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Predictive Complexity Priors

Eric Nalisnick Jonathan Gordon José Miguel Hernández-Lobato
University of Amsterdam University of Cambridge University of Cambridge

Abstract

Specifying a Bayesian prior is notoriously
difficult for complex models such as neural
networks. Reasoning about parameters is
made challenging by the high-dimensionality
and over-parameterization of the space. Pri-
ors that seem benign and uninformative can
have unintuitive and detrimental effects on
a model’s predictions. For this reason, we
propose predictive complexity priors: a func-
tional prior that is defined by comparing the
model’s predictions to those of a reference
model. Although originally defined on the
model outputs, we transfer the prior to the
model parameters via a change of variables.
The traditional Bayesian workflow can then
proceed as usual. We apply our predictive
complexity prior to high-dimensional regres-
sion, reasoning over neural network depth,
and sharing of statistical strength for few-shot
learning.

1 INTRODUCTION

Choosing the prior for a Bayesian model is the most
important—and often, the most difficult—step in model
specification (Robert, 2001). Unfortunately, prior spec-
ification within machine learning is additionally fraught
and challenging. Popular models such as neural net-
works (NNs) are high dimensional and unidentifiable,
making it extremely hard to reason about what makes
a good prior. Moreover, since the true posterior can
almost never be recovered, it is difficult to isolate a
prior’s influence (even empirically). We are left asking:
do the specifics of the prior even matter if they are
blunted by our posterior approximations and large data
sets? Until recently, most work in machine learning
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has assumed the negative and resorted to priors of
convenience. For instance, the standard normal distri-
bution is by far the most popular prior for Bayesian
NNs (Zhang et al., 2020; Heek and Kalchbrenner, 2019;
Wenzel et al., 2020).

In this paper, we present a novel framework to spec-
ify priors for black-box models. Rather than working
with the uninterpretable parameter space, we place
the Bayesian prior on the model’s functional complex-
ity. Our prior, termed the predictive complexity prior
(PredCP), compares the model’s predictions to those
of a reference model. For example, we define the refer-
ence model for a NN to be a NN with one fewer layer.
The PredCP can then assess and control the effect of
depth on the model’s capacity. Unlike previous work
on functional priors (Sun et al., 2019), we use a change
of variables to exactly translate the prior into a proper
prior on the model parameters. Bayesian inference
can then proceed as usual and without involving extra
machinery. We claim the following contributions:

• Methodology: We propose predictive complex-
ity priors (PredCPs). These extend Simpson
et al. (2017)’s framework to the model predictions,
thereby allowing our data-space intuitions to guide
prior specification. Moreover, we introduce crucial
modifications that allow the PredCP to scale to
large, black-box models such as NNs.

• Applications: We demonstrate the wide applica-
bility of the PredCP by using it for three disparate
tasks: high-dimensional regression, reasoning over
depth in Bayesian NNs, and sharing information
across tasks for few-shot learning. For Bayesian
NNs, we investigate the PredCP’s behavior in de-
tail, revealing its mechanism of action: regularizing
predictive variance.

• Experiments: We report results across a vari-
ety of tasks (classification, regression, few-shot
learning), models (logistic regression, NNs), and
posterior inference strategies (Markov chain Monte
Carlo, variational inference, MAP estimation).
The PredCP provides consistent improvements
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in predictive generalization over alternative priors
(uninformative, shrinkage).

2 SETTING OF INTEREST

Notation Matrices are denoted with upper-case and
bold letters (e.g. Y ), vectors with lower-case and bold
(e.g. y), and scalars with no bolding (e.g. y or Y ). We
use italics to differentiate observations and constants
(e.g. y, ✓) from random variables (e.g. y, ✓).

Model We consider hierarchical models of the form:

y ⇠ p(y|✓), ✓ ⇠ p(✓|⌧), ⌧ ⇠ p(⌧) (1)

where p(y|✓) is the data (sampling) model, p(✓|⌧) is a
first-level prior, and p(⌧) is a second-level hyper-prior.
We are primarily concerned with models for which
p(y|✓) is parameterized by a complicated function and
⌧ plays a significant role in controlling the complexity
of that function. One such example is parameterizing
y|✓ with a NN whose weights are given a normal prior
with variance ⌧: ✓ ⇠ N(0, ⌧I). As ⌧ grows, the weights
become less constrained and the model becomes more
flexible. A common strategy for controlling ⌧ is to
give it a shrinkage prior such as a zero-favoring inverse
gamma (Neal, 1994) or half-Cauchy (Carvalho et al.,
2009). While this is a sensible approach, it can be hard
to understand how p(⌧) regularizes the downstream
predictive function (Piironen and Vehtari, 2017).

