trajectory-based ex-
ploration. This framework models the last layer
parameters of the policy network as latent vari-
ables and uses a recursive inference step within
the policy update to handle these latent variables
in a scalable manner. We find that deep coher-
ent exploration improves the speed and stability
of learning of A2C, PPO, and SAC on several
continuous control tasks.

1. Introduction
The balance of exploration and exploitation (Kearns &
Singh, 2002; Jaksch et al., 2010) is a longstanding challenge
in reinforcement learning (RL). With insufficient explo-
ration, states and actions with high rewards can be missed,
resulting in policies prematurely converging to bad local
optima. In contrast, with too much exploration, agents could
waste their resources trying suboptimal states and actions,
without leveraging their experiences efficiently. To learn
successful strategies, this trade-off between exploration and
exploitation must be balanced well, and this is known as the
exploration vs. exploitation dilemma.

At a high level, exploration can be divided into directed

1University of Copenhagen, Copenhagen, Denmark (work done
while YZ was a master student at the University of Amsterdam)
2University of Amsterdam, Amsterdam, the Netherlands. Corre-
spondence to: Yijie Zhang <yizh@di.ku.dk>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

strategies and undirected strategies (Thrun, 1992; Plappert
et al., 2018). While directed strategies aim to extract use-
ful information from existing experiences for better explo-
ration, undirected strategies rely on injecting randomness
into the agent’s decision-making. Over the years, many
sophisticated directed exploration strategies have been pro-
posed (Tang et al., 2017; Ostrovski et al., 2017; Houthooft
et al., 2016; Pathak et al., 2017). However, since these
strategies still require lower-level exploration to collect the
experiences, or are either complicated or computationally
intensive, they are usually only used for ‘hard exploration’
problems where rewards are sparse, delayed, or deceptive.
Except for those ‘hard exploration’ tasks, undirected explo-
ration strategies are commonly used in practice and in RL
literature, where some well-known examples are ε-greedy
(Sutton, 1995) for discrete action space and additive Gaus-
sian noise for continuous action space (Williams, 1992).
Such strategies explore by randomly perturbing agents’ ac-
tions at different steps independently and hence are referred
to as performing step-based exploration in action space
(Deisenroth et al., 2013).

As an alternative to those exploration strategies in action
space, exploration by perturbing the weights of linear poli-
cies has been proposed (Rückstieß et al., 2010; Sehnke et al.,
2010; Kober & Peters, 2008). Since these strategies in pa-
rameter space naturally explore conditioned on the states
and are usually trajectory-based, they have the advantages
of being more consistent, structured, and global (Deisenroth
et al., 2013). Later, van Hoof et al. (2017) proposed a gener-
alized exploration (GE) scheme, bridging the gap between
step-based and trajectory-based exploration in parameter
space. With the advance of deep RL, NoisyNet (Fortu-
nato et al., 2018) and parameter space noise for exploration
(PSNE) (Plappert et al., 2018) were introduced, extending
parameter-space exploration strategies for policies using
deep neural networks.

Although GE (van Hoof et al., 2017), NoisyNet (Fortunato
et al., 2018), and PSNE (Plappert et al., 2018) improved the
vanilla exploration strategies in parameter space and were
shown leading to more global and consistent exploration,
they still suffer from several limitations. Our contribution
consists of a new exploration scheme to overcome these
limitations. To the best of our knowledge, ours is the first
scheme that combines the following characteristics:

Deep Coherent Exploration for Continuous Control

1. Generalizing Step-based and Trajectory-based Ex-
ploration Since both NoisyNet and PSNE are
trajectory-based exploration strategies, they are consid-
ered relatively inefficient and bring insufficient stochas-
ticity (Deisenroth et al., 2013). Following van Hoof
et al. (2017), our method improves by interpolating
between step-based and trajectory-based exploration
in parameter space, where a more balanced trade-off
between stability and stochasticity can be achieved.

2. Recursive Analytical Integration of Latent Explor-
ing Policies NoisyNet and PSNE address the uncer-
tainty from sampling exploring policies using Monte
Carlo integration, while GE uses analytical integration
on full trajectories, which scales poorly in the num-
ber of time steps. In contrast, we apply analytical and
recurrent integration after each step, which leads to
low-variance and scalable updates.

3. Perturbing Last Layers of Policy Networks Both
NoisyNet and PSNE perturb all layers of the policy
network. However, in general, only the uncertainty in
parameters of the last (linear) layer can be integrated
analytically. Furthermore, it is not clear that deep
neural networks can be perturbed in meaningful ways
for exploration (Plappert et al., 2018). We thus propose
and evaluate an architecture where perturbation is only
applied on the parameters of the last layer.

We will refer to our method that combines these characteris-
tics as deep coherent exploration. We evaluate the coherent
versions of A2C (Mnih et al., 2016), PPO (Schulman et al.,
2017), and SAC (Haarnoja et al., 2018), where the exper-
iments on OpenAI MuJoCo (Todorov et al., 2012; Brock-
man et al., 2016) tasks show that deep coherent exploration
outperforms other exploration strategies in terms of both
learning speed and stability.

2. Related Work
As discussed, exploration can broadly be classified into di-
rected and undirected strategies (Thrun, 1992; Plappert et al.,
2018), with undirected strategies being commonly used in
practice because of their simplicity. Well known methods
such as ε-greedy (Sutton, 1995) or additive Gaussian noise
(Williams, 1992) randomly perturb the action at each time
step independently. These high-frequency perturbations,
however, can result in poor coverage of the state-action
space due to random-walk behavior (Rückstieß et al., 2010;
Deisenroth et al., 2013), washing-out of exploration by the
environment dynamics (Kober & Peters, 2008; Rückstieß
et al., 2010; Deisenroth et al., 2013), and potential damages
to mechanical systems (Koryakovskiy et al., 2017).

