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Abstract. We consider assortment optimization over a continuous spectrum of products repre-

sented by the unit interval, where the seller’s problem consists of determining the optimal subset

of products to offer to potential customers. To describe the relation between assortment and

customer choice, we propose a probabilistic choice model that forms the continuous counterpart

of the widely studied discrete multinomial logit model. We consider the seller’s problem under

incomplete information, propose a stochastic-approximation type of policy, and show that its

regret – its performance loss compared to the optimal policy – is only logarithmic in the time

horizon. We complement this result by showing a matching lower bound on the regret of any

policy, implying that our policy is asymptotically optimal. We then show that adding a ca-

pacity constraint significantly changes the structure of the problem: we construct a policy and

show that its regret after T time periods is bounded above by a constant times T 2/3 (up to a

logarithmic term); in addition, we show that the regret of any policy is bounded from below by

a positive constant times T 2/3, so that also in the capacitated case we obtain asymptotic opti-

mality. Numerical illustrations show that our policies outperform or are on par with alternatives.
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1 Introduction

1.1 Background and motivation

In the management science and operations research literature, assortments are traditionally

thought of as being of a discrete nature. However, in several applications, attributes of products

or services are adjusted in a continuous manner, leading to a spectrum of similar but distinct

commodities, each with a possibly different selling price. In these situations, customers can be

offered highly personalized, custom-made products – a phenomenon that the marketing litera-

ture refers to as mass customization (see, e.g., Pine 1993, Fogliatto et al. 2012). Examples of

attributes that can be customized in such a continuous manner include the duration of renting

a commodity, the duration or amount of a mortgage, the amount of cellular data usage, or the

amount of (voluntary) deductible excess in insurances. A seller of such products or services

faces, in particular in the product design phase, the concrete problem of having to decide which

specific subset of the spectrum to offer to potential customers, so as to maximize expected profit.

The seller’s problem can be translated into a mathematical optimization problem over an un-

countable space of subsets of an interval. This type of problem can only be solved efficiently when

some structure is imposed on how the consumers’ purchase behavior and the seller’s revenue de-

pend on the assortment that is offered. In the extensive literature on assortment optimization

with a finite number of products, arguably the most-studied choice model is the so-called multi-

nomial logit (MNL) model (see, e.g., Ben-Akiva and Lerman 1985, Mahajan and Van Ryzin

2001, and the references therein). In this model, a nonnegative preference value is associated

to each product (and also to the option of not purchasing a product), and the probability that

a customer selects a particular product from an assortment of products is proportional to this

preference value. To align our work with this rich strand of literature, we propose a choice

model that is the continuous counterpart of the discrete MNL model, with the preference values

replaced by a preference function.

Importantly, we study the seller’s continuous assortment optimization problem in an incom-

plete information setting, meaning that the preference function is a priori unknown to the seller.

To arrive at profitable assortment decisions, the seller thus has to learn the unknown preference

function from accumulating sales data. This requires designing a policy that judiciously balances

the two (sometimes conflicting) goals of learning and earning : on the one hand, the seller needs

to offer assortments that support high-quality estimates of the unknown preference function; on

the other hand, assortments need to be offered that yield a high profit given an available esti-
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mate of the preference function. This is an example of the well-known exploration-exploitation

trade-off in multi-armed bandit (MAB) problems: a paradigm for sequential decision problems

under uncertainty. Indeed, the problem studied in this paper can be seen as a continuous,

combinatorial MAB problem, where the objective is to dynamically learn which subset of the

continuum maximizes the seller’s expected revenue function. Designing and analyzing optimal

decision policies for this novel and relevant question is the topic of this paper.

1.2 Contributions

The contributions in this paper are as follows.

◦ First, we propose a probabilistic choice model for the setting where customers

select from assortments that are subsets of the unit interval. The choice model is the

continuous counterpart of the widely studied multinomial logit (MNL) model, in the

sense that the continuous model arises as a limit of discrete MNL models where the

number of products grow large, and, conversely, that discretizing the product space

in the continuous model gives rise to a discrete MNL model.

◦ Next, assuming that products are labeled in increasing order of marginal profit, we

show that the optimal assortment is an interval of the form [y, 1], for some y ∈ [0, 1],

and that the corresponding optimal expected profit is the unique solution to a fixed

point equation. Leveraging this property, we construct a stochastic-approximation

type policy, and show that its regret (the cumulative expected revenue loss compared

to the optimal policy) after T time periods is O(log T ). In addition, relying on the

Van Trees inequality (which can be seen as a Bayesian version of the well-known

Cramér-Rao lower bound), we show that the worst case regret for any policy grows

as Ω(log T ), implying that our policy is asymptotically optimal.

◦ Inspired by analogous problems in the discrete setting, we then consider assortment

optimization with a capacity constraint. We first show that the optimal assortment

is not necessarily an interval anymore, but can have a much more complex structure.

As a consequence it becomes necessary – in contrast to the uncapacitated case – to

explore the whole product space in order to learn the optimal assortment. We propose

a policy and show that, up to a logarithmic term, its regret after T time periods is

bounded from above by a constant times T 2/3. We then construct an instance in

which the regret of any policy grows as Ω(T 2/3), indicating that the capacitated

setting indeed exhibits intrinsically different behavior than the uncapacitated case
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in which logarithmic regret is attainable.

◦ In a numerical study we compare our algorithms against alternatives from the

literature that are designed for discrete assortment optimization, and show that our

algorithms outperform or are on par with these alternatives. Additional numerical

experiments included in the Appendix show that our continuous assortment model

has good predictive properties compared to its discrete counterpart, even if the true

data-generating model is discrete.

1.3 Organization of the paper

After providing an overview of relevant literature in Section 2, we introduce our model for

continuous assortment optimization in Section 3. In Section 4 we study assortment optimization

without capacity constraints: we propose a stochastic-approximation type policy, provide an

upper bound on its regret, and prove a matching lower bound on the regret of any policy. The

capacitated problem is discussed in Section 5: we propose a policy, prove an upper bound on its

regret, and prove a matching lower bound (up to a logarithmic term) on the regret of any policy.

Section 6 contains our numerical study. Mathematical proofs, a discussion of the relation between

the continuous and discrete logit choice model, a bisection algorithm to compute the optimal

continuous assortment, and additional numerical experiments are collected in the Appendix.

2 Literature

To put our work into the right perspective, we proceed by providing an account of the most

relevant branches of the existing literature.

The idea of considering a continuous spectrum of products is a well-established concept in sev-

eral branches of the literature. Within the economics literature, for example, this idea is studied

in the context of vertical product differentiation and customer self-selection. The seminal work

by Mussa and Rosen (1978) assumes a linear utility-based model in which a seller offers a contin-

uous spectrum of quality levels and tries to optimally match customers of different types to prices

and quality levels. Their model was generalized by Moorthy (1984) to include preferences that

are nonlinear in the customer’s type. More recently, Pan and Honhon (2012) considered verti-

cal product differentiation in the context of assortment optimization, focusing on determining

the optimal positioning of products to offer and corresponding selling prices. Keskin and Birge

(2019) consider a continuum of quality levels in a customer self-selection framework, and analyze
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dynamic learning of uncertain production costs. den Boer et al. (2020) study the problem of

optimally pricing and positioning a finite number of horizontally differentiated products rep-

resented by points on the unit interval, and design asymptotically optimal learning policies.

Assortment optimization with product sets with a continuous structure have also been studied

by Gaur and Honhon (2006) and Fisher and Vaidyanathan (2014), who both view products as

entities in an attribute space and focus explicitly on modeling substitution for finding the optimal

assortment. Another example is Dewan et al. (2003), which studies optimal product customiza-

tion using the continuous, locational Salop model to determine an optimal (sub)spectrum of

products to offer. With the exception of den Boer et al. (2020) and Keskin and Birge (2019),

the literature mentioned above assumes that the model primitives are known to the seller.

The continuous choice model studied in the present paper aligns well with the widely studied

discrete multinomial logit (MNL) choice model. Recently, several authors have studied assort-

ment optimization under this choice model while assuming incomplete information: that is, the

model parameters are unknown in advance and have to be learned from data. Rusmevichientong et al.

(2010) focus on assortment optimization with a capacity constraint, and provide a bi-section al-

gorithm to compute the optimal assortment under full information. Under incomplete informa-

tion, they show under mild conditions that the expected loss (regret) of an explore-then-exploit

type of algorithm after T time periods is bounded by a (instance-dependent) constant times

N2 log T , where N denotes the number of products. Sauré and Zeevi (2013) consider a similar

framework with a more general utility based choice model, and implement procedures to quickly

detect sub-optimal products. Agrawal et al. (2019) study an Upper Confidence Bound (UCB)

algorithm for capacitated assortment optimization under the MNL model, and provide both a

O(
√
NT log T ) upper bound on the worst-case regret of their policy as well as an Ω(

√

NT/K)

lower bound for the regret of any policy, where N is the total number of products and K is the

maximum number of products in the assortment. In addition, Agrawal et al. (2017) present a

Thompson Sampling (TS) algorithm in the same setting, and provide an O(
√
NT log TK) upper

bound on the worst-case regret of the policy.

The lower bound of Agrawal et al. (2019) is improved by Chen and Wang (2018) to Ω(
√
NT ),

under the assumption that K 6 N/4. Without capacity constraint, Chen et al. (2018) provide

an O(
√
T ) upper bound for the regret of their policy and an Ω(

√
T ) lower bound for the regret of

any policy, under the assumption that only the first two products have positive marginal profit.

A combination of a spatially structured product set and learning is studied by Ou et al. (2018).

They present a learning algorithm for the assortment planning problem under the MNL model
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when the utility is a linear function of product attributes, as in the numerical study done by

Rusmevichientong et al. (2010), and derive regret bounds.

The problem of learning the optimal assortment from accumulating data relates our work to

multi-armed bandit (MAB) problems: a framework to study sequential learning-and-optimization

problems. A central theme in these problems is to determine the optimal balance between

exploration (‘learning’) and exploitation (‘earning’). Classically, the number of arms is assumed

to be finite (see, e.g., Robbins 1952, Lai and Robbins 1985, Agrawal 1995, Auer et al. 2002).

More recently, MAB problems have been studied where the action set is a continuum (see,

e.g., Agrawal 1995, Agarwal et al. 2011, Kleinberg 2005, Auer et al. 2007, Kleinberg et al. 2008,

Bubeck et al. 2009, Cope 2009, Bubeck et al. 2011a,b, Flaxman et al. 2005, Shamir 2013), or

where the action set consists of a (typically large) number of combinatorial structures (see, e.g.,

Cesa-Bianchi and Lugosi 2012, Chen et al. 2013, Combes et al. 2015). Our work is related to

both these strands of literature: we study a MAB problem where the action sets consists of

subsets of the unit interval, comprising a combinatorial MAB problem with uncountable action

set. To the best of our knowledge, such a continuous, combinatorial MAB problem has not been

considered before in the literature.

3 Model

We consider a seller of a commodity or service with an attribute that can be infinitesimally

adjusted to any value in the interval [0, 1]. Each value in [0, 1] is referred to as a product, and

the seller has to decide which assortment of products, i.e., which subset of [0, 1], to offer to each

potential customer. Upon being offered an assortment, a customer either purchases a product

from the assortment, or decides not to purchase – such a no-purchase is denoted by ∅. The total
collection of products X is the union of the unit interval and the no-purchase option:

X := [0, 1] ∪ {∅}.

The goal of the seller is to identify an assortment that maximizes her expected revenue; as

we shall see, this is not necessarily the entire interval [0, 1]. We consider both capacitated and

uncapacitated settings: in the former, the size of the assortment is bounded by a known constant

c < 1, whereas in the latter case, this maximum size is c = 1. The set of feasible assortments is
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thus given by all (measurable) sets S ⊂ [0, 1] with volume at most c:

S := {S ∈ B[0, 1] : vol(S) 6 c},

where B[0, 1] is the Borel sigma-algebra on [0, 1] and where

vol(S) :=

∫

x∈S
dx.

For each product x ∈ [0, 1], the marginal revenue that the retailer obtains if x is purchased is

denoted by w(x); no revenue is obtained from a no-purchase. We assume that w is a continuously

differentiable function [0, 1] → [0, 1] with positive derivative bounded away from zero. It is worth

observing that, in case x is a measure of quality, it is natural to assume that w is increasing.

For all S ∈ S, we let XS denote the random choice of an arbitrary customer who is offered

assortment S. We assume the following structure on the distribution of XS :

P(XS ∈ A) =

∫

x∈A v(x)dx

1 +
∫

x∈S v(x)dx
, (1)

for all (Borel measurable) A ⊆ S, and

P(XS = ∅) = 1

1 +
∫

x∈S v(x)dx
,

where v : [0, 1] → R+ is an integrable function. The function v is referred to as the preference

function, and is unknown to the seller. The expected revenue earned by the seller after offering

assortment S ∈ S to a customer is denoted by

r(S, v) :=

∫

x∈S v(x)w(x)dx

1 +
∫

x∈S v(x)dx
.

The aim of the seller is determining an assortment S ∈ S that maximizes r(S, v). This is not

directly possible, however, since the preference function is unknown. We therefore consider a

sequential version of the problem that enables the seller to learn the optimal assortment from

accumulating sales data. The seller offers assortments during T ∈ N consecutive time periods,

indexed by t = 1, . . . , T . Each time period t corresponds to a visit of a single customer. The

assortment offered at time t is denoted by St, while Xt ∈ X denotes the (no-)purchase of the

customer at time t. Conditionally on St = S, the purchase Xt is distributed as XS , for all S ∈ S
and all t = 1, . . . , T .
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The seller’s decisions which assortments to offer are described by her policy : a sequence of map-

pings from available sales data (consisting of previously offered assortments and corresponding

(no-)purchases) to a new assortment. Formally, a policy π = (π1, . . . , πT ) is a vector of mappings

πt : (S × X )t−1 → S, such that

St = πt(S1,X1, . . . , St−1,Xt−1) for all t = 1, . . . , T ; (2)

here, we write S1 = π1(∅) for the initial assortment. Thus, a policy describes for each pos-

sible data-set of assortments and purchases how the seller selects the next assortment. The

performance of a policy is measured by its regret : the cumulative expected loss caused by using

sub-optimal assortments. Formally, the regret of a policy π is defined as

∆π(T, v) :=
T∑

t=1

Eπ

[

max
S∈S

r(S, v)− r(St, v)

]

, (3)

where S1, . . . , ST satisfy (2), and where the subscript in the expectation operator indicates the

dependence on the policy π. In the next sections we show that the maximum in (3) is attained.

We also consider the worst-case regret over a class V of preference functions:

∆π(T ) := sup
v∈V

∆π(T, v).

The class of preference functions V under consideration consists of all functions v defined on the

unit interval that satisfy the following assumptions.

Assumption 1. (i) For all v ∈ V and y ∈ [0, 1],

v 6 v(y) 6 v,

for some v > v > 0 with v > w(0)/
∫ 1
0 (w(x) − w(0))dx.

(ii) All v ∈ V are differentiable on (0, 1) with uniformly bounded derivative, i.e.,

sup
y∈(0,1),v∈V

|v′(y)| <∞.

These assumptions are arguably mild, and allow us to obtain instance-independent regret

upper bounds. If one is only interested in an instance-dependent bound of the form ∆π(T, v) 6

C log T , where C may depend on v, then Assumption 1(ii) can be weakened; see Remark 4 for

details. The assumption v > w(0)/
∫ 1
0 (w(x) −w(0))dx is used in Section 4 to exclude trivialities;
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without this assumption, the unit interval [0, 1] is an optimal assortment for all v ∈ V (in case

c = 1), and there is nothing to learn.

Remark 1. It is worth emphasizing that without assuming a particular structure of the choice

probabilities P(XS ∈ A), learning the optimal assortment from data is hopeless since the action

space is uncountable. Our proposed model is motivated by its similarity to the well-known

and frequently used discrete multinomial logit (MNL) choice model. In this model, the prob-

ability that a customer’s choice lies in A ⊆ S when being offered assortment S is equal to
∑

x∈A v(x)/(1 +
∑

x∈S v(x)), for a function v defined on the product space and taking values

in (0,∞). We essentially assume the same probabilistic structure, but with sums replaced by

integrals.

Remark 2. The discrete multinomial logit choice model can be derived from an assumed un-

derlying random utility model in which a customer assigns utility u(x) = log(v(x)) + ǫ(x) to

each product x and utility ǫ(0) to the no-purchase option; here {ǫ(x)} and ǫ(0) are i.i.d. stan-

dard Gumbel distributed random variables. If the customer selects the product (or no-purchase

option) that maximizes her utility, then the probability that her choice lies in A ⊆ S when

being offered assortment S has a closed form and is equal to the above mentioned expression
∑

x∈A v(x)/(1 +
∑

x∈S v(x)) (see Train 2009, for a derivation). Whether a similar relation be-

tween choice probabilities and an underlying choice model exists when the product space is the

continuum is not known. With uncountably many products, the arguments from the discrete

case do not carry over, as one, e.g., would need to take a maximum over uncountably many ran-

dom variables. Investigating the relation between choice probabilities and random utility models

in case of a continuum of products is an interesting problem in its own right, but is outside the

scope of the current paper. That said, our continuous model is closely connected to the discrete

variant: it arises as a limit of discrete MNL models with the number of products N going to

infinity, and, conversely, discretizing the continuum product space generates choice probabilities

that are described by a discrete MNL model (see Appendix C for details). Furthermore, the

policy that we propose in Section 5 to learn the optimal assortment with capacity constraint

is effectively based on the fact that the continuous model can be approximated up to arbitrary

precision by a discrete model.
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4 Uncapacitated continuous assortment optimization

In this section we investigate the uncapacitated case c = 1, in which the assortment can in

principle cover the full interval [0, 1]. Our main finding is that the optimal asymptotic growth

rate of regret is logarithmic in the time horizon. In what follows, we first show how to compute an

optimal assortment. Next, we construct a policy and show that its regret is bounded from above

by C log T for some positive C independent of T . Then we show that for any policy π the regret

majorizes C log T for some C > 0 independent of T . This implies that our constructed policy

achieves the smallest possible growth rate of regret, and is therefore asymptotically optimal.

The intuitive ideas underlying the mathematical statements in this section are given in the

main text; the full proofs are contained in Appendix A.

4.1 Full information optimal solution

It is known that the optimal assortment under the discrete MNL model without capacity con-

straints is of the form ‘offer the k most expensive products’ for some integer k (cf. Talluri and Van Ryzin

2004, Proposition 6). This result carries over to our model of continuous assortment optimiza-

tion. Since we assume that products are labeled in such a way that w is increasing, the optimal

assortment is of the form [y, 1], for some y ∈ [0, 1]. The argument to show this is as follows (cf.