A Sketch of Our Approach We propose a novel
prior for ⌧ that goes beyond simply encouraging its
value to be small, as a shrinkage prior does. Instead,
we control ⌧ via model-based (Gelman et al., 2017)
functional regularization. Inspired by Simpson et al.
(2017),1 we define a divergence function between the
model of interest—denote it p(y|⌧) for now—and a
reference model denoted p0(y), which does not depend
on ⌧. Denote the divergence as  = D[p(y|⌧)||p0(y)].
We derive p(⌧) by placing a prior on  and reparam-
eterizing w.r.t. ⌧:  ⇠ ⇡(), ⌧ = D�1() where D�1

denotes the inverse of the aforementioned divergence
function. The ⌧-prior’s density function can then be
written using the change of variables formula:

p(⌧) = ⇡()

����
@

@⌧

����

= ⇡ (D[p(y|⌧)||p0(y)])
����
@ D[p(y|⌧)||p0(y)]

@⌧

����

(2)

where |@/@⌧| is the absolute value of the divergence
function’s derivative w.r.t. ⌧. Note that D : ⌧ 7!  must

1We provide a detailed summary of and comparison to
Simpson et al. (2017)’s framework in Section 6.

be differentiable and bijective for p(⌧) to be proper
(i.e. integrate to one).2 For these conditions to be
satisfied, ⌧ must be a scalar since  is a scalar.

These technical conditions aside, the crucial property of
our framework is that the divergence is computed by in-
tegrating over y, the random variable that corresponds
to data. In turn, the prior can represent data-space
intuitions (via ⇡()) and automatically translate them
(via D) into a prior on the model parameters. This
direction runs counter to how priors are usually defined:
by specifying p(⌧) directly and having little-to-no infor-
mation about the induced distribution on y. Despite
its dependence on the observation model, we empha-
size that our prior is not an empirical Bayesian prior
(Casella, 1985) since y is integrated out.

3 IDEALIZED SETTING

In order to implement the prior sketched in Equation
2, we need to make both theoretical choices (e.g. the
divergence) and practical choices. We separate the
description of our prior into two sections (3 and 4) so
as to delineate theory from practice. In this section,
we provide a full theoretical description. Section 4
then introduces some modifications that increase the
scalability and broaden the applicability of our prior.

We call the idealized version the evidence complexity
prior (ECP). It implements Equation 2 via the follow-
ing three steps:

Step #1: Define Reference Model Given the
model of interest in Equation 1, the first step is defin-
ing the reference model p0(y). Crucially, y denotes
a random variable that corresponds to data, not an
observation. Thus, we call p0(y) and p(y|⌧) ‘evidence
functions’ (Bishop, 2006), not marginal likelihoods. In
general, we define p0(y) by replacing the first-level prior
p(✓|⌧) with a less expressive prior p0(✓). We obtain the
final version of the reference model by marginalizing
over p0(✓):

p0(y) =

Z

✓

p(y|✓) p0(✓) d✓. (3)

We will exclusively use a point-mass prior p0(✓) =
�(|✓ � ✓0|) so that this integration is made trivial:
p0(y) = p(y|✓0) . To form a corresponding represen-
tation of our model of interest, we marginalize over
p(✓|⌧):

p(y|⌧) =
Z

✓

p(y|✓) p(✓|⌧) d✓. (4)

For many models, it will be hard to perform the above
integration, which is why we refer to the ECP’s con-
struction as ‘idealized.’

2We discuss bijectivity conditions for NNs in Section 5.
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Figure 1: ECP for Linear Regression. Subfigure (a) shows each KLD prior: exponential (� = .5), gamma
(� = (.2, 2)), and log-Cauchy (� = 1). Subfigure (b) shows the corresponding ECP on ⌧. Subfigure (c) shows the
marginal prior on � induced by each ECP from (b). Subfigure (c) shows the same marginals for x = 0.25. The
horseshoe prior (Carvalho et al., 2009) (black dashed line) is shown for reference. The ECP adapts with the input
feature, resulting in dynamic shrinkage properties.

Step #2: Define Divergence We next choose the
divergence function. Following Simpson et al. (2017),
we use the Kullback–Leibler divergence (KLD):

KL [p(y|⌧) || p0(y)] =
Z

y
p(y|⌧) log

p(y|⌧)
p0(y)

dy. (5)

We choose this particular KLD—using p(y|⌧) as the
first argument—because it represents the bits lost
when we approximate p(y|⌧) with the reference model.
Switching the arguments would not be sensible since
KL [p0(y) || p(y|⌧)] quantifies the bits lost when p(y|⌧)
approximates p0(y), which should be easy to do since
p(y|⌧) is more expressive. Other choices of diver-
gence (e.g. Hellinger) are possible, but in Section 4, we
will require that the divergence be a convex function
w.r.t. p(y|⌧).