One alternative is to instead perturb the agent’s behavior at

the beginning of the trajectory, with the perturbation held
fixed during the trajectory. Possible mechanisms include
posterior sampling techniques, which behave according to
the solution of a randomly sampled MDP for the duration
of a trajectory (Strens, 2000); drawing value functions from
a posterior distribution (Osband et al., 2019); or sampling
the policy parameters from a search distribution (Rückstieß
et al., 2008; Sehnke et al., 2010). In particular, compared
to their action-space counterparts (Sutton, 1995; Williams,
1992), Rückstieß et al. (2010) and Sehnke et al. (2010)
showed that such parameter-space methods could bring im-
proved exploration behaviors because of reduced variance
and faster convergence, when combined with REINFORCE
(Williams, 1992) or natural actor-critic (Peters et al., 2005).

Another alternative to independent action-space perturba-
tions, is to correlate the noises applied at subsequent actions
(Morimoto & Doya, 2000; Wawrzynski, 2015; Lillicrap
et al., 2016), for example by generating perturbations from
an Ornstein-Uhlenbeck (OU) process (Uhlenbeck & Orn-
stein, 1930). Later, van Hoof et al. (2017) used the same
stochastic process but in the parameter space of the policy.
This approach uses a temporally coherent exploring policy,
which unifies step-based and trajectory-based exploration.
Moreover, the authors showed that, with linear policies, a
more delicate balance between these two extreme strategies
could have better performance. However, this approach was
derived in a batch mode setting and requires storing the full
trajectory history and the inversion of a matrix growing with
the number of time steps. Thus, it does not scale well to
long trajectories or complex models.

Although these methods pioneered the research of explo-
ration in parameter space, their applicability is limited.
More precisely, these methods were only evaluated with ex-
tremely shallow (often linear) policies and relatively simple
tasks with low-dimensional state spaces and action spaces.
Given this, NoisyNet (Fortunato et al., 2018), PSNE (Plap-
pert et al., 2018), and Stochastic A3C (Shang et al., 2019)
were proposed, introducing more general and scalable meth-
ods for deep RL algorithms.

All three of these methods can be seen as learning a dis-
tribution over policies for trajectory-based exploration in
parameter space. These exploring policies are sampled by
perturbing the weights across all layers of a deep neural net-
work, with the uncertainty from sampling being addressed
by Monte Carlo integration. Whereas NoisyNet learns the
magnitudes of the noises for each parameter, PSNE heuristi-
cally adapts a single magnitude for all parameters.

While showing good performance in practice (Fortunato
et al., 2018; Plappert et al., 2018), these methods suffer from
two potential limitations. Firstly, trajectory-based strategies
can be inefficient as only one strategy can be evaluated for a
potentially long trajectory (Deisenroth et al., 2013), which

Deep Coherent Exploration for Continuous Control

could fail to escape local optima. Secondly, Monte Carlo
integration results in high-variance gradient estimates that
could lead to oscillating updates.

3. Background
3.1. Reinforcement Learning

Reinforcement learning is a sub-field of machine learning
that studies how an agent learns strategies with high returns
through trial-and-error by interacting with an environment.
This interaction between an agent and an environment is
described using Markov Decision Processes (MDPs). A
MDP is a tuple (S,A, r, P, γ), where S is the state space,
A is the action space, r : S × A × S → R is the reward
function with rt = r (st,at, st+1), P : S × A × S → R+

is the transition probability function, and γ is a discount
factor indicating the preference of short-term rewards.

In RL with continuous action space, an agent aims to learn
a parametrized (e.g. Gaussian) policy πθ (a|s) : S ×A →
R+, with parameters θ, that maximizes the expected return
over trajectories:

J(θ) = Eτ∼p(τ |πθ)[R(τ)], (1)

where τ = (s0,a0, ...,aT−1, sT) is a trajectory andR(τ) =∑T
t=0 γ

trt is the discounted return.

3.2. Deep Reinforcement Leaning Algorithms

Deep reinforcement learning combines deep learning and re-
inforcement learning, where policies and value functions are
represented by deep neural networks for more sophisticated
and powerful function approximation. In our experiments,
we consider the following three deep RL algorithms.

Advantage Actor-Critic (A2C) Closely related to RE-
INFORCE (Williams, 1992), A2C is an on-policy algorithm
proposed as the synchronous version of the original asyn-
chronous advantage actor-critic (A3C) (Mnih et al., 2016).
The gradient of A2C can be written as:

∇θJ(θ) = Eτ∼p(τ |πθ)

[
T−1∑
t=0

∇θ log πθ (at|st)Aπθ (st,at)

]
,

(2)

where Aπθ (st,at) = Qπθ (st,at) − V πθ (st) is the
advantage function that measures how much on av-
erage a specific action at is better than other ac-
tions in state st when following policy πθ. Here
Qπθ (st,at) = Eτ∼p(τ |πθ) [Rt(τ) | St = s,At = a] is the
action-value function (also known as the Q-function) and
V πθ (st) = Eτ∼p(τ |πθ) [Rt(τ) | St = s] is the state-value
function (also known as the V -function), where Rt(τ) =∑T
t′=t γ

(t′−t)rt′ is the discounted rewards-to-go, defined
as the sum of discounted rewards starting from step t.