Rusmevichientong et al. 2010, Section 2.1):

max{r(S, v) : S ∈ S} = max {̺ ∈ [0, 1] : ∃S ∈ S : r(S, v) > ̺}

= max

{

̺ ∈ [0, 1] : ∃S ∈ S :

∫

S
v(x)

(
w(x)− ̺

)
dx > ̺

}

= max

{

̺ ∈ [0, 1] : max
S∈S

∫

S
v(x)

(
w(x)− ̺

)
dx > ̺

}

. (4)

The inner maximization problem in (4) is maximized by {x ∈ [0, 1] : w(x) > ̺}. Let w−1(·)
denote the generalized inverse of w(·), i.e.,

w−1(̺) := min{x ∈ [0, 1] : w(x) > ̺}, ̺ ∈ [0, 1].

Since w is strictly increasing and continuous, the set {x ∈ [0, 1] : w(x) > ̺} is equal to the

interval [w−1(̺), 1], and it follows that

max{r(S, v) : S ∈ S} = max{r([w−1(̺), 1], v) : ̺ ∈ [0, 1]}.
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The fact that the optimal assortment is an interval of the form [y, 1] has evident attractive

computational implications, most notably that it reduces the original optimization problem

over all subsets of the unit interval to an optimization problem in one variable y ∈ [0, 1].

4.2 A policy for incomplete information

We proceed by defining a data-driven policy that iteratively approximates the optimal assort-

ment. The policy is parameterized by α > 0 and β > 0.

Stochastic Approximation Policy SAP(α, β)

1. Initialization. Let α > 0, β > 0 and ̺1 ∈ [0, 1]. For all t ∈ N let at := α/(t +

β). Put t := 1. Go to 2.

2. Assortment selection. Let

St := [w−1(̺t), 1], Rt := w(Xt)1{Xt ∈ St},

and

̺t+1 = ̺t + at
(
Rt − ̺t

)
.

Put t := t+ 1. If t 6 T, then go to 2, else to 3.

3. Terminate.

The policy SAP(α, β) is a classic stochastic approximation policy (Robbins and Monro 1951,

Kushner and Yin 1997) that aims at finding the value of ̺ ∈ [0, 1] such that r([w−1(̺), 1], v)

equals ̺. This condition uniquely defines the optimal ̺ that corresponds to the optimal assort-

ment [w−1(̺), 1]. Since only noisy observations Rt of the revenue function r([w−1(̺), 1], v) are

available, the policy keeps changing ̺t based on observations of Rt− ̺t. The step sizes at decay

roughly as 1/t; this rate ensures that, on the one hand, ̺t does not converge ‘too slowly’ to the

optimal value, while on the other hand, ̺t does not keep jumping ‘over’ the optimal ̺ which

could potentially lead to a slow convergence rate.
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4.3 Regret upper bound

We proceed by showing that the worst-case regret of SAP(α, β) grows at most logarithmically

in T .

Theorem 1. Let π correspond to SAP(α, β) with α > v+1 and β > max{0, α− 1}. Then there

is a C > 0 such that, for all T > 2,

∆π(T ) 6 C log T.

Write g(y) := r([y, 1], v) and h(̺) := g(w−1(̺)), for y, ̺ ∈ [0, 1]. The key idea underlying the

algorithm and the regret upper bound is the observation that the optimal expected revenue

̺∗ := max{r(S, v) : S ∈ S},

solves the fixed-point equation

h(̺) = ̺.

Because the noisy observation Rt has conditional expected value h(̺t), we can apply a Robbins-

Monro scheme to find ̺∗ and the corresponding optimal assortment, without, e.g., having to

estimate the gradient of the revenue function. This explains why we achieve a small regret rate

of O(log T ) instead of, e.g., O(
√
T ) which is commonly seen in continuous multi-armed bandit

problems.

Remark 3. The logarithmic growth rate of the regret in Theorem 1 holds for all choices of

α > v + 1 and β > max{0, α − 1}. As the constant in front of the log T term may depend

on these parameters, the finite-time performance of the policy may be fine-tuned by carefully

selecting these α and β, for example based on initial simulations.

Remark 4. Theorem 1 presents a worst-case bound: the constant C is independent of v ∈ V.
To obtain this result we need to impose assumptions on uniform bounds on the derivative of

v ∈ V. If we are only interested in an instance-dependent upper bound ∆π(T, v) 6 Cv log T , for

all v ∈ V and some v-dependent constant Cv > 0, then Assumption 1(ii) can be relaxed to v

being continuously differentiable: this ensures inequality (24) in the proof of Lemma 4.
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4.4 Regret lower bound

Now that we have proven an upper bound on the regret of the policy SAP(α, β), we proceed

by showing that this bound is, up to a multiplicative constant, asymptotically tight as T grows

large. This implies that our policy is asymptotically optimal.

Theorem 2. There is a C > 0 such that, for all policies π and all T > 2,

∆π(T ) > C log T.

To prove Theorem 2 we first define a collection of preference functions vθ, indexed by a

parameter θ that takes values in a closed interval Θ. Next, we show that the instantaneous regret

incurred by offering assortment S instead of the optimal assortment [y(θ), 1] corresponding to

θ, is bounded from below by a constant times the squared difference between the volumes of

[y(θ), 1] and S, for any S ∈ S and θ ∈ Θ. This result is obtained by exploiting local quadratic

behavior of the instantaneous regret for assortments close to the optimal one. Furthermore, this

relation implies that it suffices to prove a lower bound on the mean squared error of any estimate

of the volume of the optimal assortment: a reduction from subsets of [0, 1] to one-dimensional

variables in [0, 1]. To mitigate difficulties with the atom of the purchase distributions XS on ∅,
we define new, absolutely continuous random variables Z1, Z2, . . . and show that it suffices to

prove a regret lower bound based on observations Z1, Z2, . . . instead of the purchases X1,X2, . . ..

Next, we bound the Fisher information corresponding to Z1, . . . , Zt from above by a positive

constant times t, and define a probability measure λ on the support of θ. By the Van Trees

inequality (Gill and Levit 1995), we then conclude that the expected instantaneous regret in

period t+ 1, where the expectation is with respect to λ, is bounded from below by a constant

times 1/t, for all t. By summing over all t = 1, . . . , T , the logarithmic lower bound follows.

5 Capacitated continuous assortment optimization

In this section we consider the setting in which the capacity c is strictly less than 1. We

first characterize the optimal assortment under full information, and show that the optimal

solutions in the capacitated case exhibit richer behavior than the intervals [y, 1] observed in

the uncapacitated case. Next, we show that this structural difference translates into a different

complexity of the dynamic learning problem, finding that the optimal growth rate of regret

behaves as T 2/3 instead of log T as established in the previous section.
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The intuitive ideas underlying the mathematical statements in this section are given in the

main text; the full proofs are contained in Appendix B.

5.1 Full information optimal solution

As shown in Section 4.1, the assortment optimization problem under full information can be

written as

max{r(S, v) : S ∈ S} = max

{

̺ ∈ [0, 1] : max
S∈S

I(S, ̺) > ̺

}

, (5)

where

I(S, ̺) :=
∫

S
v(x)

(
w(x)− ̺

)
dx,

for S ∈ S and ̺ ∈ [0, 1], and where S denotes the collection of all measurable subsets of the

unit interval with volume at most c. Without a capacity constraint, I(S, ̺) is maximized by the

upper level set

W̺ := {x ∈ [0, 1] : w(x) > ̺},

for all ̺ ∈ [0, 1], since v(x)(w(x) − ̺) is nonnegative if and only if x ∈ W̺. With capacity

constraint, however, the optimization becomes slightly more subtle, because the set W̺ may

have volume larger than c. We discuss how to solve the inner maximization problem in (5), i.e.,

how to construct an S̺, for each ̺ ∈ [0, 1], such that

I(S̺, ̺) = max{I(S, ̺) : S ∈ S}. (6)

Next, we utilize this result to obtain an optimal solution for (5). To this end, let

h(x, ̺) := v(x)
(
w(x)− ̺

)
, x ∈ [0, 1], ̺ ∈ [0, 1], (7)

be the function that I integrates, let

L̺(ℓ) := {x ∈ [0, 1] : h(x, ̺) > ℓ}, ̺ ∈ [0, 1], ℓ ∈ [0,∞),

be the upper level sets of h( · , ̺), and let

m̺(ℓ) := vol(L̺(ℓ)), ̺ ∈ [0, 1], ℓ ∈ [0,∞),
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denote their volume. We first give an explicit characterization of the optimal solution(s) of (6).

Lemma 1. Let ̺ ∈ [0, 1].

(i) If vol(W̺) 6 c, then the maximum of I(S, ̺) over sets in S is attained by S =W̺.

(ii) If vol(W̺) > c, then the maximum

ℓ̺ := max{ℓ > 0 : m̺(ℓ) > c}

exists, and the maximum of I(S, ̺) over sets in S is attained by S = L+
̺ ∪ L	

̺ , where

L+
̺ := {x ∈ [0, 1] : h(x, ̺) > ℓ̺},

L=
̺ := {x ∈ [0, 1] : h(x, ̺) = ℓ̺},

and L	
̺ is a subset of L=

̺ such that vol(S) = vol(L+
̺ ) + vol(L	

̺ ) = c.

As is intuitive, the upper level set W̺ maximizes I(S, ̺) with respect to S if this does not

result in a violation of the capacity constraint (case (i)). On the other hand, if the volume ofW̺

exceeds the maximum capacity (case (ii)), then we construct an optimal assortment as follows.

First, we ‘fill’ the assortment by the upper level set {x ∈ [0, 1] : h(x, ̺) > ℓ}, where ℓ is as large
as possible given the capacity constraint; this largest value of ℓ is denoted by ℓ̺ in Lemma 1. If

the resulting assortment has size c then we are done; if not, then the function h(x, ̺) has ‘flat’

regions; that is, the level set {x ∈ [0, 1] : h(x, ̺) = ℓ̺} has positive measure, and adding this

set to the assortment would result in a violation of the capacity constraint. In that case, the

optimal assortment S constructed in Lemma 1 consists of {x ∈ [0, 1] : h(x, ̺) > ℓ̺} and a subset

of {x ∈ [0, 1] : h(x, ̺) = ℓ̺}, such that the volume of the union of the two parts is exactly equal

to c.

Based on the explicit solution of the inner maximization problem (6) given in Lemma 1, we

now characterize an optimal solution to (5).

Proposition 1. For each ̺ ∈ [0, 1] let S̺ ∈ S satisfy (6). Then there is a unique solution

̺∗ ∈ [0, 1] to the fixed-point equation

I(S̺, ̺) = ̺, ̺ ∈ [0, 1],
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and S̺∗ is an optimal assortment:

r(S̺∗ , v) = max{r(S, v) : S ∈ S}.

We prove the proposition by showing that I(S̺, ̺) is continuous and non-increasing as function

of ̺, with I(S0, 0) > 0 and I(S1, 1) = 0. By the equality (5) and the observation

I(S̺, ̺) = ̺ ⇐⇒ r(S̺, v) = ̺,

we conclude that if ̺∗ solves the fixed-point equation, then S̺∗ is an optimal assortment.

Remark 5. The optimal assortment can be efficiently computed up to any desired accuracy via

a bisection method. In Appendix D we present an implementation of such a bisection algorithm.

Remark 6. In contrast to the setting discussed in Section 4, the optimal assortment in the

presence of a capacity constraint does not have to be a connected interval. Consider, for example,

the bi-modal preference function plotted in the left-hand panel of Figure 1, and let c = 0.5 and

w(x) = x for all x ∈ [0, 1]. The optimal assortment S∗ in this instance consists of the union of

two disjoint intervals:

S∗ = [0.33, 0.48] ∪ [0.63, 0.98],

with corresponding optimal expected profit r(S∗, v) = 0.19. In contrast, the largest expected

profit that can be obtained from a single closed interval in this instance is equal to 0.13 (attained

at the interval [0.5, 1]); a reduction in profit of more than thirty percent. This shows that

restricting to single intervals can leave a significant amount of profit on the table.
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(x
)
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Figure 1: The left-hand panel shows the bi-modal preference function v(x) = 1
10 +

1
5(2 + x)(1−

x)+ 2
7φ(x; 0.33, 0.1)+

1
5φ(x; 0.8, 0.1), x ∈ [0, 1], where φ( · ;µ, σ) is the normal probability density

function with parameters µ and σ. The right-hand panel shows the corresponding function
̺ 7→ I(S̺, ̺). The optimal ̺∗ = 0.19 is the unique ̺ such that I(S̺, ̺) is equal to ̺.
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The continuous model offers insight in the role of the capacity constraint in its discrete coun-

terpart. To illustrate this, consider the instance of the discrete MNL assortment optimization

problem discussed by Rusmevichientong et al. (2010) with N = 4 products, and preference

values vi and marginal revenues wi given by

v = (0.2, 0.6, 0.3, 5.2) and w = (9.5, 9.0, 7.0, 4.5).

Rusmevichientong et al. (2010) shows that the optimal assortment, as function of the maximum

assortment size C, is given by

C 1 2 3 4

Optimal assortment {4} {2, 4} {1, 2, 3} {1, 2, 3, 4}

By defining

v(x) = N

N∑

i=1

vi1

{
i− 1

N
6 x <

i

N

}

,

and

w(x) =

N∑

i=1

wi1

{
i− 1

N
6 x <

i

N

}

,

for all x ∈ [0, 1], we translate the problem into our continuous assortment optimization setting.

For each fixed ̺, the function x 7→ h(x, ̺) defined in (7) is a piece-wise constant function that

attains the values Nvi(wi − ̺), for i = 1, . . . , N . The ordering of the quantities {Nvi(wi − ̺) :

i = 1, . . . , N} does not change when ̺ is slightly changed, except possibly if ̺ is of the form

̺i,j :=
viwi − vjwj

vi − vj
, for some 1 ≤ i < j ≤ N.

If we consider the optimal revenue ̺∗(c) as function of the capacity constraint c, then it follows

that the fraction of a product that is included in the optimal assortment might be discontinuous

at points c such that ̺∗(c) = ̺i,j, for some i, j. In our example, this happens at c ≈ 0.32,

c ≈ 0.61, and c ≈ 0.66. Figure 2 illustrates this behavior. The fraction of a particular product

that is included in the optimal assortment is not monotone in c, and can in fact make jumps.
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Figure 2: The left-hand panel shows the optimal amount of each products, as function of c. The
right-hand panel shows the corresponding optimal expected profit ̺∗(c).

5.2 A policy for incomplete information

We proceed by presenting a policy for the continuous assortment optimization problem with

capacity constraint and incomplete information. We first discuss the underlying intuition and

the method of establishing upper confidence bounds, after which we formally present our policy

Discretized Upper Confidence Bounds (DUCB). In what follows, we use [n] as a compact notation

for the set {1, . . . , n} (where n ∈ N).

The proposed policy is parameterized by an integer N ∈ N. The policy DUCB(N) discretizes

the set of products [0, 1] into N bins of equal size, after which the policy exploits the similarity

with the discrete multinomial logit (MNL) model. This is done by applying the UCB policy from

(Agrawal et al. 2019, (Algorithm 1)) to the bin structure. We regard a continuous purchase in

the i-th bin as a purchase of product i in the discrete MNL model. The policy establishes upper

confidence bounds on the preference parameters corresponding to the discrete MNL model. More

specifically, define the bins as

Bi :=

[
i− 1

N
,
i

N

)

(8)

for i = 1, . . . , N − 1 and

BN :=

[
N − 1

N
, 1

]

, (9)

and define the parameters

vi :=

∫

Bi

v(x) dx and wi := N

∫

Bi

w(x) dx, i ∈ [N ].
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Note that by our choice of vi and wi for i ∈ [N ], the expected profit of an assortment consisting

of a collection of bins is the same for the continuous and discrete MNL model.

At each time t we observe a purchase Xt ∈ St ∪ {∅}, and translate this Xt to a discrete

purchase Yt by

Yt :=

N∑

i=1

i1Bi
(Xt).

Observe that Xt ∈ BYt if Xt ∈ St and Yt = 0 if Xt = ∅. The policy at time t computes up-

per confidence parameters vUCB
1,t , . . . , vUCB

N,t of the parameters v1, . . . , vN using observed discrete

purchases Y1, . . . , Yt. In the next step, at time t+ 1, the chosen assortment is the collection of

bins St+1 =
⋃

i∈Dt+1
Bi where Dt+1 is a subset of [N ] of size at most ⌊cN⌋, which maximizes

D 7→
∑

i∈D v
UCB
i,t wi

1 +
∑

i∈D v
UCB
i,t

.

If such an optimal assortment is not unique, ties are broken by applying an arbitrary fixed

ordering of assortments.

The DUCB(N) policy starts by setting vUCB
i,0 = 1 for all i ∈ [N ]. To compute the upper con-

fidence parameters vUCB
1,t , . . . , vUCB

N,t for t = 1, . . . , T , the observed discrete purchases Y1, . . . , Yt

are used as follows. The time horizon is partitioned into epochs, where each epoch corresponds

to a sequence of consecutive actual purchases. An epoch ends when a no-purchase is observed,

i.e., Xt = ∅ or, equivalently, Yt = 0. Specifically, let t0 := 0 and recursively define

tℓ := min{t ∈ {tℓ−1 + 1, . . . , T} : Yt = 0}, ℓ ∈ N>1,

and tℓ := T if {t ∈ {tℓ−1 + 1, . . . , T} : Yt = 0} = ∅. Let L denote the first index such that

tL = T , that is,

L := min{ℓ ∈ N>1 : tℓ = T}.

Then the ℓ-th epoch Eℓ is defined as

Eℓ := {tℓ−1 + 1, . . . , tℓ}, ℓ ∈ [L].

Within each epoch Eℓ the upper confidence parameters remain unchanged, that is, vUCB
i,t = vUCB

i,s

for all i ∈ [N ] when s, t ∈ {tℓ−1, . . . , tℓ − 1}. As a result, and by the fixed tie-breaking rule, Dt

remains the same within each epoch. Define Dℓ := Dtℓ−1+1. At the end of an epoch, the upper
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confidence parameters are updated. Then the upper confidence bounds vUCB
1,t , . . . , vUCB

N,t become

vUCB
i,t :=







v̄i,ℓ +

√

v̄i,ℓ
48 log(

√
Nℓ+ 1)

|Ti(ℓ)|
+

48 log(
√
Nℓ+ 1)

|Ti(ℓ)|
if t = tℓ for some ℓ ∈ [L] and i ∈ Dℓ,

vUCB
i,t−1 otherwise.

(10)

Here Ti(ℓ) is the set of epochs up to ℓ in which product i is offered, that is,

Ti(ℓ) := {τ ∈ [ℓ] : i ∈ Dτ}, i ∈ [N ],

and v̄i,ℓ is the average of the number of times product i is purchased in epoch τ for epochs

τ ∈ Ti(ℓ), that is,
v̄i,ℓ :=

1

|Ti(ℓ)|
∑

τ∈Ti(ℓ)

∑

t∈Eτ
1{Yt = i}.

For all i ∈ Dℓ, v̄i,ℓ is an unbiased estimator of the discrete preference parameters vi (see Corollary

A.1 by Agrawal et al. 2019). Note that in (10) there exists an ℓ ∈ [L] such that t = tℓ if and

only if Yt = 0.

After the verbal description of our DUCB(N) policy, we now present the formal algorithm.