Step #3: Reparameterize Lastly, we place a prior
on the divergence: ⇡() = ⇡(KL [p(y|⌧) || p0(y)]). The
support of ⇡() should be R�0 to match the KLD’s
codomain.3 The degree to which ⇡() favors  =
0 represents our preference for the simpler reference
model. As ⇡() allocates more density away from zero,
the functional regularization is relaxed. Performing the
change of variables then yields the ECP on ⌧:

p (⌧) = ⇡ (KL [p(y|⌧) || p0(y)])

⇥
����
@ KL [p(y|⌧) || p0(y)]

@ ⌧

���� .
(6)

The crucial characteristics of the ECP are that it com-
pares the models holistically and in data space. Using
the evidence functions (step #1) allows the ECP to
directly assess how ⌧ affects y. Hence the ECP em-
braces the philosophy that the prior can only be under-
stood in the context of the likelihood (Gelman et al.,

3If ⇡()’s support is R+, then we assume a small constant
is added to the KLD so that it never evaluates to zero.

2017). Computing the KLD (step #2) then provides
a functional comparison of how the models allocate
probability in data space. This data-space behavior is
our ultimate concern for black-box models.

3.1 Example: Linear Regression

We continue discussion of the ECP with a concrete
example. Consider the linear model E[y|x,�] = x�,
where y 2 R denotes a scalar response, x 2 R its
covariate / feature, and � 2 R the model parameter.
While this is undoubtedly a simple example, the priors
we later describe for NNs will have commonalities. Let
us now step through the ECP derivation. We choose
the first-level prior to be normal, p(�|⌧) = N(0, ⌧), and
the reference prior4 to be ‘the spike,’ p0(�) = �(|��0|).
The ECP for ⌧ is then:

p(⌧;x) =⇡
�
KL
⇥
N(0,�2

y + x2⌧) || N(0,�2
y)
⇤�

⇥

�����
@ KL

⇥
N(0,�2

y + x2⌧) || N(0,�2
y)
⇤

@ ⌧

�����
(7)

where �2
y is the response noise. In this case—and for

conditional models in general—the ECP is a function
of the features x and any other independent variables.
Other default priors such as the g-prior (Zellner, 1986)
and Jeffreys prior (Jeffreys, 1946) have this dependence
as well, which reflects their holistic natures.

Choosing ⇡() We next discuss the choice of ⇡()
and its effect on the resulting ECP. Figure 1(b) shows
three ECPs, each defined by a different choice of KLD
prior (1(a)): exponential (green), gamma (purple), and
log-Cauchy (red). The choice of ⇡() is significant.
First considering the exponential prior, it clearly favors

4We use ‘reference prior’ to refer to the prior for the
reference model, not to Bernardo (1979)’s class of objective
priors.



Predictive Complexity Priors

⌧ > 0 since the density function decays to zero at the
origin. We can interpret this behavior in the context of
the reference and original models as a strict preference
for p(y|⌧). At the other extreme is the gamma prior:
it has a mode at ⌧ = 0 and then quickly decays as
⌧ increases. Thus, the gamma strictly prefers p0(y).
Last we have the log-Cauchy, which we chose due to its
heavy tail. Heavy-tailed priors have been well-validated
for robust regression since they allow the shrinkage to
be ignored under sufficient counter-evidence (Carvalho
et al., 2009). A similar logic can be applied to the KLD:
perhaps the reference model is too simplistic and p(y|⌧)
is drastically superior. If so, we want any preference for
the reference model to be forgotten. Figure 1(b) shows
that the log-Cauchy results in an ECP with two modes,
one at ⌧ = 0 and another at ⌧ ⇡ .15. The log-Cauchy
is able to balance its preferences for p(y|⌧) and p0(y),
interpolating between the exponential and gamma’s
single-mindedness.