Proximal Policy Optimization (PPO) PPO (Schulman
et al., 2017) is an on-policy algorithm developed to de-
termine the largest step for update while still keeping the
updated policy close to the old policy in terms of Kull-
back–Leibler (KL) divergence. Instead of using a second-
order method as in trust region policy optimization (TRPO)
(Schulman et al., 2015), PPO applies a first-order method
and combines several tricks to relieve the complexity. We
consider the primary variant PPO-Clip with the following
surrogate objective:

LCLIPθk
(θ) = Eτ∼p(τ |θk)[

T−1∑
t=0

[
min (rt(θ), clip (rt(θ), 1− ε, 1 + ε))A

πθk
t

]]
,

(3)

where rt(θ) =
πθ (at|st)
πθk

(at|st)
and ε is a small threshold that

approximately restricts the distance between the new policy
and the old policy. In practice, to prevent the new policy
from changing too fast, the KL divergence between the new
policy and the old policy approximated on a sampled batch
is often used as a further constraint.

Soft Actor-Critic (SAC) SAC (Haarnoja et al., 2018) is
an entropy-regularized (Ziebart et al., 2008) off-policy actor-
critic method (Lillicrap et al., 2016; Fujimoto et al., 2018)
with a stochastic policy. Using ‘soft’ Bellman back-ups with
off-policy data, SAC learns the optimal entropy-regularized
Q-function defined as:

Qπ(s,a) = Es′,ã′ [r + γ (Qπ (s′, ã′) + αH (π (ã′|s′)))] ,
(4)

where s′ ∼ p(s′|s,a), ã′ ∼ π(ã′|s′), H is the entropy, and
α is the temperature parameter. The policy is then learned
by maximizing the expected entropy-regularizedQ-function
via the reparameterization trick (Kingma et al., 2015).

3.3. Undirected Exploration Strategies

While directed exploration exploits global information to
decide which action to try systematically, undirected explo-
ration is realised by local and random perturbations (Thrun,
1992). Roughly speaking, undirected strategies can be clas-
sified into two dimensions (Deisenroth et al., 2013).

Action Space vs. Parameter Space Exploration In con-
tinuous control tasks, exploration in action space is usually
performed by adding spherical Gaussian noise to the sam-
pled action. In contrast, exploration in parameter space is
often implemented by imposing Gaussian noise on the pol-
icy parameters. In practice, exploration in action space is
sometimes preferred (Baxter & Bartlett, 2000; Sutton et al.,
1999; Williams, 1992) because it is straightforward and easy
to understand. In contrast, exploration in parameter space

Deep Coherent Exploration for Continuous Control

has the advantages of being more consistent, structured,
and global as it naturally explores conditioned on the states
(Sehnke et al., 2010; Rückstieß et al., 2008; Deisenroth et al.,
2013; Plappert et al., 2018).

Trajectory-based vs. Step-based Exploration Step-
based exploration strategies rely on injecting exploration
noise at each step independently and trajectory-based explo-
ration strategies often add exploration noise at the beginning
of a trajectory. Step-based exploration strategies are more
random, leading to unreproducible action sequences. The
effects of the perturbations can sometimes be hard to esti-
mate as they can be washed out by the system dynamics
(Kober & Peters, 2008; Rückstieß et al., 2008; Deisenroth
et al., 2013). However, this randomness could sometimes
be helpful as it could make the policy less prone to getting
trapped in a local optimum. In contrast, trajectory-based
exploration produces reproducible action sequences and are
often more stable (Deisenroth et al., 2013). This increased
stability is also helpful for more consistent policy evaluation
and leads to more reliable policy updates (Stulp & Sigaud,
2012; Sehnke et al., 2010; Deisenroth et al., 2013).

4. Deep Coherent Exploration for Continuous
Control

Figure 1. Graphical model of deep coherent exploration.

To achieve the desiderata in Section 1, we propose deep
coherent exploration, a method that models the policy as a
generative model with latent variables. This policy is repre-
sented as πwt,θ(at|st) = N (Wtfθ(st) + bt,Λ

−1
a). Here

wt denotes all last layer parameters of the policy network
at step t by combining Wt and bt, θ denotes the param-
eters of the policy network except for the last layer, and
Λa is a fixed and diagonal precision matrix. Our method
treats the last layer parameters wt as latent variables with
marginal distribution wt ∼ N

(
µt,Λ

−1
t

)
, where µt and Λt

are functions of learnable parameters µ and Λ respectively.
In this model, all learnable parameters can be denoted as

ζ = (µ,Λ,θ). We provide the graphical model of deep
coherent exploration in Figure 1.

As in van Hoof et al. (2017), deep coherent exploration
generalizes step-based and trajectory-based exploration by
constructing a Markov chain of wt. This Markov chain
specifies joint probabilities through an initial distribution
p0(w0) = N

(
µ,Λ−1

)
and the conditional distribution

p(wt|wt−1). This latter term explicitly expresses tempo-
ral coherence between subsequent parameter vectors. In
this setting, step-based exploration corresponds to the ex-
treme case when p(wt|wt−1) = p0(wt), and trajectory-
based exploration corresponds to another extreme case when
p(wt|wt−1) = δ(wt − wt−1), where δ is the Dirac delta
function. To ensure the marginal distribution of wt will be
equal to the initial distribution p0 at any step t, we directly
follow van Hoof et al. (2017) with the following transition
distribution for wt:

p(wt|wt−1) = N
(
(1− β)wt−1 + βµ, (2β − β2)Λ−1

)
,

(5)

where β is a hyperparameter that controls the temporal co-
herency of wt and wt−1. Then, the two extreme cases
correspond to β = 0 for trajectory-based exploration and
β = 1 for step-based exploration, while the intermediate ex-
ploration corresponds to β ∈ (0, 1). For intermediate values
of β, we obtain smoothly changing policies that sufficiently
explore, while reducing high-frequency perturbations.