Discretized Upper Confidence Bounds DUCB(N)

1. Initialization. Let N ∈ N and put K := ⌊cN⌋. Let Bi for i ∈ [N ] be as in

(8) and (9). Let wi := N
∫

Bi
w(x)dx and vUCB

i,0 := 1 for i ∈ [N ] and t := 1. Go to 2.

2. Assortment selection. Let

Dt ∈ argmax
D⊆[N ]:|D|6K

∑

i∈D v
UCB
i,t−1wi

1 +
∑

i∈D v
UCB
i,t−1

, (11)

and

St :=
⋃

i∈Dt

Bi.

Determine vUCB
1,t , . . . , vUCB

N,t as in (10), and let t := t + 1. If t 6 T, then go to 2,

else to 3.

3. Terminate.
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If the discrete assortment Dt as in (11) is not unique, ties are dealt with by applying an

arbitrary fixed ordering of assortments.

5.3 Regret upper bound

We proceed by showing that the worst-case regret of DUCB(N), with appropriately chosen N ,

grows at most as T 2/3 up to a logarithmic term.

Theorem 3. Let T > 2, γ = max{v, 1/c+1}, N =
⌊
γT 1/3

⌋
, and let π correspond to DUCB(N).

There is a C > 0, independent of T , such

∆π(T ) 6 C T 2/3(log T )1/2.

To prove the theorem, we first establish a relation between the regret in our model and that

of the discrete regret in the context of Agrawal et al. (2019). There is an obvious misalignment

between those two notions: one deals with functions and the other with discrete parameters.

However, we are able to bound the regret of DUCB(N) from above by the regret of UCB plus a

discretization error of order T/N . Since the regret of UCB is of order
√
NT (up to a logarithmic

term), the optimal value of N is proportional to T 1/3 which results in a T 2/3 upper bound for

the regret of DUCB(N) (also up to a logarithmic term).

Then it is observed that the discretization error consists of three sources. The first source is

due to the fact that the discrete model approximates the actual preference function and marginal

profit function by a piecewise constant function. The second source is caused by the fact that

the true optimal assortment is not necessarily exactly equal to a collection of bins. The third

source is the effect of the misalignment between the regret within our model with that of the

regret of UCB as analyzed by Agrawal et al. (2019). When considering the regret of DUCB(N),

we need to take this translation error into account.

To facilitate the analysis of the performance of DUCB(N), we define

v̌(x) := N

N∑

i=1

1Bi
(x)

∫

Bi

v(y) dy, x ∈ [0, 1], (12)

w̌(x) := N

N∑

i=1

1Bi
(x)

∫

Bi

w(y) dy, x ∈ [0, 1]. (13)

In addition, we introduce an adjustment of the currently used notation of the expected profit of

an assortment S ∈ S. We will explicitly denote that this expected profit depends on marginal
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profit function w(x) as well as preference function v(x):

r(S, v, w) :=

∫

S v(x)w(x) dx

1 +
∫

S v(x) dx
.

The effect of the first component of the discretization error is captured by Proposition 2 below.

Proposition 2. Let v̌ and w̌ be as in (12) and (13), respectively. Let S∗ and Š in S be optimal

assortments corresponding to v and w, and v̌ and w̌, respectively, that is,

r(S∗, v, w) = max
S∈S

r(S, v, w) and r(Š, v̌, w̌) = max
S∈S

r(S, v̌, w̌). (14)

Then the difference between the expected revenue of S∗ under v and w and the expected revenue

of Š under v̌ and w̌ is bounded from above by

r(S∗, v, w) − r(Š, v̌, w̌) 6 ||v − v̌||1 + v ||w − w̌||1, (15)

where || · ||1 :=
∫ 1
0 | · |dx.

Note that the optimal assortment Š in the result stated above is the optimal assortment within

S. The UCB algorithm only considers discrete assortments, which translates to a collection of

bins within our model. The effect of this is stated in Lemma 2 below.

Lemma 2. Let v̌ and w̌ be as in (12) and (13), respectively. Let AK be the set of all collections

of at most K = ⌊cN⌋ bins Bi, that is,

AK :=

{
⋃

i∈D
Bi : D ⊂ [N ] and |D| 6 K

}

. (16)

In addition, let Š in S and Sd in AK be optimal assortments corresponding to v̌ and w̌, that is,

r(Š, v̌, w̌) = max
S∈S

r(S, v̌, v̌) and r(Sd, v̌, w̌) = max
S∈AK

r(S, v̌, v̌). (17)

Then the difference between the expected revenue under v̌ and w̌ of Š and Sd is bounded from

above by

r(Š, v̌, w̌)− r(Sd, v̌, w̌) 6
v

N
.

Recall that the first two components address the effect of the discretization error regarding

the specifics of the optimal assortment. The third and last component concerns the translation
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error regarding the offered assortments S1, . . . , ST . Since all these assortments lie in AK , as in

(16), we present the result below for a general set in AK .

Lemma 3. Let v̌ and w̌ be as in (12) and (13), respectively. Let AK be as in (16) and let

S ∈ AK . Then the difference between the expected profit of S under v̌ and w̌, and v and w is

bounded from above by

r(S, v̌, w̌)− r(S, v, w) 6 ||v − v̌||1 + v ||w − w̌||1,

where || · ||1 :=
∫ 1
0 | · |dx.

The three components of the discretization error are combined as follows. Let S∗, Š and Sd

be as in (14) and (17) and let S1, . . . , ST be the offered assortments. The instantaneous regret

at time t ∈ [T ] can be split into four parts as

r(S∗, v, w) − r(St, v, w) = r(S∗, v, w) − r(Š, v̌, w̌) + (18)

r(Š, v̌, w̌)− r(Sd, v̌, w̌) + (19)

r(Sd, v̌, w̌)− r(St, v̌, w̌) + (20)

r(St, v̌, w̌)− r(St, v, w); (21)

the idea is to apply the triangle inequality. For the right-hand side of (18), (19), and (21),

we apply Proposition 2, Lemma 2 and Lemma 3, respectively. Note that the term in (20)

corresponds to the instantaneous regret of UCB. The remainder of the proof of Theorem 3

consists of showing that both the L1-distances ||v − v̌||1 and ||w − w̌||1 are of the order 1/N and

applying Theorem 1 from Agrawal et al. (2019).

Remark 7. The analysis of the upper bound on the regret of DUCB extends to higher di-

mensional continuous assortment problems. In particular, if the dimension is d > 2, then one

can discretize the set of products [0, 1]d into Nd bins. Under a smoothness assumption of the

preference function and the marginal profit function, the order of the L1-distance between the

actual functions and the discretized functions remains O(1/N) as the difference can be bounded

from above by a sum of Nd terms that each are of order N−(d+1), similar as in (34). As a result,

the cumulative discretization error is of order T/N and the total regret in higher dimensions is

of the order (up to a logarithmic factor)

T

N
+

√
NdT .
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Hence, the optimal value of N is proportional to T
1

d+2 which results in a T
d+1

d+2 regret. This

corresponds to the regret rate for continuum-armed bandit in higher dimensions (see, e.g.,

Kleinberg et al. 2008, Bubeck et al. 2011a,b).

5.4 Regret lower bound

In this section we construct an instance for the assortment optimization problem with capacity

constraint, and we show that the regret of any policy after T time periods is at least a con-

stant times T 2/3. This shows that the structural differences between optimal assortments with

or without a capacity constraint under full information (Section 4.1 and 5.1) translate into a

different complexity of the corresponding data-driven optimization problem, characterized by

the growth rate of regret.

We consider the following instance. Let v ∈ (0, 0.79), v > 4, let c ∈ (0, 14 ], s = 0.8c, δ = 1
2 ,

and consider the marginal profit function

w(x) = (1− s)
1− δ

1− δx
+ s, x ∈ [0, 1].

To obtain a lower bound on regret, we construct ‘difficult instances’ of preference functions that

are hard to distinguish statistically, but that correspond to different optimal assortments. To

this end, we first define a ‘baseline’ preference function v0 by

v0(x) :=
s

c(w(x) − s)
=

s(1− δx)

c(1 − s)(1− δ)
, x ∈ [0, 1].

This preference function has the property that ̺∗0 := maxS∈S r(S, v0) is equal to s (see Appendix

B, Lemma 8), and that v0(x)(w(x) − ̺∗0) does not depend on x. As a result, any assortment of

volume c is optimal for this preference function.

The next step is to perturb the baseline preference function with small, positive ‘bumps’

at different locations, such that the corresponding optimal assortment will be a collection of

intervals centered around these bumps. The perturbed preference functions are, in a sense, close

to each other (measured, e.g., by the L1 norm), but correspond to different and possibly even

disjoint optimal assortments. In particular, let K > 2 be an integer and NK := ⌊K/c⌋, and
define the i-th bin as the interval

Bi :=

[

c
i− 1

K
, c
i

K

)

, i ∈ [NK ].
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Note that this definition differs from the bins presented in Section 5.2. The definition here is

convenient as the union of any K distinct bins has combined volume of precisely c. Let DK

denote the collection of all subsets of [NK ] of size K, i.e.,

DK :=
{
I ⊆ [NK ] : |I| = K

}
.

For each collection of bins I ∈ DK we now define a preference function vI that, roughly speaking,

consists of the baseline preference function with small, positive bumps added at all bins Bi,

i ∈ I. In particular, define the bump function b(x) as the normal probability density function

with parameters µ = 0 and σ = 0.3:

b(x) :=
1

σ
√
2π
e−x2/2σ2

, x ∈ R.

This function is shifted and re-scaled such that the probability mass on [−1, 1) is mapped onto

Bi, as follows. For i ∈ [NK ] and x ∈ R, let

φi(x) :=
2Kx

c
− 2i+ 1,

be a linear transformation that satisfies φi(Bi) = [−1, 1), and define

τi(x) :=
c

K
b
(
φi(x)

)
.

Finally, define the constant

β :=
c

K

1

σ
√
2π

∑

n∈Z
exp

(

−(2n− 1)2

2σ2

)

,

and, for each I ∈ DK , define the preference function

vI(x) := v0(x)

(

1 +
∑

i∈I
τi(x)− β

)

, x ∈ [0, 1].
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Figure 3: Left: bump function b(·). Right: preference function vI(·) for c = 0.25, K = 2 and
I = {2, 5}.

The subtraction of the (small) constant β ensures that vI(x) 6 v0(x) for all x /∈ ⋃i∈I Bi, i.e.,

the preference function dips just below the baseline function v0(x) for x outside the collection of

bins in I. This ensures that the optimal assortment corresponding to vI is approximately equal

to the collection of intervals
⋃

i∈I Bi at which small bumps have been added.

Having defined a collection of preference functions, we now proceed in proving a regret lower

bound. First, for any policy and any I ∈ DK , we bound the regret corresponding to preference

function vI from below by an expression that counts how often products from the approximately

optimal assortment
⋃

i∈I Bi were not offered. To state the result, let

ǫI(x) :=
vI(x)− v0(x)

v0(x)
=
∑

i∈I
τi(x)− β, I ∈ DK , x ∈ [0, 1],

and let

k(x) :=

T∑

t=1

1St(x), x ∈ [0, 1],

count the number of times that x ∈ [0, 1] is offered to consumers. Throughout the remainder of

this section we fix an arbitrary policy π, and let PI and EI denote the probability law and the

expectation operator under policy π and preference function vI .

Proposition 3. There are constants C1 > 0, C2 > 0, independent of π, such that, for any

T ∈ N and I ∈ DK ,

∆π(T, vI) > C1

∫

⋃
i∈I Bi

(
T − EI [k(x)]

)
ǫI(x)dx−C2

T

K
.
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The proposition is proven by exploiting the structure of the optimal assortment as outlined

in Section 5.1 and the fact that the definition of vI implies that the corresponding optimal

assortment is approximately equal to
⋃

i∈I Bi. The constants C1, C2 are given explicitly in the

proof of Proposition 3.

The second step in the proof of the regret lower bound is the following result, which provides

an upper bound on how the expected number of times that a product x ∈ [0, 1] is offered changes

when the preference function is changed from vI to vI\{i}, for some i ∈ I.

Proposition 4. Let x ∈ [0, 1], I ∈ DK , and J = I\{i} for some i ∈ I. Then there is a constant

Cc > 0 independent of π, such that

∣
∣
∣EI [k(x)]− EJ [k(x)]

∣
∣
∣ 6 Cc

(
T

K

)3/2

. (22)

This bound is proven by relating the left-hand side of (22) to the Kullback-Leibler divergence

of PI and PJ , using Pinsker’s inequality, and subsequently bounding this expression from above

by carefully analysing its dependence on vI and vJ . The constant Cc is given explicitly in the

proof of Proposition 4.

With Propositions 3 and 4 at hand, we finally arrive at our regret lower bound.

Theorem 4. There is a C > 0, independent of π, such that, for T ∈ N,

∆π(T ) > C T 2/3.

To prove the theorem, we first show that the preference functions {vI : I ∈ DK ,K ∈ N}
satisfy Assumption 1. This implies that the worst-case regret supv∈V ∆π(T, v) is bounded from

below by the expected regret when the preference function is chosen uniformly at random from

{vI : I ∈ DK}, for any fixed K. The regret corresponding to each vI is then bounded from

below by an expression that involves the expected number of times that products from the

approximate optimal assortment
⋃

i∈I Bi are not offered, using Proposition 3. Proceeding in a

similar fashion as in the proof of the regret lower bound obtained by Chen and Wang (2018) for

discrete assortments, while dealing with all the intricacies of having a continuum product space,

we connect the expression in Proposition 3 to the statement (22) of Proposition 4. By carefully

selecting K, we arrive at the stated lower bound.

27



6 Numerical experiments

In this section we compare the numerical performance of the policies proposed in this study to

alternative policies that are specifically designed for the discrete assortment problem. We use the

notations and concepts introduced in Sections 5.2 and 5.3. In the uncapacitated case, we compare

our algorithm SAP to (i) the Thompson Sampling based algorithm by Agrawal et al. (2017), and

(ii) the Trisection-based algorithm by Chen et al. (2018), both applied to discretized versions

of the continuous problem. To have a fair comparison, we use in all our numerical experiments

the same discretization of the product space as in our DUCB algorithm. We refer to these two

policies from the literature, applied to discretized versions of the continuous assortment problem,

as Discretized Thompson Sampling (DTS) and Discretized Trisection (DTR).

In the capacitated case, we compare our algorithm DUCB to DTS but not to DTR, since the

Trisection-based algorithm of Chen et al. (2018) is not designed to handle capacity constraints.

In addition, in the capacitated case we also evaluate the performance of an adjusted version of

DUCB (called ADUCB) in which we replace the constant 48 in (10) by 1; our numerical results

indicate that changing this constant significantly improves performance. Optimally tuning this

constant is an interesting direction for future research but is outside the scope of this paper. In

this section we report numerical results on the regret behavior for these different algorithms;

Appendix E contains additional numerical experiments on the predictive performance of our

continuous model.

We set the preference function v as the bi-modal function that is plotted in Figure 1. This

function is defined as

v(x) =
1

10
+

1

5
(2 + x)(1− x) +

2

7
φ(x; 0.33, 0.1) +

1

5
φ(x; 0.8, 0.1), x ∈ [0, 1],

where φ( · ;µ, σ) denotes the normal probability density function with mean µ and standard

deviation σ. In addition, we set w(x) = x, x ∈ [0, 1], as the marginal revenue function. We

test our algorithms with c = 1 and c = 0.5, corresponding to capacity constraints K = N

and K = ⌊N/2⌋ in the discretized versions. In line with Theorem 3, we set the discretization

parameter N as
⌊
γT 1/3

⌋
with γ = max{v, 1/c + 1} and v = 2. The parameters of SAP are set

to α = 3, β = 2, ̺1 = 0. The algorithms’ average regrets over 100 simulations after T time

periods, for T ∈ {1 000, 2 000, . . . , 10 000}, are recorded in Table 1 and 2.
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Time horizon T

Policy 1 000 2 000 3 000 4 000 5 000 6 000 7 000 8 000 9 000 10 000

DTR 8.67 18.2 25.5 32.1 35.9 40.9 48.3 55.8 63.7 70.0
DTS 1.46 1.94 2.10 2.25 2.56 2.45 2.87 3.06 2.85 3.34
SAP 0.380 0.417 0.439 0.452 0.463 0.474 0.483 0.49 0.500 0.507
N 19 25 28 31 34 36 38 39 41 43

Table 1: Simulated average regret of the policies with c = 1 based on 100 simulations.

Time horizon T

Policy 1 000 2 000 3 000 4 000 5 000 6 000 7 000 8 000 9 000 10 000

DTS 12.8 19.8 26.8 32.0 38.8 33.2 46.8 52.6 43.8 48.0
DUCB 89.6 153 206 252 295 334 371 403 440 470
ADUCB 9.81 16.9 23.6 29.8 35.3 32.6 46.7 52.1 45.8 50.1
N 29 37 43 47 51 54 57 59 62 64

Table 2: Simulated average regret of the policies with c = 0.5 based on 100 simulations.

Table 1 shows that our algorithm SAP outperforms the alternatives DTR and DTS by a

significant margin. The top row of Figure 4 plots the regret of SAP as function of T , both on

a linear (left-hand panel) and a logarithmic scale (right-hand panel). The linear growth rate of

regret as function of log T in Figure 4 confirms our theoretical result on the regret behavior of

SAP. Fitting the curve R(T ) = γ1 + γ2 log T using linear regression, we find that γ1 = 0.00171

and γ2 = 0.0545.

Table 2 records the regret of DTS, DUCB, and ADUCB; the results are visualized in the

middle and bottom row of Figure 4. The figure illustrates that the regrets of both DUCB

and ADUCB grow sublinearly. The adjusted policy ADUCB performs on par with DTS, while

both ADUCB and DTS outperform DUCB. This suggests that fine-tuning the constants in the

updating formula for the upper confidence bounds can lead to less regret. Fitting the curve

logR(T ) = γ1+ γ2 log T using linear regression, we find that γ2 = 0.70 for DUCB and γ2 = 0.67

for ADUCB. This confirms, particularly for ADUCB, our theoretical regret bounds of T 2/3 (up

to a logarithmic term). It is worth observing and illustrated by Figure 4 that the regret for

our policies is not necessarily monotone in T ; this is a result of the discretization to an integer

number of products.
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Figure 4: The whiskers show the 95% confidence interval of the mean cumulative regret for SAP
(top row), DUCB (middle row) and ADUCB (bottom row) with regular axes (left panels) and
a logarithmic axis for T (right panels), based on 100 simulations. The blue solid line shows the
fitted curves γ1 + γ2 log T with γ1 = 0.00171 and γ2 = 0.0545 (first row), γ1T

γ2 with γ1 = 0.783
and γ2 = 0.700 (second row) and γ1T

γ2 with γ1 = 0.115 and γ2 = 0.666 (third row).
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7 Discussion

In this paper we have introduced the concept of continuous assortment optimization with demand

learning. We distinguish between the capacitated and uncapacitated case, revealing intrinsically

different regret behavior: we show that the asymptotically optimal regret rate in the absence

of a capacity constraint grows logarithmically in the time horizon, whereas imposing a capacity

constraint leads to T 2/3 regret. To our knowledge, this paper is the first to extend discrete

assortment optimization problems to the continuous realm.