Marginal Priors and Feature Dependence It is
perhaps more intuitive to examine the marginal prior
on � induced by the ECP: p(�) =

R
p(�|⌧)p(⌧)d⌧. Fig-

ure 1(c) shows the marginal prior for the three ECPs
considered above and compares them to the horseshoe
prior (Carvalho et al., 2009) (black dashed line). The
three priors behave as expected from looking at p(⌧):
the gamma shrinks the hardest and the log-Cauchy
has the heaviest tails. Yet, recall that the ECP also
depends on x. So far we have assumed x = 1, but
in Figure 1(d) we show the same marginal priors for
x = 0.25. This change in x results in drastically differ-
ent ECPs. As x ! 0, the ECP (no matter the choice of
⇡()) becomes heavier tailed, allowing more deviation
from the reference model. This behavior is natural
since, when x is small, large � values are necessary to
substantially change the model’s predictions. See the
appendix for more discussion, including the ECP for
multivariate regression.

4 PREDICTIVE COMPLEXITY
PRIORS

We now move on to our primary contribution: deriv-
ing a prior that has the same holistic, function-space
properties as the ECP but is tractable for models such
as NNs. As mentioned earlier, the primary weakness
of the ECP is the difficulty of step #1: integrating
over ✓. In this section, we propose modifications to the
ECP derivation that result in a tractable and scalable
alternative. We call the resulting prior a predictive
complexity prior (PredCP).

KLD Upper Bound As the primary obstacle is
integrating over p(✓|⌧), we make headway by defining

the PredCP using the following upper bound on the
ECP’s KLD:

KL[p(y|⌧)||p0(y)] = KL
⇥
E✓|⌧ [p(y|✓)] ||p0(y)

⇤

 E✓|⌧KL [p(y|✓)||p0(y)] .
(8)

We arrive at the upper bound via the strict convexity
of KL [p(y|✓) || p0(y)] and Jensen’s inequality. The
bound reverses the order in which marginalization and
divergence computation are done for the ECP. This re-
versal makes the PredCP more practical since its KLD
is taken between the data models. These are usually
simple distributions (e.g. categorical, Gaussian) that
afford a closed-form KLD. Unfortunately, the expec-
tation over ✓|⌧ may still not be analytically available.
We recommend evaluating the integral using a differen-
tiable, non-centered Monte Carlo (MC) approximation
(Kingma and Welling, 2014). Doing so ensures the
KLD’s derivative w.r.t. ⌧ is well-defined. For super-
vised learning, a downside of the upper bound is that
the dependencies between predictions are lost. Having
the data model factorize across feature observations—
p(Y|X,✓) =

Q
n p(y|xn,✓)—results in the KLD be-

coming a point-wise sum. This is not an issue for the
unsupervised case since there is no concept of features.

Mini-Batching For supervised learning, evaluating
the PredCP requires a sum over all feature observations,
which will be computationally costly for large data sets.
Therefore we recommend the PredCP be evaluated
with mini-batches. Moreover, we compute the KLD’s
mean across the mini-batch, not the sum. In doing so
we assume that the batch’s mean KLD represents an
unbiased estimate of the full-data mean KLD. We use
the mean KLD primarily for practical purposes: it is
easier to set ⇡()’s parameters since they do not have
to account for the batch size.

PredCP Final Form Below we give the final form
of the PredCP for supervised learning, combining the
point-mass reference prior, the KLD upper bound, and
mini-batching:

p(⌧;XB) =

�����
1

B

BX

b=1

@ E✓|⌧KLb

@ ⌧

����� ⇥

⇡

 
1

B

BX

b=1

E✓|⌧KL [p(y|xb,✓) || p(y|xb,✓0)]

! (9)

where b indexes the B-sized batch and E✓|⌧KLb is short-
hand for the expected KLD for the bth instance. The
PredCP encourages stronger shrinkage than the ECP,
which is expected due to the upper bound. For a given
⌧, the PredCP deems the models to be more discrepant
than the ECP would for the same ⌧. This is an appro-
priate inductive bias for the PredCP since it will be
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Figure 2: PredCP for Linear Regression. The ECP
(dashed lines) vs the PredCP (solid lines) for the expo-
nential and log-Cauchy KLD priors (x = 1).

used for large models that often require strong regu-
larization. In Figure 2, we compare the ECP (dashed
lines) and the corresponding PredCP (solid lines) for
the linear regression example. The PredCP’s inductive
bias is evident in the leftward shift of the density func-
tions. This shift can change the PredCP’s behavior
considerably in comparison to the corresponding ECP.
The exponential’s PredCP has a mode at ⌧ = 0 whereas
its ECP decays to zero at the origin.

5 APPLICATIONS OF THE
PREDCP

We now demonstrate the PredCP’s utility for modern
machine learning. We consider two applications: depth-
selection for Bayesian NNs (Dikov and Bayer, 2019;
Nalisnick et al., 2019; Antorán et al., 2020) and sharing
statistical strength across tasks for meta-learning (Chen
et al., 2019). Both of these applications exhibit the
PredCP’s ability to enable Bayesian reasoning across
the model’s macro-structures (e.g. layers) while still
being a tractable and proper prior.