4.1. On-Policy Deep Coherent Exploration

Our method can be combined with all on-policy policy gra-
dient methods and here we present this adaptation with RE-
INFORCE (Williams, 1992). Starting from the RL objective
in Equation 1:

∇ζJ(ζ) = Eτ∼p(τ |ζ) [∇ζ log p(τ |ζ)R(τ)] , (6)

the gradients w.r.t. the sampled trajectory can be obtained
using standard chain rule:

∇ζ log p(τ |ζ) =
T−1∑
t=0

(
∇ζ log p(at|s[0:t],a[0:t−1], ζ)

)
.

(7)

Here, since information can still flow through the unob-
served latent variable wt, our policy is not Markov any-
more. To simplify this dependency, we introduce wt into
p(at|s[0:t],a[0:t−1], ζ):

p(at|s[0:t],a[0:t−1], ζ)

=

∫
p(at,wt|s[0:t],a[0:t−1], ζ)dwt (8)

=

∫
p(at|st;wt,θ)︸ ︷︷ ︸

Gaussian policy

p(wt|s[0:t−1],a[0:t−1],µ,Λ,θ)︸ ︷︷ ︸
forward message α(wt)

dwt,

(9)

Deep Coherent Exploration for Continuous Control

where the first factor is the Gaussian action probability given
by the policy and the second factor can be interpreted as the
forward message α(wt) along the chain. We decompose
α(wt) by introducing wt−1:

α(wt) =

∫
p(wt,wt−1|s[0:t−1],a[0:t−1], ζ)dwt−1 (10)

=

∫
p(wt|wt−1;µ,Λ)︸ ︷︷ ︸

transition probability of wt

p(at−1|st−1;wt−1,θ)α(wt−1)

Zt−1
dwt−1, (11)

where the first factor is the transition probability of wt

(Equation 5) and Zt−1 is a normalizing constant. Since
Gaussians are closed under marginalization and condition,
the second factor can be obtained analytically without the
need of computing the normalizing constant Zt−1. More-
over, α(wt−1) is a Gaussian by mathematical induction
from the initial step. As a result, we arrive at an efficient
recursive expression for exact inference of wt (Equation 11).
Again, with the property of Gaussians, all integrals appear-
ing above can be solved analytically, where the marginal
action probability given the history at each step t can be
obtained and used for policy updates.

Summarizing, non-Markov policies require substituting
the regular p(at|st;θ) term in the update equation with
p(at|s[0:t],a[0:t−1], ζ) (Equation 7). Equations 8-11 show
how this expression can be efficiently calculated recursively.
Except for this substitution, learning algorithms like A2C
and PPO can proceed as normal. Because of the parameter
sampling and recursive exact inference, our method has a
added complexity of O

(
nd3last

)
1, where n is the number of

time steps and dlast is the dimension of the parameter vec-
tor in the last layer. For detailed mathematical derivation,
please refer to the supplementary material.

4.2. Off-Policy Deep Coherent Exploration

Combining our method with off-policy methods (Lillicrap
et al., 2016; Fujimoto et al., 2018; Haarnoja et al., 2018)
requires defining both the behavior policy and the update
equation. The behavior policy is the same as in on-policy
methods (Equation 5). The policy update procedure may
require adjustments for specific algorithms. Here, we show
how to adapt our method for SAC (Haarnoja et al., 2018). In
the SAC policy update, the target policy is adapted towards
the exponential of the new Q-function.

However, since SAC is off-policy, its exploration and policy
update are separated, making the recursive update described

1The cubic complexity arises from the naive algorithms for
matrix multiplication (Schoolbook matrix multiplication) and in-
version (Gauss–Jordan elimination). In practice, faster algorithms
could be used.

before inapplicable. During exploration, coherent explo-
ration takes place as described before. In the SAC update,
states are sampled randomly from the replay buffer, which
violates our graphical model (Figure 1), and thus sampling
wt per step sequentially is no longer a sensible choice for
off-policy policy update. Instead, for low-variance gradient
estimates we choose the marginal policy p (at|st, ζ) rather
than the policy conditioned on the sampled last layer pa-
rameters w to be the target policy. The marginal policy
p (at|st, ζ) can be obtained analytically for Gaussian distri-
butions:

p (at|st, ζ) =
∫
p (at|st;w,θ)︸ ︷︷ ︸

Gaussian policy

p0(w|µ,Λ)︸ ︷︷ ︸
initial probability

dw. (12)

This consideration leads to the following objective for policy
update:

J(ζ) = Est∼D

[
KL
(
p (at|st, ζ)

∥∥∥exp (Qφ (st,at))

Zφ (st)

)]
(13)

= Est∼D,at∼p(at|st,ζ) [log p(at|st, ζ)−Qφ (st,at)] ,
(14)

where D denotes the replay buffer and φ denotes the param-
eters of the Q-function. The expected value over actions
is approximated using a sample from the marginal policy.
Then, all parameters can be learned from the sampled action
at via the reparameterization trick (Kingma et al., 2015).
When combining with SAC, our method has an extra com-
plexity of O(ndlast + d3last), as the marginalization is per-
formed only once for each policy update.

5. Experiments
For the experiments, we compare our method with NoisyNet
(Fortunato et al., 2018), PSNE (Plappert et al., 2018) and
standard action noise (Williams, 1992). This comparison is
evaluated in combination of A2C (Mnih et al., 2016), PPO
(Schulman et al., 2017), and SAC (Haarnoja et al., 2018)
on OpenAI Gym MuJoCo (Todorov et al., 2012; Brockman
et al., 2016) continuous control tasks.