Our work points to various directions for future research. First, the customer-purchase model

used in this paper is the natural continuous equivalent of the well-studied discrete multinomial

logit choice model. It remains an open question how one constructs a random utility model

that serves as a theoretical justification of the continuous choice model. Second, in line with

the majority of the assortment optimization literature, our setup assumes that product prices

are exogenous. A question of practical interest is to consider price and assortment decisions

simultaneously in our continuous model, potentially in a competitive setting. Third, we have

constructed an example in which the optimal assortment is not an uninterrupted interval. It

would be interesting to study under which conditions a single interval solution is optimal, and

whether one can bound the maximum loss when the decision maker is restricted to offering a

single interval.
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D. Sauré and A. Zeevi. Optimal dynamic assortment planning with demand learning. Manufacturing &

Service Operations Management, 15(3):387–404, 2013.

33



O. Shamir. On the complexity of bandit and derivative-free stochastic convex optimization. In Conference

on Learning Theory (COLT), pages 3–24, 2013.

D. W. Stroock. A Concise Introduction to the Theory of Integration. Birkhäuser, Boston, MA, 1994.
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Appendix A: Mathematical proofs of Section 4

A.1. Proofs of the results in Section 4.3

Proof of Theorem 1.

Define g(y) := r([y, 1], v) for y ∈ [0, 1] and h(̺) := g(w−1(̺)) for ̺ ∈ [0, 1]. Also, let ̺∗ denote

the optimal expected profit, i.e.,

̺∗ := max{r(S, v) : S ∈ S}.

The following auxiliary results turn out to be useful; the proof of Lemma 4 follows after the

proof of Theorem 1.

Lemma 4. It holds that h(̺∗) = ̺∗. Moreover, for ̺ ∈ [0, 1], the following properties hold:

(̺− ̺∗)(h(̺) − ̺) 6 − 1

1 + v
(̺− ̺∗)2, (23)

h(̺∗)− h(̺) 6 C(̺− ̺∗)2, (24)

for a universal constant C > 0.

Note that by our choice of β > max{0, α − 1} it follows that ̺t ∈ [0, 1] for all t ∈ N. With

these properties at our disposal, we continue the proof of the worst-case bound for Case 1, which

closely follows the analysis of Broadie et al. (2011) on stochastic approximation schemes. For

the policy π = SAP(α, β), it holds for all t ∈ N that

Eπ[(̺t+1 − ̺∗)2 | ̺t]

= Eπ

[

(̺t + at(Rt − ̺)− ̺∗)2 | ̺t
]

= Eπ

[
(̺t − ̺∗)2 + 2(̺t − ̺∗)at(Rt − ̺t) + a2t (Rt − ̺t)

2 | ̺t
]

6 (̺t − ̺∗)2 + 2(̺t − ̺∗)at(h(̺t)− ̺t) + a2t

6 (̺t − ̺∗)2
(

1− 2at
1 + v

)

+ a2t

where the first inequality follows from Rt − ̺t ∈ [−1, 1] and the second inequality from Lemma

4, i.e., (23). Recalling the definition of at, an immediate consequence of the above bound is that
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we have, with δt := Eπ[(̺t − ̺∗)2], for any t ∈ N,

δt+1 6 δt

(

1− 2

1 + v
· α

t+ β

)

+
α2

(t+ β)2
. (25)

From the inequality in (25) one can derive the following lemma in a relatively straightforward

way. Its (inductive) proof follows after the proof of Theorem 1.

Lemma 5. There exists a κ > 0 such that for all t ∈ N

δt 6
κ

t+ β
. (26)

We proceed by deriving an upper bound on the regret of the policy π = SAP(α, β), relying

on the upper bound on δt stated in Lemma 5. Let C denote the constant as in Lemma 4. The

regret can be majorized as follows:

∆π(T, v) =

T∑

t=1

Eπ[h(̺
∗)− h(̺t)] 6 C

T∑

t=1

δt

6 C
T∑

t=1

κ

t+ β
6 3Cκ log T,

for all T > 2, where the first inequality follows by (24), the second inequality by (26), and the

third inequality by
∑T

t=1(t + β)−1 6 3 log T for all T > 2. We have proven the stated with

C := 3Cκ. �

Proof of Lemma 4.

We prove the three claims separately.

⊲ Following the reasoning at (4), we find that

̺∗ = max

{

̺ ∈ [0, 1] : max
S∈S

∫

S
v(x)

(
w(x) − ̺

)
dx > ̺

}

= max

{

̺ ∈ [0, 1] :

∫ 1

w−1(̺)
v(x)

(
w(x) − ̺

)
dx > ̺

}

.

Since w−1(·) is continuous, we know that, with ̺ ∈ [0, 1],

I(̺) :=
∫ 1

w−1(̺)
v(x)

(
w(x)− ̺

)
dx
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is continuous. Also, since w−1(·) is non-decreasing and ̺ 7→ v(x)
(
w(x) − ̺

)
is decreasing, we

know that I(·) is non-increasing. Moreover, note that I(0) > 0 and I(1) = 0. As a result, there

exists a unique solution to I(̺) = ̺, and that this equation is precisely solved by ̺∗. The proof

is completed by observing that the equation I(̺) = ̺ is equivalent to h(̺) = ̺.

⊲ For ̺ = ̺∗, (23) immediately holds. Now, assume that ̺ ∈ [0, ̺∗), then

h(̺)− ̺ =

∫ 1
w−1(̺) v(x)w(x)dx

1 +
∫ 1
w−1(̺) v(x)dx

− ̺ =
I(̺)− ̺

1 +
∫ 1
w−1(̺) v(x)dx

>
I(̺∗)− ̺

1 +
∫ 1
w−1(̺) v(x)dx

=
̺∗ − ̺

1 +
∫ 1
w−1(̺) v(x)dx

> − 1

1 + v
(̺− ̺∗).

where the first inequality holds by the non-increasingness of I(·). As a result,

(̺− ̺∗)(h(̺) − ̺) 6 − 1

1 + v
(̺− ̺∗)2.

Next, assume that ̺ ∈ (̺∗, 1]. It holds that h(̺) 6 h(̺∗) = ̺∗ which implies h(̺)−̺ 6 −(̺−̺∗)
and therefore

(̺− ̺∗)(h(̺) − ̺) 6 −(̺− ̺∗)2 6 − 1

1 + v
(̺− ̺∗)2.

Hence, for all ̺ ∈ [0, 1] it holds that

(̺− ̺∗)(h(̺) − ̺) 6 − 1

1 + v
(̺− ̺∗)2.

⊲ Firstly, note that

g′(y) =
d

dy

∫ 1
y v(x)w(x)dx

1 +
∫ 1
y v(x)dx

=
(
r([y, 1], v) − w(y)

)
· v(y)

1 +
∫ 1
y v(x)dx

=
(
g(y)− w(y)

)
· ξ(y),

where, for y ∈ [0, 1],

ξ(y) :=
v(y)

1 +
∫ 1
y v(x)dx

.

Secondly, we show that there exists a universal constant C0 such that

sup
y∈(0,1)

{
−g′′(y)

}
6 C0. (27)
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To prove (27) observe that g′′(y) =
(
g(y)− w(y)

)(
ξ′(y) + ξ(y)2

)
− w′(y)ξ(y), and

ξ′(y) =
v′(y)

1 +
∫ 1
y v(x)dx

+ ξ(y)2.

Since g(y)− w(y) ∈ [−1, 1] for all y ∈ (0, 1), we obtain

−g′′(y) = −
(
g(y) −w(y)

)(
ξ′(y) + ξ(y)2

)
+w′(y)ξ(y)

6 sup
y∈(0,1)

{|ξ′(y)|+ ξ(y)2}+ sup
y∈[0,1]

w′(y)v

6 sup
y∈(0,1),v∈V

{|v′(y)|+ 2v2}+ sup
y∈[0,1]

w′(y)v =: C0.

Now, let ̺ ∈ [0, 1] and denote y = w−1(̺) and y∗ = w−1(̺∗). We distinguish two cases. Firstly,

assume that ̺∗ > w(0) or, equivalently, g′(y∗) = 0. Then there is a ỹ ∈ (0, 1) such that

g(y) = g(y∗) + 1
2g

′′(ỹ)(y − y∗)2. Therefore, we can apply (27) to obtain, with

kw := inf
x∈(0,1)

w′(x)

that

h(̺∗)− h(̺) = g(y∗)− g(y) = −1
2g

′′(ỹ)(y − y∗)2

6 1
2C0(y − y∗)2 6

C0

2(kw)2
(̺− ̺∗)2,

where at the final inequality we used that w−1(·) is (kw)
−1-Lipschitz continuous on [0, 1]; note

that kw is strictly positive due to the assumptions imposed on w. Now we consider the second

case: assume that ̺∗ < w(0) or, equivalently, g′(y∗) < 0. In this case, ̺∗ = g(0) and w−1(̺∗) = 0.

For ̺ ∈ [0, w(0)), w−1(̺) = w−1(̺∗), and statement (24) holds for any constant C > 0. Now,

let ̺ ∈ [w(0), 1]. Then note that by (27)

g(0) − g(y) 6 −g′(0)y + 1
2C0y

2.

Next, note that since w−1(·) is non-decreasing and (kw)
−1-Lipschitz continuous

y = w−1(̺)− w−1(̺∗) 6
1

kw
(̺− ̺∗)

38



and note that

0 6 −g′(0) =
(
w(0) − g(0)

)
ξ(0) 6 ξ(0)(̺ − ̺∗).

We conclude that

h(̺∗)− h(̺) = g(0) − g(y)

6

(
ξ(0)

kw
+

C0

2(kw)2

)

(̺− ̺∗)2 6

(
v

kw
+

C0

2(kw)2

)

(̺− ̺∗)2.

This proves (24) for all ̺ ∈ [0, 1] with

C =
v

kw
+

C0

2(kw)2
.

�

Proof of Lemma 5.

We show, by induction, that the inequality (25) implies that, for some κ > 0, for all t ∈ N it

holds that δt 6 κ/(t+ β). To this end, let K0 := (1 + v)−1 and

κ := max {1 + β, α(1 + v)} .

For t = 1, we note that

δ1 6 1 6
κ

1 + β
.

Now, suppose δt 6 κ/(t+ β) for t 6 t0 for some t0. Then, for t > t0, it follows that

t+ β

t+ β + 1
− 2αK0 < 1− 2αK0 6 −αK0,

since α > K−1
0 and therefore

κ

(
t+ β

t+ β + 1
− 2αK0

)

+ α2 < −καK0 + α2
6 0,

by definition of κ. This implies that

κ

(

(t+ β)− 2αK0 −
(t+ β)2

t+ β + 1

)

+ α2 6 0,
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and thus

κ

t+ β

(

1− 2
αK0

t+ β

)

+
α2

(t+ β)2
6

κ

(t+ β + 1)
.

This, by (25) in combination with the induction hypothesis, yields δt+1 6 κ/(t+ 1 + β), so that

we have proven the lemma. �

A.2. Proofs of the results in Section 4.4

Proof of Theorem 2.

This proof relies on the Van Trees inequality, which can be seen as a Bayesian counterpart of

the Cramér-Rao lower bound. Let Θ := [θmin, θmax], with θmax = v, θmin = c0 + (v − c0)/2, and

c0 := max

{

v,
w(0)

∫ 1
0 (w(x)− w(0))dx

}

.

Observe that v < θmin < θmax = v, because of the assumption v > w(0)/
∫ 1
0 (w(x) − w(0))dx.

For later reference, we introduce the probability density function λ(·) on Θ by

λ(θ) :=
2

θmax − θmin
cos2

(

π
θ − θmin

θmax − θmin
− π/2

)

.

Observe that λ(·) is zero on the boundary of Θ. Later, when applying the Van Trees inequality,

we work with a random θ, sampled from a distribution with density λ(·).
We start the proof with a number of definitions and preliminary observations. Let vθ(x) := θ

for all x ∈ [0, 1] and all θ ∈ Θ. Also, define g(y, θ) := r([y, 1], vθ), for y ∈ [0, 1] and θ ∈ Θ. Let

g′(y, θ) denote the partial derivative of g(y, θ) with respect to y, for y ∈ (0, 1). As in the proof

of Theorem 1,

g′(y, θ) = (g(y, θ) − w(y)) · ξ(y, θ), where ξ(y, θ) :=
vθ(y)

1 +
∫ 1
y vθ(x)dx

.

In addition, all y ∈ (0, 1) such that g′(y, θ) = 0 satisfy g′′(y, θ) < 0, where g′′(y, θ) is the second

derivative of g(y, θ) to y. Observe that g(0, θ) − w(0) > 0 for all θ ∈ Θ, since θmin > c0. It

follows that for all θ ∈ Θ there is a unique maximizer y(θ) ∈ (0, 1) of g(y, θ) with respect to

y; this maximizer is the unique solution y ∈ [0, 1] to the equation g(y, θ) = w(y). Moreover,
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observe that g(y, θ) is strictly increasing in θ, for all y ∈ (0, 1), and therefore

0 = g(y(θ), θ)−w(y(θ)) < g(y(θ), θ′)− w(y(θ))

for all θmin 6 θ < θ′ 6 θmax, which implies that y(θ′) > y(θ). Thus, y(θ) is increasing in θ, for

θ ∈ Θ.

A complication in the proof is that in principle we can optimize over all sets S ∈ S, which we

would like to somehow convert into an optimization over intervals. This explains the relevance

of the following objects: for θ ∈ Θ and S ∈ S, we define

ψ(θ) := vol([y(θ), 1]) = 1− y(θ), ψS := vol(S).

⊲ Step 1. We first show that r([y(θ), 1], vθ) and r(S, vθ) can only be close if [y(θ), 1] and S are

close (a necessary condition for which is that ψ(θ) and ψS are close). More concretely, for all

θ ∈ Θ and all S ∈ S,

r([y(θ), 1], vθ)− r(S, vθ) > κ0(ψ(θ)− ψS)2, where κ0 :=
θminkw/2

1 + θmax
.

To this end, for v ∈ V let ̺∗v = maxS∈S r(S, v), and let S∗(v) be a corresponding maximizer.

From

̺∗v =

∫

S∗(v) v(x)w(x)dx

1 +
∫

S∗(v) v(x)dx
,

it follows ̺∗v =
∫

S∗(v) v(x)(w(x) − ̺∗v)dx, and thus, for all S ∈ S,

r(S∗(v),v)− r(S, v) = ̺∗v
1 +

∫

S v(x)dx

1 +
∫

S v(x)dx
−
∫

S v(x)w(x)dx

1 +
∫

S v(x)

=
1

1 +
∫

S v(x)dx

(

̺∗v +
∫

S
v(x)(̺∗v − w(x))dx

)

=
1

1 +
∫

S v(x)dx

(
∫

S∗(v)
v(x)(w(x) − ̺∗v)dx−

∫

S
v(x)(w(x) − ̺∗v)dx

)

=
1

1 +
∫

S v(x)dx

(
∫

S∗(v)\S
v(x)(w(x) − ̺∗v)dx+

∫

S\S∗(v)
v(x)(̺∗v − w(x))dx

)

.

Let θ ∈ Θ and S ∈ S. If x ∈ S∗(vθ)\S, then x ∈ S∗(vθ) = [y(θ), 1], which implies that

w(x) − ̺∗vθ > w(y(θ)) − ̺∗vθ = w(y(θ)) − g(y(θ), θ) = 0. Similarly, if x ∈ S\S∗(vθ), then

x ∈ [0, y(θ)) and consequently ̺∗vθ −w(x) > ̺∗vθ −w(y(θ)) = g(y(θ), θ)−w(y(θ)) = 0. It follows
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that

r(S∗(vθ), vθ)− r(S, vθ) >
θmin

1 + θmax

(
∫

[y(θ),1]\S
(w(x) − ̺∗vθ )dx+

∫

S\[y(θ),1]
(̺∗vθ − w(x))dx

)

.

Recall that kw = infy∈(0,1) w
′(y) > 0. Since ̺∗vθ = w(y(θ)), we have by the mean value theorem

w(x) − ̺∗vθ = w(x) − w(y(θ)) > kw(x− y(θ)),

for all x ∈ [y(θ), 1], and

̺∗vθ − w(x) = w(y(θ)) −w(x) > kw(y(θ)− x),

for all x ∈ [0, y(θ)). Upon combining the above, we arrive at the lower bound

r(S∗(vθ), vθ)− r(S, vθ) >
θminkw
1 + θmax

(
∫

[y(θ),1]\S
(x− y(θ))dx+

∫

S\[y(θ),1]
(y(θ)− x)dx

)

.

Let m1 := |[y(θ), 1] ∩ Sc| and m2 := |[0, y(θ)) ∩ S|. Observe that

∫

[y(θ),1]\S
(x− y(θ))dx >

∫ y(θ)+m1

y(θ)
(x− y(θ))dx = 1

2m
2
1,

∫

S\[y(θ),1]
(y(θ)− x)dx >

∫ y(θ)

y(θ)−m2

(y(θ)− x)dx = 1
2m

2
2.

In addition,

ψS − ψ(θ) = |S ∩ [0, y(θ))| + |S ∩ [y(θ), 1]| − |S ∩ [y(θ), 1]| − |Sc ∩ [y(θ), 1]| = m2 −m1,

m2
1 +m2

2 > m2
1 +m2

2 − 2m1m2 = (m1 −m2)
2 = (ψS − ψ(θ))2.

From the above we conclude that our claim applies: for all θ ∈ Θ and S ∈ S,

r(S∗(vθ), vθ)− r(S, vθ) >
θminkw/2

1 + θmax
(ψS − ψ(θ))2.

⊲ Step 2. For S ∈ S and θ ∈ Θ, let ZS
θ be the random variable with support [0, 2] and probability
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density function

fS(z | θ) :=







vθ(z)

1 +

∫

S
vθ(ξ)dξ

if z ∈ S,

|[0, 2]\S|−1

1 +

∫

S
vθ(ξ)dξ

if z ∈ [0, 2]\S.

Observe that, when v = vθ, X
S is in distribution equal to the random variable that equals ZS

θ

if ZS
θ ∈ S and equals ∅ if ZS

θ ∈ [0, 2]\S. Hence, for each t ∈ {1, . . . , T} there is a function

πt : [0, 2]
t−1 → S such that St = πt(Z1, . . . , Zt) a.s., where Zt

d
= ZSt

θ for all t = 1, . . . , T , and

where we write π1(∅) := S1. In other words: to prove the regret lower bound we may assume that

assortments are a function of the observations Z1, Z2, . . . instead of the purchase observations

X1,X2, . . ..