Bijectivity Conditions for Neural Networks
Before moving on to these two applications, we first
address some technical conditions. Recall that for the
PredCP to be a proper prior (i.e. integrate to one),
the expected KLD must be differentiable and bijective
w.r.t. ⌧. The former is easy to satisfy by using a non-
centered MC approximation, as mentioned above. It is
not obvious if the latter is satisfied by NNs. One could
check the condition via brute force, by using numerical
integration. Since ⌧ is a scalar, the numerical solution
should be stable and makes for a good unit test. Yet,
we show in the appendix that bijectivity is satisfied for
feedforward NNs with ReLU activations and Gaussian
or categorical observation models. No architectural
modifications are necessary.

5.1 Depth Selection for Neural Networks

PredCPs allow us to perform Bayesian reasoning over
the depth of a NN. First assume the NN to be a residual
network (resnet) (He et al., 2016); later we will address
the traditional feedforward case. Since we wish to
isolate the effect of depth, we choose the reference
model to have one fewer layer (l � 1 layers) than the
model of interest (l layers). The KLD between these
models will then capture the extra capacity afforded
by the additional layer.

More formally, for an arbitrary layer l, the prior on
the (square) weight matrix Wl 2 RDh⇥Dh for the refer-
ence and original models are: p0(Wl) = � (|Wl � 0|),
p(Wl|⌧l) = N(0, ⌧l⌃l) where ⌧l is again the parameter
of interest. Integrating over p0 sets Wk = 0 for k � l
for the reference model and k > l for the original model.
The resnet then maps the hidden layers directly to the
output layer, thereby allowing the PredCP to compare
the predictions when using l � 1 vs l layers. We can
define the PredCP for all layers by applying the above
priors recursively from the bottom-up:

p(⌧1, . . . , ⌧L) = p(⌧1)
LY

l=2

p(⌧l|⌧1, . . . , ⌧l�1)

=
LY

l=1

⇡ (D(⌧l; ⌧1:l�1))

����
@ D(⌧l; ⌧1:l�1)

@ ⌧l

����

(10)

where the divergence function is

D(⌧l; ⌧1:l�1) =

E{Wj |⌧j}l
j=1

KL
⇥
p(y|{Wj}lj=1) || p(y|{Wk}l�1

k=1)
⇤
.

Computing the full prior requires L forward propaga-
tions, each evaluating a progressively deeper network
with the hidden units at layer l serving as the last
hidden layer. In practice, we cache the forward prop-
agation required to evaluate the original model for ⌧l
and use it as the reference model when evaluating the
prior for ⌧l+1. Nearly the same procedure can be ap-
plied to non-residual networks, except that the residual
connections can no longer be relied upon to transport
the hidden units to the output layer. Rather, the net-
work must be ‘short circuited,’ with the final hidden
units being directly multiplied with the output weights.

Figure 3(a) shows the joint density function ⇡(⌧1, ⌧2)
for both traditional and residual NNs. The PredCP’s
capability for depth selection is conspicuous for the
traditional NN (left). The high density region (red)
touches the x-axis but not the y-axis except near the
origin. This implies that ⌧2 cannot grow unless ⌧1 > 0,
meaning that the first layer is activated. For resnets
(right), the density’s L-shape means that either layer
can be active while the other is inactive (⌧ ⇡ 0), which
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(a) Joint Density Function (b) Functions Sampled from Resnet

Figure 3: Depth-Wise PredCP. Subfigure (a) shows ⇡(⌧1, ⌧2) for traditional (left) and residual (right) NNs.
Subfigure (b) shows functions sampled from a resnet with a PredCP and a horseshoe prior for comparison. The
KLD prior is Log-Cauchy(0, 1) in both cases.

is made possible by the skip connection. Yet the den-
sity’s bias towards the x-axis suggests that the resnet-
PredCP still prefers to activate ⌧1’s layer before acti-
vating ⌧2’s.