For exploration in parameter space, we use a fixed action
noise with a standard deviation of 0.1. For A2C and PPO,
their standard deviations of parameter noise are all initial-
ized at 0.017, as suggested in Fortunato et al. (2018). For
SAC, we initialize the standard deviation of parameter noise
at 0.034 for both our method and PSNE as it gave better re-
sults in practice. Besides, deep coherent exploration learns
the logarithm of parameter noise, while NoisyNet learns the
parameter noise directly, and PSNE adapts the parameter
noise. We consider five values of β (0.0, 0.01, 0.1, 0.5, and
1.0) for deep coherent exploration, where we use β = 0.01
for comparative evaluation with other exploration strategies.

Deep Coherent Exploration for Continuous Control

Figure 2. Learning curves for deep RL algorithms with different exploration strategies on OpenAI MuJoCo continuous control tasks,
where the top, middle and bottom row corresponds to results of A2C, PPO, and SAC respectively. The solid curves correspond to the
mean, and the shaped region represents two times the standard error of the average return over 10 random seeds.

Our implementation of NoisyNet is based on the code from
Kaixhin2. For PSNE, we refer to the authors’ implementa-
tion in OpenAI Baselines3 (Dhariwal et al., 2017) and the
original paper, where we set the KL threshold for A2C and
PPO to 0.01 and the MSE threshold for SAC to 0.1. On the
other hand, exploration with action noise uses the default
setting proposed by Achiam (2018)4, where the standard
deviation of action noise is initialized at around 0.6 for A2C
and PPO. For SAC, in the baseline setting the standard devi-
ation of action noise is decided by the policy network and
the state.

In all experiments, agents are trained with a total of 106 en-

2https://github.com/Kaixhin/NoisyNet-A3C
3https://github.com/openai/baselines/tree/master/baselines/ddpg
4https://spinningup.openai.com/en/latest/

vironmental steps, where they are updated after each epoch.
A2C and PPO use four parallel workers, where each worker
collects a trajectory of 1000 steps for each epoch, resulting
in epochs with 4000 steps in total. After each epoch, both
A2C and PPO update their value functions for 80 gradient
steps. At the same time, A2C updates its policy for one
gradient step, while PPO updates its policy for up to 80
gradient steps until the KL constraint is satisfied. SAC uses
a single worker, with a step size of 4000 for each epoch.
After every 50 environmental steps, both the policy and the
value function are updated for 50 gradient steps. To make
the parameter noise stable, we learn or adapt the standard
deviation of parameter noise after each epoch.

Our implementation of A2C, PPO, and SAC with different
exploration strategies are adapted based on OpenAI Spin-

Deep Coherent Exploration for Continuous Control

(a) (b) (c)

Figure 3. Results of Coherent-A2C with different settings for HalfCheetah-v2, where Figure 3a and Figure 3b show the learning curves
and Figure 3c shows the average log variance of gradients during six stages in learning. The solid curves correspond to the mean, and the
shaped region represents two times the standard error of the average return over 10 random seeds.

ning Up (Achiam, 2018) with default settings. All three
algorithms use two-layer feedforward neural networks with
the same network architectures for both policy and value
function. Precisely, A2C and PPO use a network architec-
ture with 64 and 64 hidden nodes activated by tanh units. In
comparison, SAC uses a network architecture of 256 and
256 hidden nodes activated by rectified linear units (ReLU).
Parameters of policies and value functions in all three al-
gorithms are updated using Adam (Kingma & Ba, 2015).
A2C and PPO use a learning rate of 3 · 10−4 for the policies
and a learning rate of 10−3 for the value functions. SAC
uses a single learning rate of 10−3 for both policy and value
function.

For each task, we evaluate the performance of agents after
every 5 epochs, with no exploration noise. Additionally,
each evaluation reports the average reward of 10 episodes
for each worker. To mitigate the randomness within environ-
ments and policies, we report our results as the average over
10 random seeds. All settings not explicitly explained in this
section, are set to the code base defaults. For more details,
please refer to documents and source code from OpenAI
Spinning Up (Achiam, 2018) and our implementation5.

5.1. Comparative Evaluation

In this section, we present the results for A2C (Mnih et al.,
2016), PPO (Schulman et al., 2017), and SAC (Haarnoja
et al., 2018) on HalfCheetah-v2, Walker2d-v2, and Ant-v2,
with the additional results on Hopper-v2, Reacher-v2, and
InvertedDoublePendulum-v2 shown in the supplementary
material. Figure 2 shows that, overall, Coherent-A2C out-
performs all other A2C-based methods in terms of learning
speed, final performance, and algorithm stability. In par-
ticular, given that Ant-v2 is considered a challenging task,
deep coherent exploration considerably accelerates learning

5https://github.com/pyijiezhang/deep-coherent-exploration-
for-continuous-control

speed. For PPO-based methods, deep coherent exploration
still outperforms NoisyNet and PSNE significantly in all
tasks. However, our method’s advantage compared to stan-
dard action noise is smaller. Particularly, Coherent-PPO
underperforms PPO in Walker2d-v2. Two reasons might
explain this. Firstly, some environments might be more
unstable and require a larger degree of exploration, which
favors PPO as it initializes its action noise with a much
greater value. Secondly, because of having extra parameters,
policies of Coherent-PPO, NoisyNet-PPO, and PSNE-PPO
tend to satisfy the KL constraint in fewer update steps, which
leads to slower learning. The latter together with the high
variance of gradient estimates also explain the poor per-
formance of NoisyNet-PPO and PSNE-PPO, as the more
oscillating updates of the parameters could result in signif-
icantly KL-different policies and hence even fewer policy
updates. This is observed in our experiments (Figure 5) and
also supported by the similar performance of NoisyNet and
PSNE when combined with PPO and A2C. For SAC, the ad-
vantages of deep coherent exploration are smaller compared
to A2C and PPO. More specifically, Coherent-SAC learns
slightly faster than SAC in HalfCheetah-v2 and achieves the
highest average returns in Walker2d-v2 and Ant-v2. Fur-
thermore, between different random seeds, Coherent-SAC
shows standard errors lower than PSNE-SAC but higher
than the baseline SAC.