Let t ∈ {1, . . . , T} and let Z := [0, 2]t. The probability density function of (Z1, . . . , Zt) is

equal to

f(zt | θ) =
t∏

i=1

fπi(zi−1)(zi | θ),

for all zt = (z1, . . . , zt) ∈ Z, where we write zi−1 = (z1, . . . , zi−1) for the first i− 1 components

of zt, for all i = 1, . . . , t, and z0 := ∅. We have

d

dθ
log f(zt | θ) =

t∑

i=1

d

dθ
log fπi(zi−1)(zi | θ)

=

t∑

i=1

d

dθ

{

log θ · 1{zi ∈ πi(zi−1)} − log

(

1 + θ

∫

πi(zi−1)
dξ

)}

=

t∑

i=1

θ−11{zi ∈ πi(zi−1)} −
|πi(zi−1)|

1 + θ|πi(zi−1)|
,

and

− d2

dθ2
log f(zt | θ) =

t∑

i=1

θ−21{zi ∈ πi(zi−1)} −
|πi(zi−1)|2

(1 + θ|πi(zi−1)|)2
6

t

v2
,

since θmin > v. By taking expectation, it follows that the Fisher information corresponding to

Zt satisfies

It(θ) = E

[

− d2

dθ2
log f(Zt | θ)

]

6
t

v2
.
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The Fisher information I(λ) corresponding to the density λ(·) equals

∫ θmax

θmin

(
d

dθ
log λ(θ)

)2

λ(θ)dθ =
4π2

(θmax − θmin)2
=

π2

(v − c0)2
.

For each θ ∈ Θ, y(θ) is the unique solution to g(y, θ) − w(y) = 0. By the Implicit Function

theorem, the derivative ψ′(θ) of ψ(θ) exists and is equal to

ψ′(θ) = − d

dθ
y(θ) =

dg
dθ (y(θ), θ)

dg
dy (y(θ), θ)− dw

dy y(θ)}

= −(1 + θ(1− y(θ)))−2

w′(y(θ))
6 − 1

max{w′(y) : y ∈ (0, 1)} =: κ1;

for the last step, observe that w being continuously differentiable implies that max{w′(y) : y ∈
(0, 1)} is finite. Now, let θ be a random variable with probability density function λ(·); we denote
by Eλ[·] expectation with respect to this density. Let ψt := ψSt+1 . Now, we are in a position

to apply the Van Trees inequality, in particular the form featuring in Gill and Levit (1995).

Using the notation used there, their Equation (4) directly yields (realizing that ψ′(θ) 6 κ1 < 0

uniformly in θ)

Eλ[(ψt − ψ(θ))2] >
Eλ[ψ

′(θ)]2

Eλ[It(θ)] + I(λ) >
κ21

t/v2 + π2/(v − c0)2
.

With this lower bound essentially behaving as t−1, the corresponding partial sums (up to the

T -th term) grow as log T , as desired. More formally, summing over all t = 1, . . . , T − 1, we

obtain, applying the lower bound established in Step 1,

∆π(T ) = sup
v∈V

∆π(T, v) > Eλ[∆π(T, vθ)]

> κ0

T−1∑

t=1

Eλ[(ψt − ψ(θ))2] > κ0

T−1∑

t=1

κ21v
2

t+ π2v2/(v − c0)2
> C log T,

where C := κ0κ
2
1v

2/(1 + π2v2/(v − c0)
2) > 0, and where we used that

T−1∑

t=1

(t+ a)−1 > (1 + a)−1
T−1∑

t=1

t−1 > (1 + a)−1 log T

for all T > 2 and a > 0. �

44



Appendix B: Mathematical proofs of Section 5

B.1. Proofs of the results in Section 5.1

Proof of Lemma 1.

We start the proof by the general remark that it is clear that the optimizing S should only

contain x such that h(x, ̺) > 0, i.e., x ∈W̺.

First consider case (i), i.e., vol(W̺) 6 c. Including in S all x ∈ W̺ thus leads to a set in S.
Since h(x, ̺) < 0 for x /∈W̺, we conclude that the maximum of I(S, ̺) over sets in S is attained

by S =W̺.

Now, we consider case (ii), i.e., vol(W̺) > c; this means that we should select the subset of

W̺ that maximizes I(S, ̺). Our construction makes use of the following technical properties of

m̺(l); their proofs will be given below.

Lemma 6. Let ̺ ∈ [0, 1]. Then m̺(ℓ) is non-increasing and left-continuous in ℓ, as well as

m̺(ℓ) → 0 as ℓ→ ∞.

We first concentrate on claim (1). To this end, observe that m̺(0) = vol(L̺(0)) = vol(W̺) >

c > 0. In addition, by virtue of Lemma 6, m̺(ℓ) → 0 as ℓ → ∞. Hence, the set of ℓ > 0

such that m̺(ℓ) > c is nonempty and bounded, so that its supremum exists; because of the

left-continuity that has been established in Lemma 6 the supremum is actually attained (and

hence is a maximum). This proves the first claim of (ii).

We now consider the second claim of (ii). The intuitive idea is that we start with S = ∅, and
that we keep adding x from W̺ to S that have the highest value of h(x, ̺), until vol(S) = c;

at that point S consists of x such that h(x, ̺) > ℓ̺. Bearing in mind, though, that the set of

x ∈ [0, 1] such that h(x, ̺) equals some given value may have positive Lebesgue measure, there

may be still a degree of freedom, which is reflected in the way the set L	
̺ has been defined.

The formal argumentation is as follows. First we prove that vol(L+
̺ ) 6 c: as a consequence of

the continuity of the Lebesgue measure and the fact that m̺(ℓ) is non-increasing in ℓ,

vol(L+
̺ ) = vol

( ∞⋃

k=1

L̺(ℓ̺ + 1/k)

)

= vol

(

lim
n→∞

n⋃

k=1

L̺(ℓ̺ + 1/k)

)

= lim
n→∞

vol

(
n⋃

k=1

L̺(ℓ̺ + 1/k)

)

= lim
n→∞

vol (L̺(ℓ̺ + 1/n)) = lim
n→∞

m̺(ℓ̺ + 1/n) 6 c.

Hence, there exists a set L	
̺ that is a (possibly empty) subset of L=

̺ and that is such that

vol(S) = vol(L+
̺ ) + vol(L	

̺ ) = c.
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The next objective is to prove that S = L+
̺ ∪ L	

̺ maximizes I( · , ̺) over sets in S. Take an

arbitrary R ∈ S. Since vol(S) = c, we know that

c = vol(S) = vol(S ∩R) + vol(S\R) = vol(R)− vol(R\S) + vol(S\R)

and since vol(R) 6 c, we obtain vol(S\R) > vol(R\S). Now, since x ∈ S implies h(x, ̺) > ℓ̺

and x ∈ R\S implies h(x, ̺) 6 ℓ̺ we conclude

I(S, ̺)− I(R, ̺) = I(S\R, ̺)− I(R\S, ̺) > ℓ̺
(
vol(S\R) − vol(R\S)

)
> 0.

This proves the second claim of (ii). �

Proof of Lemma 6.

The set L̺(ℓ) is non-increasing in ℓ, hence so is the function m̺(ℓ). The next step is to prove

that m̺(ℓ) is left-continuous. To this end, let ℓn be a strictly increasing sequence converging to

ℓ <∞ as n→ ∞. As we have seen, L̺(ℓn) ⊇ L̺(ℓ), and therefore

m̺(ℓ)−m̺(ℓn) = vol
(
{x ∈ [0, 1] : h(x, ̺) ∈ [ℓn, ℓ)}

)
=

∞∑

k=n

vol
(
{x ∈ [0, 1] : h(x, ̺) ∈ [ℓn, ℓn+1)}

)
.

From the fact that the left-hand side is finite, it follows that the right-hand side is finite as well,

implying left-continuity.

Along the same lines,

1 = vol
(
[0, 1]

)
=

∞∑

k=−∞
vol
(
{x ∈ [0, 1] : h(x, ̺) ∈ [k, k + 1)}

)
.

This entails that, with n→ ∞ along the integers,

lim
n→∞

m̺(n) = lim
n→∞

∞∑

k=n

vol({x ∈ [0, 1] : h(x, ̺) ∈ [k, k + 1)}) = 0.

From the monotonicity of m̺(ℓ), we also have that m̺(ℓ) → 0 as ℓ→ ∞ along the reals. �
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Proof of Proposition 1.

Firstly, we show that there exists a unique solution to the fixed-point equation

g(̺) = ̺, (28)

where g(̺) := I(S̺, ̺) for ̺ ∈ [0, 1]. As the right-hand side of (28) is strictly increasing in ̺, it

suffices to prove that g(·) is continuous and non-increasing in ̺, and that g(0) > 0 and g(1) = 0.

To this end, consider 0 6 ̺1 6 ̺2 6 1. Then, indeed, as I(S, ̺) is non-increasing in ̺ for any

fixed S ∈ S, and recalling that S̺1 maximizes I(S, ̺1),

g(̺1) = I(S̺1 , ̺1) > I(S̺2 , ̺1) > I(S̺2 , ̺2) = g(̺2).

The next step is to prove that g(·) is continuous. Let ̺1, ̺2 ∈ [0, 1]. Then

I(S̺1 , ̺1)− I(S̺2 , ̺2) 6 I(S̺1 , ̺1)− I(S̺1 , ̺2) = (̺2 − ̺1)

∫

S̺1

v(x)dx 6 |̺1 − ̺2|
∫

[0,1]
v(x)dx,

where the first inequality is due to the fact that S̺2 maximizes I( · , ̺2). With the same token, the

same upper bound applies when the roles of the ̺1 and ̺2 in the left-hand side are interchanged.

It thus follows that g(·) is continuous; it is actually even Lipschitz continuous.

Obviously, g(0) > 0. Using that supx∈[0,1]w(x) 6 1, we also obtain

g(1) = max
S∈S

∫

S
v(x)(w(x) − 1)dx = 0.

Secondly, we show that S̺∗ has the maximum expected revenue over all sets in S. Note that,

since g(̺∗) = ̺∗, it follows that r(S̺∗) = ̺∗. Hence, as we proceed from (4) by invoking Lemma

1, we obtain

max

{

̺ ∈ [0, 1] : max
S∈S

I(S̺, ̺) > ̺

}

= max {̺ ∈ [0, 1] : g(̺) > ̺} = ̺∗ = r(S̺∗).

�
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B.2. Proofs of the results in Section 5.3

Proof of Proposition 2.

In addition to optimal assortments S∗ and Š as in (14), we define Sp as the optimal assortment

under v̌ and w, that is,

r(Sp, v̌, w) = max
S∈S

r(S, v̌, w).

This assortment Sp plays a pivotal role as we break up the left-hand side of (15) as follows:

r(S∗, v, w) − r(Š, v̌, w̌) = r(S∗, v, w) − r(Sp, v̌, w) + (29)

r(Sp, v̌, w) − r(Š, v̌, w̌). (30)

We start by bounding the right-hand side of (29) from above. Define

I(S, ̺) =
∫

S
v(x)(w(x) − ̺)dx and Ip(S, ̺) :=

∫

S
v̌(x)(w(x) − ̺)dx

for S ∈ S and ̺ ∈ [−v, 1]. Note that these definitions allow for negative values of ̺ (as opposed

to (6)). Next, denote the L1-distance between v and v̂ as δ := ||v − ṽ||1. For ̺ ∈ [−v, 1], let S̺
be the maximizer of I( · , ̺) over S and let Sp

̺ be the maximizer of Ip( · , ̺) over S, that is,

I(S̺, ̺) = max
S∈S

I(S, ̺) and Ip(Sp
̺ , ̺) = max

S∈S
Ip(S, ̺).

Then let ̺∗ and ̺p solve the fixed-point equations

̺ = I(S̺, ̺) and ̺ = Ip(Sp
̺ , ̺),

respectively. Note that Sp
̺p is an optimal assortment under v̌ and w by Proposition 1. Hence,

we may assume that Sp = Sp
̺p . Also, we have 0 6 w(x)− ̺∗ 6 1 for all x ∈ S∗ and therefore,

Ip(S∗, ̺∗)− I(S∗, ̺∗) =
∫

S∗

v̌(x)(w(x) − ̺∗)dx−
∫

S∗

v(x)(w(x) − ̺∗)dx

6

∫

S∗

|v(x)− v̌(x)|dx 6 δ.

Now, we find that

Ip(S∗, ̺∗ − δ) > Ip(S∗, ̺∗) > I(S∗, ̺∗)− δ = ̺∗ − δ.
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Hence, there exists an S ∈ S such that Ip(S, ̺∗ − δ) > ̺∗ − δ, which by (4) entails ̺p > ̺∗ − δ.

Thus, (29) is bounded from above as

r(S∗, v, w) − r(Sp, v̌, w) 6 ||v − v̌||1.

Bounding (30) from above follows in almost an identical manner, but instead of 0 6 w(x)−̺∗ 6 1

we now use 0 6 v̌(x) 6 v. As a result, we conclude that

r(Sp, v̌, w)− r(Š, v̌, w̌) 6 v ||w − w̌||1.

Combining the above concludes the proof. �

Proof of Lemma 2.

First, let ̺d = r(Sd, v̌, w̌) and define the sets M̌ and Md as arguments of maxima as

M̌ := argmax
S∈S

∫

S
v̌(x)(w̌(x)−̺d)dx and Md := argmax

S∈AK

∫

S
v̌(x)(w̌(x)−̺d)dx, ̺ ∈ [0, 1].

Note that since AK ⊂ S, we know for any S1 ∈ M̌ and S2 ∈ Md that

∫

S1

v̌(x)(w̌(x)− ̺d)dx >

∫

S2

v̌(x)(w̌(x)− ̺d)dx > 0. (31)

Since ̺d > r(S, v̌, w̌) for any S ∈ AK , it also holds for S ∈ Md that

̺d >

∫

S
v̌(x)(w̌(x)− ̺d)dx. (32)

Then, for any S1 ∈ M̌ and S2 ∈ Md, it follows that

r(Š, v̌, w̌)− r(Sd, v̌, w̌) =

∫

Š v̌(x)w̌(x)dx

1 +
∫

Š v̌(x)w̌(x)dx
− ̺d

=
1

1 +
∫

Š v̌(x)w̌(x)dx

(∫

Š
v̌(x)(w̌(x)− ̺d)dx− ̺d

)

6(∗) 1

1 +
∫

Š v̌(x)w̌(x)dx

(∫

S1

v̌(x)(w̌(x)− ̺d)dx− ̺d
)

6(∗∗) 1

1 +
∫

Š v̌(x)w̌(x)dx

(∫

S1

v̌(x)(w̌(x)− ̺d)dx−
∫

S2

v̌(x)(w̌(x)− ̺d)dx

)

6(∗∗∗)
∫

S1

v̌(x)(w̌(x)− ̺d)dx−
∫

S2

v̌(x)(w̌(x)− ̺d)dx. (33)
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Here at (∗) we use that S1 ∈ M̌, at (∗∗) we use (32) and (∗ ∗ ∗) holds because of (31).

Now, we claim there exist assortments S1 ∈ M̌ and S2 ∈ Md, such that S2 ⊆ S1 and

vol(S1\S2) 6 1/N . To this end, let yi ∈ Bi for i ∈ [N ] and define hi as

hi := v̌(yi)
(
w̌(yi)− ̺d

)
, i ∈ [N ].

In addition, let σ : [N ] → [N ] be an ordering, such that,

hσ(1) > . . . > hσ(N),

where we break ties arbitrarily. As in Lemma 1, we first consider the case that vol(W̺d) 6 c.

Then we know by Lemma 1 that W̺d ∈ M̌. Since w̌ is constant on each bin, there exists an

integer n such that vol(W̺d) = n/N . If n/N 6 c, then n 6 K and henceW̺ ∈ Md as well. This

concludes the claim for vol(W̺d) 6 c. Next, we consider the case that vol(W̺d) > c > K/N .

Then hσ(K) > 0 and

S1 :=
K⋃

i=1

Bσ(i) ∈ Md.

In addition, note that hσ(K+1) > 0 as well as K < N since c < 1 and define

R :=

[
σ(K + 1)− 1

N
,
σ(K + 1)− 1

N
+ c− K

N

)

⊂ Bσ(K+1).

Recall the definitions from Lemma 1 and note that, as v̌ and w̌ are constant on each bin,

m̺d(ℓ) =
i

N
, ℓ ∈ (hσ(i+1), hσ(i)] ∩ [0,∞), i = 1, . . . , N − 1.

As a result, c = K/N implies ℓ̺d = hσ(K) and R = ∅, and c > K/N implies ℓ̺d = hσ(K+1).

Either way, it follows that

L+
̺d

⊆ S1 ⊆ S1 ∪R ⊆ L+
̺d

∪ L=
̺d .

Since vol(S1 ∪ R) = c, it follows from Lemma 1 that S2 := S1 ∪ R ∈ M̌. This concludes the

claim for vol(W̺d) > c.

From (33), the shown claim and the fact that w̌(x)− ̺d 6 1, it follows that

r(Š, v̌, w̌)− r(Sd, v̌, w̌) 6
v

N
.

�

50



Proof of Lemma 3.

Since S ∈ AK , we know that
∫

S
v(x)dx =

∫

S
v̌(x)dx.

Therefore,

r(S, v̌, w̌)− r(S, v, w) =
1

1 +
∫

S v(x)dx

∫

S

(
v̌(x)w̌(x)− v(x)w(x)

)
dx

6 ||vw − v̌w̌||1 = ||vw − v̌w + v̌w − v̌w̌||1

6 ||v − v̌||1 + v ||w − w̌||1,

where we have used that w(x) 6 1 and v̌(x) 6 v for all x ∈ [0, 1]. �

Proof of Theorem 3.

We start by showing that ||v − v̌||1 and ||w − w̌||1 are of order 1/N . For i ∈ [N ], denote the

constant bi = v̌(x) for some x ∈ Bi. Note that bi = v̌(x) for all x ∈ Bi and that

||v − v̌||1 =
∫ 1

0
|v(x)− v̌(x)|dx =

N∑

i=1

∫

Bi

|v(x)− bi|dx.

By the Mean Value Theorem, for every i ∈ [N ], there exists a ci in the closure of Bi such that

v(ci) = bi. Hence,

||v−v̌||1 =
N∑

i=1

∫

Bi

|v(x)−bi|dx =
N∑

i=1

∫

Bi

|v(x)−v(ci)|dx 6 L
N∑

i=1

∫

Bi

|x−ci|dx 6 L
N∑

i=1

1

2N2
6

L

2N
,

(34)

where L := supx∈[0,1] |v′(x)|. Likewise,

||w − w̌||1 6
Q

2N
,

where Q := supx∈[0,1] |w′(x)|.
Now, let ∆UCB(T ) denote the cumulative regret of UCB within the discrete MNL model.

Recall that the preference parameters v1, . . . , vN satisfy

vi =

∫

Bi

v(x)dx, i ∈ [0, 1],
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and the parameters w1, . . . , wN satisfy

wi = N

∫

Bi

v(x)dx, i ∈ [0, 1].

Let S =
⋃

i∈D Bi ∈ AK for some D ⊂ [N ]. Then the probability under v, as well as under v̌,

that a purchase from assortment S lies in Bi is

P(XS ∈ Bi) =
vi

1 +
∑

i∈D vi
,

In addition, the expected profit of assortment S ∈ AK under v̌ and w̌ is

r(S, v̌, w̌) =

∑

i∈D viwi

1 +
∑

i∈D vi
.