Further intuition can be had by examining the depth-
wise PredCP for resnets with a Gaussian data model.
Denote a hidden layer for the nth observation as hn,l =
hn,l�1+fl(hn,l�1Wl) and the output weights as Wo ⇠
N(0,⌃). We assume Wl is parameterized as

p
⌧lW̃l,

W̃l ⇠ N(0,⌃). The expected KLD for computing
⇡(⌧l|⌧1:l�1) (Equation 10) is then:

E{Wj |⌧j}l
j=1

KL
⇥
p(y|{Wj}lj=1)||p(y|{Wk}l�1

k=1)
⇤

=
⌧l
2�2

y

1

N

NX

n=1

VarW̃,Wo

h
fl(hn,l�1W̃l)Wo

i (11)

where �2
y denotes the response noise and fl is any

positively homogeneous activation function (such as
the ReLU). The crucial term Var[flWo] represents the
variance that the lth layer’s transformation term con-
tributes to the resnet’s prediction for xn. The ex-
pression makes clear that the PredCP is performing
functional regularization: a zero-favoring ⇡() will en-
courage this variance to be small. Dropout has been
shown to curb the variance of hidden units in a similar
way (Baldi and Sadowski, 2013). Figure 3(b) shows
functions sampled from a resnet with a horseshoe prior
(left) and a depth-wise log-Cauchy PredCP (right). The
PredCP’s samples are closer to linear due to the reg-
ularization of the predictive variance. Yet, recall that
the log-Cauchy is heavy-tailed and therefore allows
some functions to stray from the origin, as we see one
sample has done.

5.2 Hierarchical Modeling for Meta-Learning

Meta-learning is another natural application for the
PredCP as it can control the degree to which informa-

tion is pooled across tasks. Following the approach
of Chen et al. (2019), we use the generative model:
Dt ⇠ p(Dt|✓t), ✓t ⇠ N(�, ⌧I) where t indexes the task,
Dt is data for the tth task, ✓t are local parameters
specific to the tth task, and {�, ⌧} are global meta-
parameters. The scale ⌧ controls local adaptation, and
as ⌧ ! 0+, the task structure becomes irrelevant. This
hierarchical meta-learning model is perfectly suited for
a PredPC as the global parameters � define a natural
reference model:

p0(Dt) =

Z

✓t

p(Dt|✓t) �(|✓t � �|) d✓t = p(Dt|�).

Computing the KLD between the original and refer-
ence models then quantifies the information lost when
ignoring the task structure. The prior is written as:

p(⌧) =

�����
1

T

X

t

@ E✓t|⌧KLt

@ ⌧

����� ⇥

⇡

 
1

T

TX

t=1

E✓t|⌧KL [p+(Dt|✓t) || p0(Dt|�)]
! (12)

where E✓t|⌧KLt is shorthand for the expected KLD on
the tth task. In the experiments, we follow Chen et al.
(2019)’s modular specification by applying the PredCP
layer-wise. Doing so allows the feature-extracting shal-
low layers to adapt to a different degree than the
classification-based final layer.

6 RELATED WORK

Penalized Complexity Prior Our work is directly
inspired by and extends Simpson et al. (2017)’s penal-
ized complexity prior (PCP). Let p0(✓) denote a ‘base’
prior and p+(✓|⌧) an ‘extended’ prior, with ⌧ control-
ling p+’s expressivity. Simpson et al. (2017) define a
prior for ⌧ by placing a prior on the root-KLD and
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Table 1: Logistic Regression. We report test set predictive log-likelihoods for the half-Cauchy prior, ECP, and
PredCP under both VI and MCMC. Results are averaged across 20 splits.

Variational Inference Markov Chain Monte Carlo

Data Set Ntrain D Half-Cauchy ECP PredCP Half-Cauchy ECP PredCP

allaml 51 7129 �0.43±.01 �0.32±.01 �0.32±.01 �0.19±.02 �0.17±.02 �0.17±.02

colon 44 2000 �0.61±.02 �0.63±.03 �0.66±.02 �0.54±.05 �0.52±.05 �0.54±.04

breast 82 9 �0.60±.01 �0.58±.01 �0.58±.01 �0.55±.02 �0.55±.01 �0.55±.02

changing variables:

p (⌧) = ⇡
⇣p

2KL [p+(✓|⌧) || p0(✓)]
⌘ �����

@
p
2KL

@ ⌧

����� .

The major difference between the PCP and our PredCP
is in how the KLD is formulated. Simpson et al. (2017)
compute the divergence between priors p(✓) whereas
we use the divergence between data models p(y|✓). This
crucial change is necessary since the PCP is hard to
define for NNs and similarly complicated models. As
the priors and the divergence are defined in ✓-space,
specifying the PCP still requires intimate knowledge
of the parameters, running into the same challenges
of high-dimensionality and unidentifiability. Because
of our modification to y-space, this makes the compu-
tation harder since we need to marginalize ✓ to work
with p(y|⌧). This difficulty necessitated the KLD upper
bound in Equation 8. Another benefit of comparing the
models in y-space is that we can easily use point-mass
priors for ✓. Simpson et al. (2017) also do this, but
because their KLD is defined on ✓, they need to take
limits. PCPs have been used as priors for P-splines
(Ventrucci and Rue, 2016), distributional regression
(Klein and Kneib, 2016), autoregressive processes (Sør-
bye and Rue, 2017), mixed effects models (Ventrucci
et al., 2019), and Gaussian random fields (Fuglstad
et al., 2019).