5.2. Ablation Studies

In this section, we present three separate ablation studies to
clarify the effects of each characteristic discussed in Sec-
tion 1. These ablation studies are performed with A2C, to
ensure that all characteristics are applicable and also the
fixed number of gradient steps for policy updates puts dif-
ferent variants on equal footing. The three ablation studies
are performed on HalfCheetah-v2.

Generalizing Step-based and Trajectory-based Explo-
ration As shown in Figure 3a, we evaluate five different

Deep Coherent Exploration for Continuous Control

values 0.0, 0.01, 0.1, 0.5, and 1.0 of β for Coherent-A2C.
Except for the large value of β = 0.5, the two intermediate
strategies (β = 0.01 and 0.1) both outperform step-based
strategy (β = 1.0) and trajectory-based strategy (β = 0.0)
quite significantly. Coherent-A2C with β = 0.01 seems to
achieve the best balance between randomness and stability,
with a considerably higher return than the other four.

Analytical Integration of Latent Exploring Policies
We introduce OurNoisyNet for comparison. OurNoisyNet
equips a noisy linear layer for only its last layer, and this
layer learns the logarithm of standard deviation, as in deep
coherent exploration. We compare Coherent-A2C using
β = 0.0 and OurNoisyNet-A2C, with the only difference
thus being whether we integrate analytically or use the repa-
rameterization trick (Kingma et al., 2015).

We first measure the variance of gradient estimates in both
variants. This variance is measured by computing the trace
of the covariance matrix using 10 gradient samples. We
report this measure in six stages during training, as shown
in Figure 3c. We can observe that analytical integration
leads to lower-variance gradient estimates across all training
stages for HalfCheetah-v2. We further present the learning
curves of both variants in Figure 3b, where Coherent-A2C
with β = 0.0 shows higher return than OurNoisyNet-A2C.
Interestingly, Coherent-A2C displays a much lower standard
error across different random seeds. Furthermore, the lower-
variance gradient estimates of Coherent-A2C could enable a
larger learning rate for faster training without making policy
updates unstable.

Perturbing Last Layers of Policy Networks In this part,
we compare OurNoisyNet-A2C perturbed over all layers
and OurNoisyNet-A2C perturbed over only the last layer.
The result is shown in Figure 3b. We can see that the lat-
ter performs considerably better with a significantly higher
return. This is somewhat to our surprise since we chose
to perturb only the last layer such that exact inference and
tractable computation are possible. There are several possi-
ble reasons. Firstly, since it is unknown how the parameter
noise (especially in lower layers) is realized in action noise,
perturbing all layers of the policy network may lead to un-
controllable perturbations. Such excess exploratory noise
could inhibit exploitation. Secondly, perturbing all layers
might disturb the representation learning of states, which is
undesirable for learning a good policy. Thirdly, perturbing
only the last layer could also lead to fewer parameters for
NoisyNet.

5.3. Environments with Sparse Rewards

Having confirmed that deep coherent exploration could
bring improved performance in environments with dense
rewards, we now turn to much more challenging continuous
control tasks where the reward signals are sparse. We con-

Figure 4. Learning curves for PPO with different exploration strate-
gies on SparseContinuousCartpole-v0. The solid curves corre-
spond to the mean, and the shaped region represents two times the
standard error of the average return over 10 random seeds.

sider the task of SparseContinuousCartpole-v0, where the re-
ward is only available when the paddle is lifted over a given
angle. In addition, we consider PPO for the experiments
because Coherent-PPO combines all the characteristics and
performs well in most environments. The results are shown
in Figure 4. We can observe that Coherent-PPO performs
the best, with faster learning and lower standard error across
different random seeds than all the other exploration strate-
gies. However, considering SparseContinuousCartpole-v0
is a relatively simple task, we also try all the PPO-based
exploration strategies on more difficult continuous control
tasks such as SparseHalfCheetah-v2 and SparseWalker2d-
v2, where the reward is only available when the agent moves
forward over a specific number of units. In those experi-
ments, all of the methods fail, clearly showing that undirect
strategies are not competent in, or even capable of solv-
ing ‘hard exploration’ problems. Thus, we conclude that
undirected exploration strategies should only be used in
environments with dense rewards.