As a result, if S1, . . . , ST denote the offered assortment under DUCB(N) and Sd as in (17), then

T∑

t=1

Eπ

[

r(Sd, v̌, w̌)− r(St, v̌, w̌)
]

= ∆UCB(T ).

Following the steps of (18)–(21), in combination with the above and Proposition 2, Lemma 2

and Lemma 3, we find that, with C1 := L+ v(Q+ 1),

∆π(T ) 6 C1
T

N
+∆UCB(T ).

By our choice of γ, we know that ⌊γ⌋ > 1/c. Hence, N > 1/c > 1 and K > 1. Second, γ is

chosen such that v 6 N and therefore vi 6 1 for all i ∈ [N ]. By Theorem 1 from Agrawal et al.

(2019), there exists constants C2 and C3 such that

∆UCB(T ) 6 C2

√

NT logNT + C3N log2NT.

Since N 6 γT 1/3, it follows that

logNT 6 log γT 4/3 =
4

3
log T + log γ 6 C4 log T,

where C4 :=
4
3 + log γ/log 2. Hence,

∆UCB(T ) 6 C2

√

γC4

√

T 4/3 log T + γC3C
2
4 T

1/3 log2 T.
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Now we note that

log T 6
9

2e
T 2/9

and therefore

T 1/3 log2 T 6

(
9

2e

)3/2

T 2/3(log T )1/2.

Thus we obtain that ∆UCB(T ) 6 C5 T
2/3(log T )1/2, where

C5 := C2

√

γC4 +

(
9

2e

)3/2

γC3C
2
4 .

Next, we point out that N > (γ − 1)T 1/3 with γ > 2. Thus,

T

N
6

1

γ − 1
T 2/3

6
1

(γ − 1)(log 2)1/2
T 2/3(log T )1/2.

From this we conclude that

∆π(T ) 6 C1
T

N
+ C5 T

2/3(log T )1/2 6 C T 2/3(log T )1/2,

where

C :=
C1

(γ − 1)(log 2)1/2
+ C5.

�

B.3. Proofs of the results in Section 5.4

Before stating the proofs of the results in Section 5.4, we recollect the notations and concepts

introduced in that section. Let c ∈ (0, 14 ], s = 0.8c, δ = 1
2 and σ = 0.3. Let K > 2 be an integer,

chosen at the end of the proof of Theorem 4. Furthermore, for all x ∈ [0, 1], i ∈ {1, . . . , NK},
and I ⊆ {1, . . . , NK}, let

NK = ⌊K/c⌋ , [NK ] = {1, . . . , NK},

DK = {I ⊆ [NK ] : |I| = K}, Bi =

[

c
i− 1

K
, c
i

K

)

,

w(x) = (1− s)
1− δ

1− δx
+ s, v0(x) =

s

c(w(x) − s)
,

b(x) =
1

σ
√
2π
e−x2/2σ2

, φi(x) =
2Kx

c
− 2i+ 1,
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τi(x) =
c

K
b
(
φi(x)

)
, β =

c

K

1

σ
√
2π

∑

n∈Z
e−(2n−1)2/2σ2

,

ǫI(x) =
∑

i∈I
τi(x)− β, vI(x) = v0(x)

(
1 + ǫI(x)

)
.

In addition, we use the following notation throughout this section. For I ∈ DK we write

I† :=
⋃

i∈I
Bi.

Furthermore, we define the following quantities.

H :=
1

σ
√
2π

∑

n∈Z
e−2n2/σ2

,

L :=
1

σ
√
2π

∑

n∈Z
e−(2n−1)2/2σ2

and

P := P(−1/σ 6 Z 6 1/σ),

where Z ∼ N(0, 1). Observe that β = Lc/K.

We proceed by stating two preliminary lemmas that will be used throughout the proofs.

Lemma 7 contains a number of inequalities related to the quantities defined above, and Lemma

8 shows that the optimal expected profit under v0 is precisely equal to s. The proof of these

lemmas is given below.

Lemma 7. Let I ⊆ [NK ]. Then

(i) for any x ∈ [0, 1], it holds that
∑

i∈I
τi(x) 6 H

c

K
.

(ii) for any S ∈ S and β > 0, it holds that

1.

∫

S
vI(x)dx 6

s

(1− s)(1− δ)
(1 +H) and

2.

∫

S
(vI(x))

2dx 6
s2

c(1− s)2(1− δ)2
(1 +H)2,

(iii) for x /∈ I†, it holds that
∑

i∈I
τi(x) 6 β,

(iv) if |I| = K and S ∈ S, it holds that vol(I†\S) > vol(S\I†),

(v) for all i ∈ [N ];

1.
c2

2K2
P =

∫

Bi

τi(x)dx 6

∫ 1

0
τi(x)dx 6

c2

2K2
and
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2.

∫ 1

0
(τi(x))

2dx 6
c3

4σ
√
πK3

,

(vi) for any i ∈ I, x ∈ Bi and β
′ > β, it holds that |ǫI(x;β′)| 6 τi(x) + β′.

Lemma 8. The optimal expected revenue under the preference function v0(·) equals s:

max
S∈S

r(S, v0) = s.

Proof of Proposition 3.

Let

C1 :=
s(1− s)(1− δ)

c(1 − s)(1− δ) + cs
and C2 :=

s2(c+ 2L)
(
(1− s)(1− δ) + s

)
(1− s)(1− δ)

.

Let π be a policy, T ∈ N, and let I ∈ DK . Write v(x) := vI(x), and let S∗ denote an optimal

assortment under v. Recall that S∗ also maximizes the inner maximization problem (6) for

̺ = ̺∗ = maxS∈S r(S, v). Therefore,

∫

S∗

v(x)
(
w(x)− ̺∗

)
dx >

∫

I†
v(x)

(
w(x)− ̺∗

)
dx. (35)

Observe in addition that
∫

S
v0(x)dx 6

s

(1− s)(1− δ)
. (36)

It now follows that, for all S ∈ S,

r(S∗, v)− r(S, v) = ̺∗ −
∫

S v(x)w(x)dx

1 +
∫

S v(x)dx

=
1

1 +
∫

S v(x)dx

(

̺∗ −
∫

S
v(x)

(
w(x)− ̺∗

)
dx

)

=(∗) 1

1 +
∫

S v(x)dx

(∫

S∗

v(x)
(
w(x) − ̺∗

)
dx−

∫

S
v(x)

(
w(x)− ̺∗

)
dx

)

>(∗∗) (1− s)(1− δ)

(1− s)(1− δ) + s

(∫

S∗

v(x)
(
w(x)− ̺∗

)
dx−

∫

S
v(x)

(
w(x)− ̺∗

)
dx

)

>(∗∗∗) (1− s)(1− δ)

(1− s)(1− δ) + s

(∫

I†
v(x)

(
w(x)− ̺∗

)
dx−

∫

S
v(x)

(
w(x)− ̺∗

)
dx

)

.

(37)
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Here (∗) follows from ̺∗ = I(S∗, ̺∗) by Proposition 1, (∗∗) follows by (36), and (∗ ∗ ∗) follows
by (35). The terms within the large parentheses in (37) can be bounded from below as

∫

I†
v(x)

(
w(x)− ̺∗

)
dx−

∫

S
v(x)

(
w(x)− ̺∗

)
dx

=

∫

I†
v(x)

(
w(x)− s

)
dx−

∫

S
v(x)

(
w(x)− s

)
dx

+ (s − ̺∗)

(∫

I†
v(x)dx−

∫

S
v(x)dx

)

>(∗) s
c

∫

I†\S

(
1 + ǫI(x)

)
dx− s

c

∫

S\I†

(
1 + ǫI(x)

)
dx

− |s − ̺∗| 2s

(1− s)(1− δ)
,

where at (∗) we use that by design v(x)
(
w(x) − s

)
= s

c (1 + ǫI(x)), together with inequality

(36). The absolute difference between ̺∗ and s can be bounded from above by the L1-difference

between v and v0, as follows. For S ∈ S and ̺ ∈ [0, 1], let

I0(S, ̺) =
∫

S
v0
(
w(x) − ̺

)
and I(S, ̺) =

∫

S
v
(
w(x)− ̺

)
,

and let S0 := [0, c]. As a consequence of Proposition 1 and Lemma 8, we obtain that s =

I0(S0, s). Since w(x) − ̺∗ ∈ [0, 1] for all x ∈ S∗, we therefore know that

I(S∗, ̺∗)− I0(S∗, s) 6
∫

S∗

∣
∣v(x)− v0(x)

∣
∣dx

6

∫ 1

0

∣
∣v(x)− v0(x)

∣
∣dx = ||v − v0||1.

Furthermore,

I0(S∗, ̺∗ − ||v − v0||1) > I0(S∗, ̺∗) > I(S∗, ̺∗)− ||v − v0||1 = ̺∗ − ||v − v0||1.

Hence, there exists an S ∈ S such that I(S, ̺∗ − ||v − v0||1) > ̺∗ − ||v − v0||1 and by (4) this

entails s > ̺∗ − ||v − v0||1. Likewise, we derive ̺∗ > s− δ and so |̺∗ − s| 6 ||v − v0||1.
We proceed by developing an upper bound on the L1-difference between v and v0:

∫ 1

0

∣
∣v(x)− v0(x)

∣
∣dx =

∫ 1

0
v0(x)

∣
∣ǫI(x)

∣
∣dx

6
s

c(1− s)(1− δ)

∫ 1

0

∣
∣ǫI(x)

∣
∣dx
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6
s

c(1− s)(1− δ)

(
∑

i∈I

∫ 1

0
τi(x)dx+ β

)

6
(∗) s

c(1 − s)(1− δ)

(
c2

2
+ Lc

)
1

K
.

Here (∗) is justified by Lemma 7.(v).1. In addition, since ǫI(x) 6 0 for x /∈ I† by Lemma 7.(iii)

and vol(S\I†) 6 vol(I†\S) by Lemma 7.(iv), we conclude that

∫

I†\S
(1 + ǫI(x)) dx−

∫

S\I†
(1 + ǫI(x)) dx

>

∫

I†\S
(1 + ǫI(x)) dx− vol(S\I†)

>

∫

I†\S
(1 + ǫI(x)) dx− vol(I†\S) =

∫

I†\S
ǫI(x)dx.

Hence,

r(S∗, v) − r(S, v) >
s(1− s)(1− δ)

c(1 − s)(1− δ) + cs

∫

I†\S
ǫI(x)dx

− s2(c+ 2L)
(
(1− s)(1− δ) + s

)
(1− s)(1− δ)

1

K
.

Applying the latter inequality to S = St, for t = 1, . . . , T , and taking the expectation of the

sum of these terms yields the desired result, since

EI

[
T∑

t=1

∫

I†\St

ǫI(x)dx

]

=

∫

I†
EI

[
T∑

t=1

(1− 1St(x))ǫI(x)dx

]

=

∫

I†
(T − EI [k(x)])ǫI (x)dx.

�

Proof of Proposition 4.

Let x ∈ [0, 1], I ∈ DK , i ∈ I, and J = I\{i}. It suffices to show that there is a Cc > 0 such that

∣
∣
∣EI [k(x)]− EJ [k(x)]

∣
∣
∣ 6 T

√

2KL(PI ||PJ), (38)

and

KL(PI ||PJ) 6
1
2C

2
c

T

K3
. (39)
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We first prove (38), using Pinsker’s inequality, that states that for any probability measures P

and Q defined on the same probability space (Ω,F),

2 sup
A∈F

(

P(A)−Q(A)
)2

6 KL(P||Q),

or, equivalently,

sup
A∈F

∣
∣
∣P(A)−Q(A)

∣
∣
∣ 6

√
1
2KL(P||Q). (40)

Consider the probability measures p and q on {0, . . . , T}, defined by

p(n) := PI(k(x) = n) and q(n) := PJ(k(x) = n), (n ∈ {0, . . . , T}).

From the equality

sup
n=0,...,T

|p(n)− q(n)| = 1

2

T∑

n=0

|p(n)− q(n)|. (41)

we obtain

∣
∣
∣EI [k(x)] − EJ [k(x)]

∣
∣
∣ =

∣
∣
∣
∣
∣

T∑

n=0

n(p(n)− q(n))

∣
∣
∣
∣
∣

6

T∑

n=0

n |p(n)− q(n)| 6 T

T∑

n=0

|p(n)− q(n)|

=(∗) 2T sup
n=0,...,T

|p(n)− q(n)| 6(∗∗) T
√

2KL(PI ||PJ),

where (∗) follows by (41), and (∗∗) follows by (40). This proves (38).

We now prove (39). Write v(x) = vI(x) and u(x) = vJ(x), for x ∈ [0, 1]. We denote the

no-purchase probabilities at time t as

pt :=
1

1 +
∫

St
v(x)dx

and qt :=
1

1 +
∫

St
u(x)dx

.

Note by Lemma 7.(ii).1 that pt, qt ∈ [p0, 1], where

p0 :=
(1− s)(1− δ)

(1− s)(1− δ) + s(1 +H)
.

The Kullback-Leibler (KL) divergence KL(PI ||PJ) can be written as

KL(PI ||PJ ) = EI

T∑

t=1

(

pt log
pt
qt

+

∫

St

log

(
ptv(x)

qtu(x)

)

ptv(x)dx

)
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= EI

T∑

t=1

(

pt log

(

1 +
pt − qt
qt

)

+

∫

St

log

(

1 +
ptv(x)− qtu(x)

qtu(x)

)

ptv(x)dx

)

.

Since log(1 + x) 6 x for all x > −1, we find the following upper bound:

KL(PI ||PJ ) = EI

T∑

t=1

(

pt log

(

1 +
pt − qt
qt

)

+

∫

St

log

(

1 +
ptv(x)− qtu(x)

qtu(x)

)

ptv(x)dx

)

6 EI

T∑

t=1

(

pt
pt − qt
qt

+

∫

St

ptv(x)− qtu(x)

qtu(x)
ptv(x)dx

)

= EI

T∑

t=1

(

(pt − qt)
2

qt
+

∫

St

(
ptv(x) − qtu(x)

)2

qtu(x)
dx

)

+ EI

T∑

t=1

(

pt − qt +

∫

St

(
ptv(x)− qtu(x)

)
dx

)

= EI

T∑

t=1

(

(pt − qt)
2

qt
+

∫

St

(
ptv(x) − qtu(x)

)2

qtu(x)
dx

)

+ EI

T∑

t=1

(
pt − qt + (1− pt)− (1− qt)

)

= EI

T∑

t=1

(

(pt − qt)
2

qt
+

∫

St

(
ptv(x) − qtu(x)

)2

qtu(x)
dx

)

.

Note that qt > p0 and u(x) > 1/C1 for all x ∈ [0, 1], where

C1 :=
c(1 − s)

s(1− β)
> 0.

Hence, we can bound the KL divergence further as

KL(PI ||PJ ) 6 EI

T∑

t=1

(

(pt − qt)
2

qt
+

∫

St

(
ptv(x)− qtu(x)

)2

qtu(x)
dx

)

6
1

p0
EI

T∑

t=1







(pt − qt)

2

︸ ︷︷ ︸

(a)

+C1

∫

St

(
ptv(x)− qtu(x)

)2
dx

︸ ︷︷ ︸

(b)







. (42)

We bound both (a) and (b) in (42) from above. Let t ∈ {1, . . . , T}. For (a), observe that

(pt − qt)
2 =(∗)

(∫

St
(v(x)− u(x))dx

)2

(

1 +
∫

St
v(x)dx

)2 (

1 +
∫

St
u(x)dx

)2

6

(∫

St

(v(x) − u(x))dx

)2
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6

(
s

c(1− s)(1− δ)

∫

St

τi(x)dx

)2

6(∗∗) C2
c2

4K4
, (43)

where

C2 :=
s2

c2(1− s)2(1− δ)2
,

and where (∗) holds since the cross terms cancel out and (∗∗) follows by Lemma 7.(v).1.

We now bound (b) in (42) from above. Observe that

∫

St

(
ptv(x)− qtu(x)

)2
dx =

∫

St

(
ptv(x)− qtv(x) + qtv(x)− qtu(x)

)2
dx

= (pt − qt)
2

∫

St

v(x)2dx (44)

+ 2qt(pt − qt)

∫

St

v(x)τi(x)dx (45)

+ q2t

∫

St

(τi(x))
2 dx. (46)

The integral in (44) can be bounded by applying Lemma 7.(v).2. Combining that with the

bound for (pt − qt)
2 from (43), gives

(pt − qt)
2

∫

St

v(x)2dx 6 C2
2 (1 +H)

c3

4K4
.

For the term (45), Lemma 7.(i) shows that τi(x) 6 Hc/K. Together with (43) and Lemma

7.(ii).1 we find

2qt(pt − qt)

∫

St

v(x)τi(x)dx 6 2|pt − qt|
∫

St

v(x)τi(x)dx

6 2|pt − qt|
(

max
x∈[0,1]

τi(x)

)∫

S
v(x)dx

6 2
√

C2
c

2K2

(

H
c

K
· c
√

C2(1 +H)
)

= C2H(1 +H)
c3

K3

Finally, we bound the term (46). As a consequence of Lemma 7.(v).2, we have

q2t

∫

St

(τi(y))
2 dy 6

∫

St

(τi(y))
2 dy 6

c3

4σ
√
πK3

.
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Inserting the derived upper bounds on (44), (45), (46) in (42), we obtain

KL(PI ||PJ) 6
1

p0
EI

T∑

t=1

(

(pt − qt)
2 + C1

∫

St

(
ptv(y)− qtu(y)

)2
dy

)

6
1

p0
EI

T∑

t=1

(

C2
c2

4K4
+ C1

(

C2
2(1 +H)

c3

4K4
+ C2H(1 +H)

c3

K3
+

c3

4σ
√
πK3

))

6
1

4p0

(

c2C2 + C1

(

c3C2
2 (1 +H) + 4c3C2H(1 +H) +

c3

σ
√
π

))
T

K3
.

This implies (39). �

Proof of Theorem 4.

We first show that the preference functions v0 and {vI : I ∈ DK ,K > 2} satisfy Assumption 1.

To see this observe that the choice c ∈ (0, 14 ], s = 0.8c and δ = 1
2 implies

v0(x) ∈
[

0.8

1− s
,

1.6

1− s

]

⊆ [0.8, 2] .

Moreover, for all K > 2 and I ∈ DK we have β 6 L/8 6 0.0013, and therefore

vI(x) > v0(x)(1 − β) > 0.79,

and Lemma 7.(i) implies

vI(x) 6 v0(x)

(

1 +
H

8

)

6 2.01 6 2.56 6
w(0)

∫ 1
0 (w(x) − w(0))dx

6 4,

for all choices of c ∈ (0, 14 ]. This shows that Assumption 1(i) is satisfied with v = 4 and v = 0.79.

We now show that v′I(·) is uniformly bounded and hence Assumption 1(ii) is satisfied as well.