Functional Priors for Bayesian NNs Our work
is also motivated by recent efforts to rethink prior spec-
ification for Bayesian NNs. As we truly care about the
distribution over predictive functions, specifying func-
tional priors has received much attention of late (Ma
et al., 2019; Hafner et al., 2019; Flam-Shepherd et al.,
2018; Louizos et al., 2019). The hope is that it is eas-
ier to reason about our preferences for functions than
for parameters. However, existing functional priors
introduce cumbersome byproducts into the Bayesian
workflow. Placing a functional prior on a NN requires
either taking infinite width limits (Pearce et al., 2019),
optimizing divergences involving stochastic processes
(Flam-Shepherd et al., 2017; Sun et al., 2019), or pre-
training (Flam-Shepherd et al., 2017; Nalisnick and
Smyth, 2018; Atanov et al., 2019). Our framework, on
the other hand, uses reparameterization to obtain a

proper prior on the parameters, creating no complica-
tions for traditional Bayesian inference.

7 EXPERIMENTS

We evaluate the PredCP on regression, classification,
and few-shot learning tasks under a variety of algo-
rithms for posterior inference. The experimental de-
tails are provided in the appendix. In all cases, we use
relatively small data sets so that the prior’s influence
is not overwhelmed by the likelihood’s.

Logistic Regression We first report an experiment
in which the ECP can be computed and posteriors
obtained with high-fidelity. We use the logistic regres-
sion model: y ⇠ Bernoulli(f(x�)), �d ⇠ N(0, �2d⌧

2),
�d ⇠ C+(0, 1) where f denotes the logistic function and
C+ a half-Cauchy prior. We compare three priors for ⌧:
C+(0, 1), which is the default prior recommended by
Gelman (2006) and Carvalho et al. (2009), the ECP (via
probit approximation (Bishop, 2006)), and the PredCP.
The log-Cauchy(0, 1) is the KLD prior. We use Stan
(Carpenter et al., 2017) to obtain the full posterior
p(�,�, ⌧|X,y), performing both variational inference
(Normal mean-field approximation) (Kucukelbir et al.,
2017) and Hamiltonian MC. We test the priors on three
small medical data sets (Golub et al., 1999; Alon et al.,
1999; Patrício et al., 2018) so that the prior strongly
influences the posterior. Furthermore, two of the data
sets are high-dimensional (2000+) in order to test if
the PredCP can prevent overfitting. Table 1 reports
the predictive log-likelihood on the test set averaged
over 20 splits. The ECP and PredCP have comparable
performance and outperform the half-Cauchy in four
of six cases and with one tie.

Neural Networks We next report results using
resnets for regression: y ⇠ N(y|x, {Wl}3l=1), wl,i,j ⇠
N(0, �2l,i⌧l), �l,i ⇠ ��1(3, 3) where l indexes layers, i
rows of the weight matrix, and j columns. This prior
has two forms of Bayesian regularization. The row-wise
scale �l,i implements automatic relevance determina-
tion (ARD) (MacKay, 1994; Neal, 1994), which controls
the effective width. The layer-wise scale ⌧l performs
automatic depth determination (ADD) (Nalisnick et al.,
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Table 2: ARD-ADD Resnet. We report test set RMSE for UCI benchmarks, comparing the PredCP against a
shrinkage prior (Nalisnick et al., 2019) and a fixed scale. Results are averaged across 20 splits.

Prior Type boston concrete energy kin8nm power wine yacht

Fixed 2.29 ±.33 3.51 ±.41 0.83 ±.14 0.06 ±.00 3.32 ±.09 0.58 ±.04 0.66 ±.12

Shrinkage 2.37 ±.18 3.76 ±.23 0.85 ±.08 0.06 ±.00 3.24 ±.07 0.54 ±.03 0.60 ±.16

PredCP 2.26 ±.06 3.70 ±.46 0.82 ±.07 0.06 ±.00 3.27 ±.09 0.56 ±.03 0.57 ±.03

Table 3: Few-Shot Learning. We report test set accuracy for the PredCP, comparing it to a shrinkage prior, a
uniform prior (Chen et al., 2019), and non-Bayesian MAML.