5.4. Stochasticity in Last Layers of Policy Networks

Policy search methods with undirected exploration strategies
tend to reduce the magnitude of exploration noise during
policy updates, which can result in premature convergence
to suboptimal solutions (Peters et al., 2010). In this section,
we analyze the average stochasticity in last layers of policy
networks to see if this could also happen for deep coherent
exploration. We consider PPO-based methods for analysis
as they provide a greater number of policy updates such that
the patterns become clearer to observe. For deep coherent
exploration and NoisyNet, we measure the average standard
deviation over the dimension of last layer parameters of
the policy networks (NoisyNet uses absolute values before
averaging). For PSNE, we use the single standard deviation
for all parameters. Figure 5 shows the patterns of last layer

Deep Coherent Exploration for Continuous Control

stochasticity during policy learning for each of the 10 differ-
ent random seeds, where each curve has a different number
of total policy updates. We should also note that such last
layer stochasticity is all randomness in parameter space for
deep coherent exploration, while part of the randomness in
parameter space for NoisyNet and PSNE. In general, the
last layer stochasticity of both Coherent-PPO and NoisyNet-
PPO has a stable and consistent decrease, indicating steady
trends towards exploitation. More specially, the last layer
stochasticity of Coherent-PPO seems to have a more per-
sistent change. Unlike Coherent-PPO and NoisyNet-PPO,
PSNE-PPO has a rapidly decreasing last layer stochasticity
and the three outliers show that the differences between
random seeds could be huge. This is understandable as
PSNE heuristically set a value for the distance measure to
adapt its stochasticty, while a good value can be hard to
determine and could be highly different in various settings.
Moreover, in high-dimensional control tasks, different ac-
tion dimensions could require different levels of randomness
for exploration that are correlated. Thus, adapting a single
stochasticity metric for all parameters could ignore such cor-
relations and provide suboptimal solutions. Critically, the
last layer stochasticity is not the only factor in exploration,
so these results have to be interpreted with care. However,
it does seem that deep coherent exploration well preserves
its exploration behavior over the course of learning.

Figure 5. Average stochasticity over dimension of last layer pa-
rameters of policy networks for PPO with different exploration
strategies on HalfCheetah-v2. The solid curves show the last layer
stochasticity for each of the 10 random seeds during training.

6. Conclusion
In this paper, we have presented a general and scalable
exploration framework that extends the GE scheme (van
Hoof et al., 2017) for continuous deep RL algorithms. In
particular, recursive calculation of marginal action probabil-
ities allows handling long trajectories and high-dimensional
parameter vectors. Compared with NoisyNet (Fortunato
et al., 2018) and PSNE (Plappert et al., 2018), our method
has three improvements. Firstly, deep coherent exploration

generalizes step-based and trajectory-based exploration in
parameter space, which allows a more balanced trade-off
between stochasticity and coherence. Secondly, deep coher-
ent exploration analytically marginalizes the latent policy
parameters, yielding lower-variance gradient estimates that
stabilize and accelerate learning. Thirdly, by perturbing
only the last layer of the policy network, deep coherent
exploration provides better control of the injected noise.

When combining with A2C (Mnih et al., 2016), PPO (Schul-
man et al., 2017), and SAC (Haarnoja et al., 2018), we em-
pirically show that deep coherent exploration outperforms
other exploration strategies on most of the MuJoCo continu-
ous control tasks tested. Furthermore, the ablation studies
show that, while each of the improvements is beneficial,
combining them leads to even faster and more stable learn-
ing. For future work, since deep coherent exploration uses
a fixed and small action noise, we believe one interesting
direction is to study whether the learnable perturbations in
action space can be combined with our method in a mean-
ingful way for even more effective exploration.

Acknowledgements
We thank SURFsara6 for providing the computational re-
sources needed for this paper.

References
Achiam, J. Spinning Up in Deep Reinforcement Learning.

2018.

Baxter, J. and Bartlett, P. L. Direct gradient-based reinforce-
ment learning. In ISCAS, pp. 271–274. IEEE, 2000.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym,
2016.

Deisenroth, M. P., Neumann, G., and Peters, J. A survey
on policy search for robotics. Found. Trends Robotics, 2
(1-2):1–142, 2013.

Dhariwal, P., Hesse, C., Klimov, O., Nichol, A., Plappert,
M., Radford, A., Schulman, J., Sidor, S., Wu, Y., and
Zhokhov, P. Openai baselines, 2017.

Fortunato, M., Azar, M. G., Piot, B., Menick, J., Hessel, M.,
Osband, I., Graves, A., Mnih, V., Munos, R., Hassabis, D.,
Pietquin, O., Blundell, C., and Legg, S. Noisy networks
for exploration. In ICLR (Poster). OpenReview.net, 2018.

Fujimoto, S., van Hoof, H., and Meger, D. Addressing
function approximation error in actor-critic methods. In
ICML, volume 80 of Proceedings of Machine Learning
Research, pp. 1582–1591. PMLR, 2018.

6https://www.surf.nl/

Deep Coherent Exploration for Continuous Control

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft actor-
critic: Off-policy maximum entropy deep reinforcement
learning with a stochastic actor. In ICML, volume 80 of
Proceedings of Machine Learning Research, pp. 1856–
1865. PMLR, 2018.

Houthooft, R., Chen, X., Duan, Y., Schulman, J., Turck,
F. D., and Abbeel, P. VIME: variational information
maximizing exploration. In NIPS, pp. 1109–1117, 2016.

Jaksch, T., Ortner, R., and Auer, P. Near-optimal regret
bounds for reinforcement learning. J. Mach. Learn. Res.,
11:1563–1600, 2010.

Kearns, M. J. and Singh, S. P. Near-optimal reinforcement
learning in polynomial time. Mach. Learn., 49(2-3):209–
232, 2002.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In ICLR (Poster), 2015.

Kingma, D. P., Salimans, T., and Welling, M. Variational
dropout and the local reparameterization trick. CoRR,
abs/1506.02557, 2015.

Kober, J. and Peters, J. Policy search for motor primitives in
robotics. In NIPS, pp. 849–856. Curran Associates, Inc.,
2008.