To this end, observe that

|v′I(x)| = |v′0(x)|
∣
∣
∣
∣
∣
1 +

∑

i∈I
τi(x)

∣
∣
∣
∣
∣
+ |v0(x)|

∣
∣
∣
∣
∣

∑

i∈I
τ ′i(x)

∣
∣
∣
∣
∣
,

for all x ∈ [0, 1]. Therefore, by Lemma 7.(i) it suffices to show that
∑

i∈I τ
′
i(x) is uniformly

bounded. Note that

τ ′i(x) = − 2

σ2
φi(x)b

(
φi(x)

)
.

For all x ∈ [0, 1], let ix := ⌊Kx/c⌋. Then x ∈ Bix for all x ∈ [0, 1], where BNK+1 :=
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[0, 1]\⋃i∈[NK ]Bi, and φi(Bix) =
[
2(ix − i) − 1, 2(ix − i) + 1

)
. Since |yb(y)| is decreasing for

y > 1 and increasing for y 6 −1, we obtain that, for all i < ix,

0 < φi(x)b
(
φi(x)

)
6
(
2(ix − i)− 1

)
b
(
2(ix − i)− 1

)
,

and for all i > ix,

0 < −φi(x)b
(
φi(x)

)
6
(
2(ix − i) + 1

)
b
(
2(ix − i) + 1

)
.

From this we conclude that

∣
∣
∣
∣
∣

∑

i∈I
τ ′i(x)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∑

i∈I

2

σ2
φi(x)b

(
φi(x)

)

∣
∣
∣
∣
∣

6
2

σ2

(

∣
∣φix(x)b

(
φix(x)

)∣
∣+

ix−1∑

i=1

φi(x)b
(
φi(x)

)
−

NK∑

i=ix+1

φi(x)b
(
φi(x)

)

)

6
2

σ2

(

∣
∣φix(x)b

(
φix(x)

)∣
∣+

ix−1∑

i=1

(
2(ix − i)− 1

)
b
(
2(ix − i)− 1

)

−
NK∑

i=ix+1

(
2(ix − i) + 1

)
b
(
2(ix − i) + 1

)

)

6
2

σ2

(

σ√
e
+ 2

∞∑

n=1

(2n − 1)b
(
2n − 1

)

)

<∞.

As a result, v0 and {vI : I ∈ DK ,K > 2} satisfy Assumption 1. This implies

∆π(T ) = sup
v∈V

∆π(T, v)

>
1

|DK |
∑

I∈DK

∆π(T, vI)

>
1

|DK |
∑

I∈DK

(

C1

∫

I†
(T − EI [k(x)])ǫI(x)dx− C2

T

K

)

, (47)

where C1 and C2 are as in Proposition 3.

The integral
∫

I† ǫI(x)dx can be bounded from below as

∫

I†
ǫI(x)dx =

∑

i∈I

∫

I†
τi(x)dx− βc =

∑

i∈I

∫

Bi

τi(x)dx− βc

>(∗) P
c2

2K
− L

c2

K
=
c2(P − 2L)

2K
,
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where at (∗) we used Lemma 7.(v).1. We use this lower bound to analyze (47). To this end, let

C3 := c2C1(P − 2L)/2. Then

∆π(T ) > (C3 − C2)
T

K
− C1

|DK |
∑

I∈DK

∫

I†
EI [k(x)]ǫI (x)dx

︸ ︷︷ ︸

(a)

. (48)

We now bound the term (a) in (48) from above, using Proposition 4. Let Cc denote the constant

from Proposition 4, and let I ∈ DK and J = I\{i} for some i ∈ I. Then, for x ∈ Bi,

EI [k(x)]ǫI(x) 6

(

EJ [k(x)] + Cc

(
T

K

)3/2
)

|ǫI(x)|. (49)

To apply (49) in order to bound (a) in (48), we change the order of summation and integration

and rewrite the summation itself. Let U =
⋃NK

i=1Bi denote the union of all bins, and for all

x ∈ U , let ix = ⌊Kx/c⌋ again denote the index of the bin Bix such that x ∈ Bix , for all

x ∈ [0, 1]. Note that for each x ∈ U that the mapping I 7→ I\{ix} between

Ex
K := {I ∈ DK : x ∈ I†} and F x

K−1 := {J ∈ DK−1 : x /∈ J†}

is a bijection. Hence,

∑

I∈DK

∫

I†
EI [k(x)]ǫI (x)dx =

∫

x∈U

∑

I∈Ex
K

EI [k(x)]ǫI(x)dx

=

∫

x∈U

∑

J∈Fx
K−1

EJ∪{ix}[k(x)]ǫJ∪{ix}(x)dx

6
(∗)
∫

x∈U

∑

J∈Fx
K−1

EJ [k(x)]
∣
∣ǫJ∪{ix}(x)

∣
∣dx (50)

+Cc

(
T

K

)3/2 ∫

x∈U

∑

J∈Fx
K−1

∣
∣ǫJ∪{ix}(x)

∣
∣dx, (51)

where at (∗) we apply (49). We now bound (50) and (51) from above. For (50), |ǫI(x)| is
bounded uniformly in x by Lemma 7.(i):

∫

x∈U

∑

J∈Fx
K−1

EJ [k(x)]
∣
∣ǫJ∪{ix}(x)

∣
∣dx

6 (H + L)
c

K

∫

x∈U

∑

J∈Fx
K−1

EJ [k(x)]dx
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=(H + L)
c

K

∑

J∈DK−1

∫

x∈U\J†

EJ [k(x)]dx

6 (H + L)
c

K

∑

J∈DK−1

∫ 1

0
EJ [k(x)]dx

6 (H + L)
c

K

∑

J∈DK−1

T∑

t=1

EJ [vol(St)]

6 (H + L)
c2

K
|DK−1|T.

We now consider (51). Observe that |ǫI(x)| is bounded locally on Bi:

∫

x∈U

∑

J∈Fx
K−1

∣
∣ǫJ∪{ix}(x)

∣
∣dx =

∑

J∈DK−1

∫

x∈U\J†

∣
∣ǫJ∪{ix}(x)

∣
∣dx

=
∑

J∈DK−1

∑

i/∈J

∫

Bi

|ǫJ∪{i}(x)|dx 6(∗) ∑

J∈DK−1

∑

i/∈J

∫

Bi

(
τi(x) + β

)
dx

6(∗∗) ∑

J∈DK−1

∑

i/∈J

c2(1 + 2L)

2K2
=
c2(1 + 2L)

2K2
|DK−1|(NK −K + 1),

where we apply Lemma 7.(vi) at (∗) and Lemma 7.(v).1 at (∗∗). After inserting these upper

bounds for (50) and (51) into (48), we conclude

∆π(T ) > (C3 − C2)
T

K
− C1

|DK |

(

(H + L)
c2

K
|DK−1|T +

c2Cc(1 + 2L)

2
|DK−1|(N −K + 1)

T 3/2

K7/2

)

=

(

C3 −C2 −
c2C1 (H + L) |DK−1|

|DK |

)
T

K
− c2C1Cc(1 + 2L)|DK−1|

2|DK | (N −K + 1)
T 3/2

K7/2
.

Next, note that
|DK−1|
|DK | =

K

NK −K + 1
,

and therefore

∆π(T ) >

(

C3 − C2 −
(H + L) c2C1K

NK −K + 1

)

︸ ︷︷ ︸

(b)

T

K
− c2C1Cc(1 + 2L)

2

T 3/2

K5/2
. (52)

We abbreviate the constant C4 := c2C1Cc(1 + 2L)/2. The factor (b) in front of the T/K term

above can be bounded further from below. To this end, note that

NK −K + 1 >

(
1

c
− 1

)

K,
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and therefore (52) implies

∆π(T ) >

(

C3 − C2 −
(H + L) c3C1

1− c

)
T

K
− C4

T 3/2

K5/2
.

Let

C6 :=
P − 2L

2
− (H − L)c

1− c
,

and

C5 := C3 − C2 −
(H + L)c3C1

1− c
= c2C1C6 − C2.

By computation and the assumption c ∈ (0, 14 ] we obtain C6 > (P − 2L)/2 − (H − L)/3 =

0.043 > 0. In addition, our choice of s = 0.8c implies

s

1− s
<

√
cC6(1− δ)√
c+ L

,

and therefore C5 = c2C1C6 −C2 > 0. Now, choose

γ =

(
5C4

C5

)2/3

and K = max{2,
⌈

γT 1/3
⌉

}.

For T > 1/γ3, we know that K =
⌈
γT 1/3

⌉
as well as K < γT 1/3 + 1 < 2γT 1/3 and K > γT 1/3.

Therefore, for T > 1/γ3

∆π(T ) >
C5

2γ
T 1/3 − C4

γ5/2
T 1/3

=
(
1
2

(
1
5

)2/3 −
(
1
5

)5/3
) C

5/3
5

C
2/3
4

T 2/3.

For T such that 1 6 T 6 1/γ3, we know that K = 2 as well as
√
T 6 C5/5C4 and thus

∆π(T ) >
C5

2
T −

√
2C4

8
T 3/2

=

(

C5

2
−

√
2C4

8

√
T

)

T

>

(
1
2 −

√
2

40

)

C5 T >

(
1
2 −

√
2

40

)

C5 T
2/3.

Therefore, we have shown the desired result for

C = min

{
(
1
2 −

√
2

40

)

C5,
(
1
2

(
1
5

)2/3 −
(
1
5

)5/3
) C

5/3
5

C
2/3
4

}

> 0.
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�

Proof of Lemma 7.

For x ∈ [0, 1], let i0 ∈ [NK ] y = 2Kx/c− 2i0 + 1. Then we find that (i) holds due to

∑

i∈I
τi(x) =

c

K

1

σ
√
2π

∑

i∈I
exp

(
− 1

2σ2 (y + 2i0 − 2i)2
)
6

c

K

1

σ
√
2π

∑

n∈Z
exp

(
− 1

2σ2 (y − 2n)2
)

6
c

K

1

σ
√
2π

∑

n∈Z
exp

(

−2n2

σ2

)

= H
c

K
.

Observe that (ii) is a corollary of (i), since v0(x) 6
s

c(1−s)(1−δ) for all x ∈ [0, 1], and therefore

vI(x) 6
s

c(1− s)(1− δ)

(

1 +
∑

i∈I
τi(x)

)

.

For (iii), let x /∈ I† and ix := ⌊Kx/c⌋ such that x ∈ Bix , where BNK+1 := [0, 1]\⋃i∈[NK ]Bi.

Note that τi is either increasing or decreasing on Bix for i 6= ix. Then

τi(x) 6 max

{

τi

(

c
ix − 1

K

)

, τi

(

c
ix
K

)}

=
c

K
max

{

b
(
2(ix − i) + 1

)
, b
(
2(ix − i)− 1

)}

,

for i 6= ix. From this, we derive for any x /∈ I†,

∑

i∈I
τi(x) 6

c

K

1

σ
√
2π

∑

i∈I
max

{

exp
(
− 1

2σ2 (2(ix − i) + 1)2
)
, exp

(
− 1

2σ2 (2(ix − i)− 1)2
)}

6
c

K

1

σ
√
2π

∑

n∈Z
exp

(
− 1

2σ2
(2n − 1)2

)
,

which implies (iii). For (iv), we observe that by vol(I†) = c,

c = vol(I†) = vol(I† ∩ St) + vol(I†\St) = vol(St)− vol(St\I†) + vol(I†\St),

Since vol(St) 6 c, (iv) follows. Item (v) is derived by straightforward computation: for both

results (v).1 and (v).2 we apply the variable substitution y = 2Kx/c− 2i+ 1 to obtain

∫ 1

0
τi(x)dx =

c

K

∫ 1

0
b

(
2Kx

c
− 2i+ 1

)

dx

6
c

K

∫

R

b

(
2Kx

c
− 2i+ 1

)

dx =
c2

2K2

∫

R

b(y)dy =
c2

2K2
.
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For the equality in (v).1, we find that

∫

Bi

τi(x)dx =
c

K

∫

Bi

b

(
2Kx

c
− 2i+ 1

)

dx

=
c2

2K2

∫

[−1,1]
b(y)dy =

c2

2K2
P.

For the integral in (v).2, we derive

∫

[0,1]
(τi(x))

2dx =
c2

K2

∫

Bi

(

b

(
2Kx

c
− 2i+ 1

))2

dx

6
c2

K2

∫

R

(

b

(
2Kx

c
− 2i+ 1

))2

dx

=
c3

2K3

∫

R

(b (y))2 dx =
c3

4σ
√
πK3

.

Finally, for (vi) we point out that as a corollary of (iii), for i ∈ I, β′ > β, and x ∈ Bi,

−β′ 6 ǫI\{i}(x;β
′) 6 0,

since x /∈ (I\{i})†. Hence,

|ǫI(x;β′)| =
∣
∣τi(x) + ǫI\{i}(x;β

′)
∣
∣ 6 τi(x) +

∣
∣ǫI\{i}(x;β

′)
∣
∣ 6 τi(x) + β′.

�

Proof of Lemma 8.

For any ̺ ∈ [0, 1− δ] and any x ∈ [0, 1] it holds that w(x) > 1− δ > ̺ and therefore vol(W̺) =

vol({x ∈ [0, 1] : w(x) > ̺}) = 1. In particular this implies that vol(S̺) = c, for all ̺ ∈ [0, 1− δ],

where S̺ is a maximizer of (6). Now, let ̺ = s. Since s ∈ [0, 1 − δ], it follows that

I(S̺, ̺) =
∫

S̺

v0(x)
(
w(x)− ̺

)
dx =

s

c

∫

S̺

w(x)− ̺

w(x) − s
dx = s

vol(S̺)

c
= ̺,

and therefore ̺∗ = s by Proposition 1. �
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Appendix C: Relation to discrete multinomial logit choice prob-

abilities

The choice probabilities in our continuous assortment optimization model are closely connected

to the discrete multinomial logit (MNL) model, in two regards.

First, our choice probabilities naturally arise as a limit of discrete models where the number of

products grow large. To see this, consider a sequence of discrete MNL assortment optimization

problems indexed by n ∈ N, where the n-th problem corresponds to a setting with n products

labeled i = 1, . . . , n, each with associated location i/(n + 1) and valuation v
(n)
i = v(i/(n +

1))/(n + 1), for all i = 1, . . . , n and some continuous function v : [0, 1] → (0,∞). Under the

discrete MNL model, the probability that a customer selects a product in a (measurable) set

A ∈ [0, 1] when being offered assortment S is equal to

∑

i: i
n+1

∈A v
(n)
i

1 +
∑

i: i
n+1

∈S v
(n)
i

.

It follows from classical results in integration theory (see, e.g., Stroock 1994) that this expression

converges to (1) as n→ ∞.

Second, when the product space is discretized into finitely many products, each corresponding

to a subinterval in [0, 1], then our model translates into choice probabilities that are described

by a discrete MNL model. To see this, suppose that I1, . . . , In are mutually disjoint subsets of

[0, 1], each corresponding to a ‘discrete product’, such that
⋃n

i=1 Ii = [0, 1]. Let vi :=
∫

Ii
v(x)dx,

for all i. Then, for each ‘discrete assortment’ S̃ ⊆ {1, . . . , n} and for each i ∈ S̃, the probability

P (i | S̃) that a customer selects from Ii when being offered assortment
⋃

j∈S̃ Ij, is equal to

P (i | S̃) = P
(
XS ∈ Ii

)
=

∫

Ii
v(x)dx

1 +
∫
⋃

j∈S̃
Ij
v(x)dx

=
vi

1 +
∑

j∈S̃ vj
.

This is precisely the structure of a discrete MNL choice model.
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Appendix D: Bisection algorithm for Section 5

According to Proposition 1, the optimal assortment can be computed up to any desired accuracy

ǫ > 0. The algorithm COA(n) below shows how this is done, where n := − log ǫ. Recall that

I(S, ̺) :=
∫

S
v(x)

(
w(x)− ̺

)
dx. (53)

The algorithm COA(n) uses bisection to find the fixed-point solution ̺∗ to the equation

I(S̺, ̺) = ̺.

The value of I(S̺, ̺) is computed by relying on the level ℓ̺. This level value is calculated by an

additional inner bisection using the algorithm IB(n, ̺). This algorithm is also presented below.

Remark 8. As mentioned, the calculation of the level ℓ̺ for a single ̺ requires a bisection on its

own. This means that the run time of IB(n, ̺) is O(− log ǫ), and hence the run time of COA(n)

is O((log ǫ)2).

Capacitated Optimal Assortment COA(n)

1. Initialization. Let n > 1. Put a := 0, b := 1, piv := (b−a)/2 and i := 1. Go to

2.

2. Capacity check. Put

Wpiv := {x ∈ [0, 1] : w(x) > piv}.

(i) If vol(Wpiv) > c, then go to 3.

(ii) If vol(Wpiv) 6 c, then put Spiv := Wpiv and Ipiv := I(Spiv, piv) as in (53) and

go to 5.

3. Inner bisection. Compute ℓpiv according to IB(n, piv). Go to 4.

4. Level set. Put

L+
piv := {x ∈ [0, 1] : v(x)(w(x) − piv) > ℓpiv},

L=
piv := {x ∈ [0, 1] : v(x)(w(x) − piv) = ℓpiv}
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and

xpiv := min{x ∈ [0, 1] : vol(L+
piv) + vol

(
L=
piv ∩ [0, x]

)
= c}

Put Spiv = L+
piv ∪

(
L=
piv ∪ [0, xpiv]

)
and Ipiv := I(Spiv, piv) as in (53). Go to 5.

5. Pivot.

(i) If Ipiv > piv, then put a := piv.

(ii) If Ipiv 6 piv, then put b := piv.

Put i := i+ 1. If i 6 n, then put piv := (b− a)/2 and go to 2, else go to 6.

6. Optimization. Put S∗ := Spiv. Go to 7.

7. Terminate.

Recall that there is a possible degree of freedom for picking S̺ if vol(W̺) > c. By the definition

of xpiv above, we explicitly choose the left-most version. The algorithm IB(n, ̺) computes the

level ℓ̺ for given ̺. Recall by Lemma 1 that this level is defined as

ℓ̺ := max{ℓ > 0 : vol
(
L(̺, ℓ)

)
> c}.

IB(n, ̺) also uses the bisection method, which is facilitated by the fact that, as a function of

ℓ > 0, vol
(
L(̺, ℓ)

)
is left-continuous and non-increasing by Lemma 6.

Inner Bisection IB(n, ̺)

1. Initialization. Let n > 1 and ̺ ∈ [0, 1]. Put a := 0, b := vmax(wmax − ̺) + 1,

piv := (b− a)/2 and i := 1. Go to 2.

2. Level set. Put

Lpiv := {x ∈ [0, 1] : v(x)(w(x) − ̺) > piv}.

Go to 3.

3. Pivot.

(i) If vol(Lpiv) > c, then put a := piv.

(ii) If vol(Lpiv) 6 c, then put b := piv.

Put i := i+ 1. If i 6 n, then put piv := (b− a)/2 and go to 2, else go to 4.