Fewshot-CIFAR100 Mini-ImageNet

1-Shot 5-Shot 1-Shot 5-Shot

MAML 35.6± 1.8 50.3± 0.9 46.8± 1.9 58.4± 0.9
�-MAML + uniform prior 39.3± 1.8 51.0± 1.0 47.7± 0.7 60.1± 0.8
�-MAML + shrinkage prior 40.9± 1.9 52.7± 0.9 48.5± 1.9 60.9± 0.7
�-MAML + PredCP 41.2 ± 1.8 52.9 ± 0.9 49.3± 1.8 61.9± 0.9

2019), as it controls the effective depth. We again
compare three strategies for setting ⌧. The first is
to use a fixed scale (⌧ = ⌧0), thereby removing ADD.
We performed light cross-validation for ⌧0, reporting
the better of ⌧0 = {0.1, 1.0}. The second is to use a
shrinkage prior. Nalisnick et al. (2019) use a cross-
validated inverse gamma prior, and we report their
results as the strong baseline. For our method we use
the PredCP with a log-Cauchy(0, 1) KLD prior because
it performed well for logistic regression. For posterior
inference, we use Bayes-by-backprop (Blundell et al.,
2015) for the weights and variational EM (Wu et al.,
2019; Nalisnick et al., 2019) for the scales � and ⌧. The
maximization step cannot be performed analytically for
the PredCP, as it can for the inverse gamma, and so we
perform iterative gradient-based optimization. Again,
we use relatively small data sets to ensure the prior
remains influential: results on UCI benchmarks (Dua
and Graff, 2019; Hernández-Lobato and Adams, 2015)
are reported in Table 2. Using the PredCP results
in the best test set root-mean-square error (RMSE)
for three of the seven benchmarks (boston, energy,
yacht) and in one tie (kin8nm).

Few-Shot Learning Our final experiment evaluates
the PredCP for few-shot learning. We follow Chen et al.
(2019)’s experimental framework, using the hierarchi-
cal model Dt ⇠ p(Dt|✓t), ✓t ⇠ N(�, ⌧I) (described in
Section 5) and their �-MAML algorithm for optimiza-
tion. In essence, �-MAML performs MAP estimation
for ✓t, �, and ⌧. The classifier is the standard four-
layer convolutional NN (Finn et al., 2017). We exper-
imentally compare four different priors, each applied
layer-wise (again following Chen et al. (2019)). The

first baseline is ✓t ⇠ (improper uniform), which cor-
responds to standard MAML (Finn et al., 2017). The
second baseline is Chen et al. (2019)’s model, which uses
the improper uniform prior for the meta-parameters:
�l, ⌧l ⇠ . For a third baseline, we extend Chen et al.
(2019)’s model by placing a shrinkage prior on ⌧l, cross-
validating over half-Cauchy, log-Cauchy, exponential,
and gamma-exponential mixture distributions. Finally,
our proposal is to place a PredCP on ⌧l. We cross-
validate over the same four shrinkage priors for ⇡().
We evaluated all models on the few-shot CIFAR100
(Oreshkin et al., 2018) and mini-ImageNet (Vinyals
et al., 2016) classification benchmarks, using the stan-
dard 5-way 1-shot and 5-shot protocols. Table 3 re-
ports the results. The PredCP consistently improves
the mean accuracy across all experiments, albeit with
some statistical overlap.

8 CONCLUSIONS

We proposed a novel prior termed the predictive com-
plexity prior (PredCP). This prior is constructed pro-
cedurally and provides functional regularization. We
found the PredCP to improve generalization across
a range of small-data tasks that require careful reg-
ularization. The log-Cauchy(0, 1) served as a good
default KLD prior. We hope that this framework will
inspire new directions in prior specification in machine
learning, with an emphasis on building priors from ref-
erence models and exploiting compositional structure
for adaptive regularization.

There are several directions for future work. One poten-
tial avenue is to improve the divergence computation.
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For instance, it would be good to re-introduce predic-
tive correlations into the divergence, as these were lost
when switching to the upper bound (Equation 8). The
resulting resnet-PredCP could then account for more
interesting local structure in the predictive function,
not just its point-wise variance. For another example,
the Monte Carlo approximation could be stabilized,
possibly with the use of control variates. Other di-
vergence functions could also be explored, including
symmetric ones such as the Hellinger distance. Scal-
ing the PredCP to large neural networks is another
open challenge, as the cost of our layer-wise PredCP
increases with depth. Lastly, it would be interesting to
investigate if the PredCP mitigates the misspecification
issues described by Wenzel et al. (2020) or improves
uncertainty estimation on out-of-distribution data.
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