Koryakovskiy, I., Vallery, H., Babuška, R., and Caarls, W.
Evaluation of physical damage associated with action
selection strategies in reinforcement learning. IFAC-
PapersOnLine, 50(1):6928–6933, 2017. ISSN 1474-6670.
doi: 10.1016/j.ifacol.2017.08.1218. 20th World Congress
of the International Federation of Automatic Control
(IFAC), 2017, IFAC 2017 ; Conference date: 09-07-2017
Through 14-07-2017.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T.,
Tassa, Y., Silver, D., and Wierstra, D. Continuous control
with deep reinforcement learning. In ICLR (Poster), 2016.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,
T. P., Harley, T., Silver, D., and Kavukcuoglu, K. Asyn-
chronous methods for deep reinforcement learning. In
ICML, volume 48 of JMLR Workshop and Conference
Proceedings, pp. 1928–1937. JMLR.org, 2016.

Morimoto, J. and Doya, K. Acquisition of stand-up behavior
by a real robot using hierarchical reinforcement learning.
In ICML, pp. 623–630. Morgan Kaufmann, 2000.

Osband, I., Roy, B. V., Russo, D. J., and Wen, Z. Deep
exploration via randomized value functions. J. Mach.
Learn. Res., 20:124:1–124:62, 2019.

Ostrovski, G., Bellemare, M. G., van den Oord, A., and
Munos, R. Count-based exploration with neural density

models. In ICML, volume 70 of Proceedings of Machine
Learning Research, pp. 2721–2730. PMLR, 2017.

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T.
Curiosity-driven exploration by self-supervised predic-
tion. In ICML, volume 70 of Proceedings of Machine
Learning Research, pp. 2778–2787. PMLR, 2017.

Peters, J., Vijayakumar, S., and Schaal, S. Natural actor-
critic. In ECML, volume 3720 of Lecture Notes in Com-
puter Science, pp. 280–291. Springer, 2005.

Peters, J., Mülling, K., and Altun, Y. Relative entropy policy
search. In AAAI. AAAI Press, 2010.

Plappert, M., Houthooft, R., Dhariwal, P., Sidor, S., Chen,
R. Y., Chen, X., Asfour, T., Abbeel, P., and Andrychow-
icz, M. Parameter space noise for exploration. In ICLR
(Poster). OpenReview.net, 2018.

Rückstieß, T., Felder, M., and Schmidhuber, J. State-
dependent exploration for policy gradient methods. In
ECML/PKDD (2), volume 5212 of Lecture Notes in Com-
puter Science, pp. 234–249. Springer, 2008.

Rückstieß, T., Sehnke, F., Schaul, T., Wierstra, D., Sun,
Y., and Schmidhuber, J. Exploring parameter space in
reinforcement learning. Paladyn J. Behav. Robotics, 1(1):
14–24, 2010.

Schulman, J., Levine, S., Abbeel, P., Jordan, M. I., and
Moritz, P. Trust region policy optimization. In ICML, vol-
ume 37 of JMLR Workshop and Conference Proceedings,
pp. 1889–1897. JMLR.org, 2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
CoRR, abs/1707.06347, 2017.

Sehnke, F., Osendorfer, C., Rückstieß, T., Graves, A., Pe-
ters, J., and Schmidhuber, J. Parameter-exploring policy
gradients. Neural Networks, 23(4):551–559, 2010.

Shang, W., van der Wal, D., van Hoof, H., and Welling,
M. Stochastic activation actor critic methods. In
ECML/PKDD (3), volume 11908 of Lecture Notes in
Computer Science, pp. 103–117. Springer, 2019.

Strens, M. J. A. A bayesian framework for reinforcement
learning. In ICML, pp. 943–950. Morgan Kaufmann,
2000.

Stulp, F. and Sigaud, O. Path integral policy improvement
with covariance matrix adaptation. In ICML. icml.cc /
Omnipress, 2012.

Sutton, R. S. Generalization in reinforcement learning:
Successful examples using sparse coarse coding. In NIPS,
pp. 1038–1044. MIT Press, 1995.

Deep Coherent Exploration for Continuous Control

Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour,
Y. Policy gradient methods for reinforcement learning
with function approximation. In NIPS, pp. 1057–1063.
The MIT Press, 1999.

Tang, H., Houthooft, R., Foote, D., Stooke, A., Chen, X.,
Duan, Y., Schulman, J., Turck, F. D., and Abbeel, P.
#exploration: A study of count-based exploration for
deep reinforcement learning. In NIPS, pp. 2753–2762,
2017.

Thrun, S. The role of exploration in learning control. In
Handbook for Intelligent Control: Neural, Fuzzy and
Adaptive Approaches. Van Nostrand Reinhold, Florence,
Kentucky, January 1992.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In IROS, pp. 5026–5033.
IEEE, 2012.

Uhlenbeck, G. E. and Ornstein, L. S. On the Theory of
the Brownian Motion. Physical Review, 36(5):823–841,
September 1930.

van Hoof, H., Tanneberg, D., and Peters, J. Generalized
exploration in policy search. Mach. Learn., 106(9-10):
1705–1724, 2017.

Wawrzynski, P. Control policy with autocorrelated noise in
reinforcement learning for robotics. International Journal
of Machine Learning and Computing, 5:91–95, 04 2015.
doi: 10.7763/IJMLC.2015.V5.489.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Mach.
Learn., 8:229–256, 1992.

Ziebart, B. D., Maas, A. L., Bagnell, J. A., and Dey, A. K.
Maximum entropy inverse reinforcement learning. In
AAAI, pp. 1433–1438. AAAI Press, 2008.