4. Optimization. Put ℓ̺ := piv. Go to 5.
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5. Terminate.

Appendix E: Additional numerical experiments

In this section we report the results of additional numerical experiments in which we compare

the predictive performance of the continuous logit model with that of the discrete multinomial

logit (MNL) model. Section E.1 describes the experimental set-up, and in Section E.2 we report

our results. Section E.3 contains additional details on the derivation of the maximum-likelihood

estimator, and in Section E.4 we specify the kernel density estimator used in these numerical

experiments.

E.1. Experimental set-up

The goal of these additional numerical experiments is to compare the predictive performance

of the continuous and the discrete logit choice model. To make such a comparison, we need to

define an estimator of the model parameters, for both the continuous and the discrete choice

model. For the discrete choice model we use the well-known maximum-likelihood estimator

(MLE) to estimate the model parameters. To estimate the preference function of the continuous

model, we develop a kernel density estimator (KDE). Throughout this section we use the same

notations and concepts as in Sections 5.2 and 5.3.

We compare the predictive performance of the two models in different scenarios. For each

scenario we randomly generate transaction data according to a true ‘ground truth model’, which

is either the discrete or the continuous model. Based on this data we estimate the preference

values v1, . . . , vN of the discrete model and the preference function v of the continuous model,

using the MLE and KDE, respectively. We then evaluate the predictive performance of both

models using three performance measures: (1) the relative revenue loss of the estimated optimal

assortment compared to the true optimal revenue, (2) the L1-difference between the estimated

and true model parameters, and (3), following Berbeglia et al. (2018), the absolute error of the

estimated no-purchase probability.

In what follows, we describe in detail the different scenarios, the MLE and KDE, and the

three performance measures that we consider.

Scenarios. We consider three different scenarios. In the first scenario the discrete model is

the ground truth, with parameters v
(1)
1 , . . . , v

(1)
N drawn uniformly at random from [ 1

10N ,
1
2N ], for
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N ∈ {10, 30, 50}. This grossly violates our assumption imposed in the continuous model that

the preference values are Lipschitz continuous. In the second scenario the discrete model is again

the ground truth; however, the preference values v
(2)
1 , . . . , v

(2)
N are set to v

(2)
i := f(i/(N +1))/N ,

for i = 1, . . . , N , where N ∈ {10, 30, 50},

f(x) =
1

10
+ φ(x;µ, σ), x ∈ [0, 1],

and where φ( · ;µ, σ) is the normal probability density function with µ drawn uniformly at

random from [0, 1], and σ drawn uniformly at random from [0.1, 0.2]. Thus, in this second

scenario, the continuous model might provide a relatively accurate description of the choice

probabilities, despite being a misspecified model. Finally, in the third and last scenario we

assume that the continuous model is the ground truth, and we test up to what extent the discrete

model is able to produce accurate predictions of consumer’s choice behavior. The preference

function is set to

v(3)(x) =
1

10
+

1

5
(2 + x)(1− x) +

2

7
φ(x; 0.33, 0.1) +

1

5
φ(x; 0.8, 0.1), x ∈ [0, 1].

The discrete model is estimated for N ∈ {10, 30, 50} products. In all scenarios we set w(x) := x

for all x ∈ [0, 1]. For each scenario, for each c ∈ {1
2 , 1}, and for each N ∈ {10, 30, 50}, we

randomly generate 1 000 transaction data sets of size T ∈ {50, 100, 200, 500, 1 000, 2 000, 5 000}.
In these transaction data sets, the assortments are set to the unit interval for c = 1. For c = 1/2

we let the assortments be [0, 0.5] in the first T/2 time periods, and [0.5, 1] in the second T/2

time periods. In the third scenario, in which the continuous model is the ground truth, the

observed purchases for the discrete model are of the form Yt =
∑N

i=1 i1Bi
(Xt).

We refer to a specific vector of preference parameters as an instance of the discrete model,

and to a specific preference function as an instance of the continuous model. Each instance

v = (v1, . . . , vN ) of the discrete model corresponds to an instance of the continuous model, by

letting the discrete purchase Yt coincide with the continuous purchase Xt ∈ Bit (and Xt = ∅ if

Yt = 0) and by setting the preference function v(x) equal to

v(x) := N
N∑

i=1

vi1Bi
(x).

Conversely, each instance of the continuous model with preference function v that is constants

on bins B1, . . . , BN corresponds to an instance of the discrete model by setting vi =
∫

Bi
v(x)dx,
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for all i = 1, . . . , N . Concretely, we let v(1)(·) and v(2)(·) be the preference functions of the

continuous model that correspond to the (discrete) instance in scenario 1 and 2, and we let

(v
(3)
1 , . . . , v

(3)
N ) be the vector of preference values that correspond to the (continuous) instance

in scenario 3.

Estimators. For j = 1, 2, 3, let v̂(j),KDE(x) denote the kernel density estimator of v(j)(x) (de-

fined in more detail in Appendix E.4) and let v̂(j),MLE(x) denote the stepwise constant function

v̂(j),MLE(x) :=
N∑

i=1

v̂
(j),MLE
i 1Bi

(x),

where v̂
(j),MLE
i denotes the MLE of v

(j)
i for i ∈ [N ]. That is,

v̂
(j),MLE
i :=

∑T
t=1 1{Yt = i}

∑T
t=1 1{Yt = 0}

,

for c = 1 and

v̂
(j),MLE
i :=

∑kT/2
t=(k−1)T/2+1 1{Yt = i}

∑kT/2
t=(k−1)T/2+1 1{Yt = 0}

, i ∈ {(k − 1)N/2 + 1, . . . , kN/2}, k = 1, 2,

for c = 0.5, where Yt are simulated from scenario j. We set the assumed upper bound of v(x) in

all scenarios to v = 5. For c = 1, we let v̂
(j),MLE
i be the fixed constant v/N if

∑T
t=1 1{Yt = 0} = 0

and for c = 0.5, we let v̂
(j),MLE
i,k = v/N if

∑kT/2
t=(k−1)T/2+1 1{Yt = 0} = 0 with k = 1, 2. For the

derivation of the MLE we refer to Appendix E.3.

Performance measures. Given a simulated data sample of size T , the predictive per-

formance is measured in three ways: (1) the instantaneous relative regret of the estimated

optimal assortment, (2) the L1 error of the estimated preference vector/function, and (3), in

the same spirit as Berbeglia et al. (2018), the relative absolute difference between the estimated

no-purchase probability and the actual no-purchase probability.

To ensure a fair comparison for the first performance measure, the optimal assortment in the

first two scenarios is computed over AK , the collection of all unions of at most K = cN bins.

This is because, if the discrete model is the ground truth, then partial products can not be

offered. In addition, in these first two scenarios, the estimated optimal assortment under the

continuous model is computed with the function w replaced by w̌, in line with Equation (13).
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The instantaneous relative regret (IRR) is thus computed as

IRR(j),E :=
r(S(j), v(j), w)− r(Ŝ(j),E, v(j), w)

r(S(j), v(j), w)
, j = 1, 2, 3, E ∈ {KDE,MLE},

where S(j) is the optimal assortment in scenario j and Ŝ(j),E the estimated optimal assortment,

for both estimators E ∈ {KDE,MLE}. The second performance measure is defined as

L
(j),E
1 :=

∫ 1

0

∣
∣
∣v(j)(x)− v̂(j),E(x)

∣
∣
∣dx, j = 1, 2, 3, E ∈ {KDE,MLE},

where v̂(j),MLE and v̂(j),KDE are the MLE and KDE estimator for scenario j, respectively. Finally,

our third performance measure is the relative absolute difference of the actual no-purchase

probability and the estimated no-purchase probability, where for c = 1/2 we average the relative

absolute difference of the no-purchase probabilities for assortment [0, 0.5] and [0.5, 1]. Thus,

defining

Q(j) :=
1

1 +
∫ 1
0 v

(j)(x)dx
and Q

(j)
k :=

1

1 +
∫

Sk v(j)(x)dx
, j = 1, 2, 3, k = 1, 2,

and

Q̂(j),E :=
1

1 +
∫ 1
0 v̂

(j),E(x)dx
and Q̂

(j),E
k :=

1

1 +
∫

Sk v̂(j),E(x)dx
,
j = 1, 2, 3, E ∈ {KDE,MLE},
k = 1, 2,

then our third performance measure is equal to

RAD(j),E :=

∣
∣Q(j) − Q̂(j),E

∣
∣

Q(j)
, j = 1, 2, 3, E ∈ {KDE,MLE}.

for c = 1, and

MRAD(j),E :=

∣
∣Q

(j)
1 − Q̂

(j),E
1

∣
∣

2Q
(j)
1

+

∣
∣Q

(j)
2 − Q̂

(j),E
2

∣
∣

2Q
(j)
2

j = 1, 2, 3, E ∈ {KDE,MLE},

for c = 0.5.

E.2. Results

A priori one would expect that, in scenario 1, the predictive performance of the discrete model

outperforms that of the continuous model, and that in scenario 3 it is the other way around.

What happens in scenario 2 might be less predictable. The performance metrics in the three
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different scenarios are displayed in Figures 5 through 10.

Regarding the third performance measure, there is hardly any difference between the con-

tinuous and discrete model. For the other two performance measures, however, we observe

marked differences. In scenario 1 the continuous model outperforms the discrete model in sev-

eral instances, especially for small values of T , both when c = 1 and when c = 0.5. Similar

behavior is seen in scenario 2: the continuous model outperforms the discrete model under the

first two performance measures, except for N = 10 and sufficiently large T . In scenario 3, the

continuous model outperforms the discrete model when measured by the first or second perfor-

mance measure when c = 0.5; when c = 1, the first and second performance measure are either

approximately equal, or the continuous model outperforms the discrete model.

These observations demonstrate that there is value in using the continuous model for predictive

purposes, also in situations where this model is misspecified.
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Figure 5: The performance metrics comparing the predictive performance for of the continuous
and the discrete logit choice model for scenario 1 with c = 0.5 and K = N/2 based on 1 000
simulations.
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Figure 6: The performance metrics comparing the predictive performance for of the continuous
and the discrete logit choice model for scenario 1 with c = 1 and K = N based on 1 000
simulations.
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Figure 7: The performance metrics comparing the predictive performance for of the continuous
and the discrete logit choice model for scenario 2 with c = 0.5 and K = N/2 based on 1 000
simulations.
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Figure 8: The performance metrics comparing the predictive performance for of the continuous
and the discrete logit choice model for scenario 2 with c = 1 and K = N based on 1 000
simulations.
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Figure 9: The performance metrics comparing the predictive performance for of the continuous
and the discrete logit choice model for scenario 3 with c = 0.5 and K = N/2 based on 1 000
simulations.
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Figure 10: The performance metrics comparing the predictive performance for of the continuous
and the discrete logit choice model for scenario 3 with c = 1 and K = N based on 1 000
simulations.
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E.3. Maximum likelihood estimator

Here we derive the maximum likelihood estimator for the preference parameters in the discrete

MNL model. We denote as the estimators as v̂1, . . . , v̂N . Following Appendix E.1 and E.2, we

consider (i) K = N and offer the entire set of products [N ] at all time instances, as well as

(ii) K = N/2 and offer the assortments {1, . . . , N/2} and {N/2 + 1, . . . , N} (each in half of all

time instances, that is).

First we consider that K = N and Dt = [N ] for all t ∈ [T ]. Let it denote the discrete purchase

observed at time t when offering Dt ⊆ [N ]. Then the log likelihood is

L(v1, . . . , vN ) =

T∑

t=1

log

(

vit

1 +
∑N

i=1 vi

)

=

T∑

t=1

log vit −
T∑

t=1

log

(

1 +

N∑

i=1

vi

)

.

Taking the derivative of the log likelihood with respect to vj for j ∈ [N ] yields

∂

∂vj
L(v1, . . . , vN ) =

1

vj

T∑

t=1

1{it = j} −
T∑

t=1

1

1 +
∑N

i=1 vi
.

These partial derivatives are equal to zero, so as to obtain v̂j for j ∈ [N ]; we obtain

T∑

t=1

1{it = j} =

T∑

t=1

v̂j

1 +
∑N

i=1 v̂i
. (54)

Summing all these equations for j ∈ [N ] yields

T∑

t=1

1{it 6= 0} =
T∑

t=1

∑N
j=1 v̂j

1 +
∑N

i=1 v̂i
,

or, equivalently,
T∑

t=1

1{it = 0} =

T∑

t=1

1

1 +
∑N

i=1 v̂i
. (55)

Combining (54) and (55), we obtain

v̂j :=

∑T
t=1 1{it = j}

∑T
t=1 1{it = 0}

, j ∈ D,

where we set v̂j := v/N if
∑T

t=1 1{it = 0} = 0.

Next, we consider that K = N/2. Denote D1 = {1, . . . , N/2} and D2 = {N/2 + 1, . . . , N},
as well as T 1 = {1, . . . , T/2} and T 2 = {T/2 + 1, . . . , T}. Then Dt = D1 for t ∈ T 1 and
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Dt = D2 for t ∈ T 2. Let i1, . . . , it denote the discrete purchases observed at time t when offering

Dt ⊆ [N ]. Then the log likelihood is

L(v1, . . . , vN ) =

T∑

t=1

log

(
vit

1 +
∑

i∈Dt
vi

)

=

T∑

t=1

log vit −
T∑

t=1

log

(

1 +
∑

i∈Dt

vi

)

.

Taking the derivative of the log likelihood with respect to vj for j ∈ [N ] yields

∂

∂vj
L(v1, . . . , vN ) =







1

vj

∑

t∈T 1

1{it = j} −
∑

t∈T 1

1

1 +
∑

i∈D1 vi
, for j ∈ D1,

1

vj

∑

t∈T 2

1{it = j} −
∑

t∈T 2

1

1 +
∑

i∈D2 vi
, for j ∈ D2.

These partial derivatives are set equal to zero, to obtain v̂j for j ∈ Dk and k = 1, 2. We thus

obtain
∑

t∈T k

1{it = j} =
∑

t∈T k

v̂j
1 +

∑

i=Dk v̂i
. (56)

Summing all these equations over j ∈ Dk yields

∑

t∈T k

1{it 6= 0} =
∑

t∈T k

∑

j∈Dk v̂j

1 +
∑

i∈Dk v̂i
,

or, equivalently,
∑

t∈T k

1{it = 0} =
∑

t∈T k

1

1 +
∑

i∈Dk v̂i
. (57)

Combining (56) and (57), we obtain

v̂j :=

∑

t∈T k 1{it = j}
∑

t∈T k 1{it = 0} , j ∈ Dk, k = 1, 2,

where we set v̂j := v/N if
∑

t∈T k 1{it = 0} = 0.

E.4. Kernel density estimator

In this section we define the kernel density estimator used to estimate the preference function v

in the continuous assortment model.

Because traditional kernel density estimation does not perform well near endpoints of the

support, we construct the KDE based on the so-called boundary kernel method, that locally

adjusts the kernels near the edges of the support (see Müller 1991, Zhang et al. 1999, for other

demonstrations of this method). Also contrary to traditional kernel density estimation, we allow
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the order of the kernel to depend on the number of observations. To construct such a kernel

of arbitrarily high order, it is natural to work with an orthonormal basis of polynomials. We

specifically choose Legendre polynomials since this choice allows us to bound the convergence

rate explicitly for kernels of flexible order.

We define our estimator v̂ of v based on continuous purchases X1, . . . ,XT ∈ [0, 1]∪{∅}. If our
estimator is applied to scenario 1 or 2, in which case the observed purchases Y1, . . . , YT ∈ [N ]∪{0}
are discrete, we draw Xt uniformly at random from BYt if Yt 6= 0 and set Xt := ∅ if Yt = 0,

for all t ∈ [T ]. We define the estimator v̂ for the situation that there are L ∈ N so-called test

assortments S1, . . . , SL each of which is offered during exactly M ∈ N time periods, and each

of which has volume c. More precisely, the offered assortment at time t ∈ [T ] is St = Sk if

t ∈ {(k− 1)M +1, . . . , kM}. For all x ∈ [0, 1], let e(x) denote the number of times that product

x is contained in the test assortments S1, . . . , SL:

e(x) :=
L∑

k=1

1Sk(x).

We assume that the test assortments S1, . . . , SL cover the entire set of products [0, 1], that is,

e(x) > 0 for all x ∈ [0, 1]. For each test assortment Sk we construct a corresponding estimate

v̂k(x) of v(x)1Sk(x), and then combine these into our estimate v̂, as follows:

v̂(x) :=
1

e(x)

L∑

k=1

v̂k(x), x ∈ [0, 1]. (58)

To define v̂k, define the Legendre polynomials

ϕ0(x) :=
1√
2
, ϕj(x) :=

√

2j + 1

2

1

2jj!

dj

dxj
[
(x2 − 1)j

]
,

for j ∈ N, which form an orthonormal basis in L2([−1, 1]). Let ak and bk be such that Sk =

[ak, bk], for all k ∈ [L], let h ∈ (0, c/2] be a bandwidth parameter and for all k ∈ [L] and x ∈ R

define the shifted support Ikx as

Ikx =

[

−min

{

1,
x− ak
h

}

,min

{

1,
bk − x

h

}]

.
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In addition, we define two shift coefficients γkx and ζkx as

( γkx , ζ
k
x ) =







(
2h

h+ x− ak
, −h− (x− ak)

h+ x− ak

)

for x ∈ [ak, ak + h),

(1, 0) for x ∈ [ak + h, bk − h],
(

2h

h+ bk − x
,

h− (bk − x)

h+ bk − x

)

for x ∈ (bk − h, bk],

and define the Legendre kernel of order ℓ for Sk by

Kk
x(u) := γkx

ℓ∑

j=0

ϕj

(
ζkx
)
ϕj

(
γkxu+ ζkx

)
, x ∈ Sk, u ∈ Ikx ,

and Kk
x(u) := 0 for x ∈ Sk and u /∈ Ikx .

Since v(x)1Sk(x) is not a proper density, we re-scale the kernel estimator based on the number

of (no)-purchases corresponding to test assortment Sk, for all k ∈ [L]. To this end, let Ek denote

the no-purchases observed when assortment Sk is offered:

Ek := {Xt : Xt = ∅ and (k − 1)M + 1 6 t 6 kM},

and let

Ak := {Xt : Xt 6= ∅ and (k − 1)M + 1 6 t 6 kM}

denote the actual purchases observed when Sk is offered. Then we estimate v(x)1Sk(x) by

v̂k(x) :=
1

(|Ek|+ 1)h

∑

X∈Ak

Kk
x

(
X − x

h

)

, x ∈ Sk,

and set v̂k(x) := 0 for x /∈ Sk. These estimates are combined into one estimate v̂(x) of v(x),

as given by (58). Analysis of the convergence rates reveals that an appropriate choice for the

bandwidth parameter h and order parameters ℓ is

h∗ := min

{
c

2
,
1

e

}

and ℓ∗ :=

[
1

2
log
(
− 2M log h∗

)
− 1

2

]

,

respectively, where [x] denotes the rounded value of x ∈ R.
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