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Abstract
Knowledge graphs in both public and corporate settings need to keep pace with the constantly growing
amount of data being generated. It is, therefore, crucial to have automated solutions for assessing the
quality of Knowledge Graphs, as manual curation quickly reaches its limits. This research proposes
the use of KG-BERT for a triple (binary) classification task that assesses the quality of a Knowledge
Graphs’s hierarchical structure. The use of KG-BERT allows the textual as well structural aspects of a
Knowledge Graph to be leverage for this quality assessment (QA) task. The performance of our proposed
approach is measured using four different Knowledge Graphs: two branches (Physics and Mathematics)
of a corporate Knowledge Graph - OmniScience, a WordNet subset, and the UMLS Semantic Network.
Our method yields high-performance scores on all four KGs (88-92% accuracy) making it a relevant tool
for quality assessment and knowledge graph maintenance.

Keywords
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classification, contextual word embeddings, BERT, KG-BERT.

1. Introduction

Knowledge Graphs are at the heart of many data management systems nowadays, with ap-
plications ranging from knowledge-based information retrieval systems to topic recommen-
dation [1]and have been adopted by many companies [1]. Our research originated with the
need for the automatic quality assessment (QA) of OmniScience [2], Elsevier’s cross-domain
Knowledge Graph powering applications such as the Science Direct Topic Pages.1

A Knowledge Graph (KG) is a graph representation of knowledge, with entities, edges, and
attributes [3]. Entities represent concepts, classes or things from the real world, edges represent
the relationships between entities, and attributes define property-values for the entities. We
refer to these sets as "triples".

A number of QA dimensions have been identified for KGs [4]. Here, we focus on the semantic
accuracy dimension: the degree to which data values correctly represent the real-world facts
(or concepts) [4]. More specifically, we focus on the hierarchy evaluation of KGs: whether
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its hierarchical structure is correctly represented. To do this, we employ contextual word
embeddings [5] and investigate the use KG-BERT method [6]’s binary classification task. It is
a binary triple classification task, as for a given KG triple (entity, relation, entity/literal) the
classifier will return whether a given triple is correct or not.

KG-BERT takes advantage of the textual representation of the data for assessing the veracity
of KG triples and uses transfer learning to fine-tune embeddings pre-trained using the BERT
model [5] for a triple classification task. Our novel contribution is to use textual representations
of the KG hierarchy in combination with KG-BERT to evaluate hierarchy quality. We evaluate
the performance of this method on four different KGs.

The paper is structured as follows: in the related work section, we present KGs evaluation
frameworks and approaches for triple classification tasks. In the methodology section, we
describe the datasets that were used for this research, along with our sampling strategy, a
detailed description of the KG-BERT method and the evaluation metrics that we have selected.
In the results section, we present results for the four selected KGs. Lastly, we summarize the
outcomes of our research and propose future directions for exploration.

2. Related Work

In this section, we present KGs quality assurance frameworks and methods developed for KGs
triple classification tasks.

2.1. Knowledge Graph Quality Assurance Frameworks

One of the first frameworks that has been widely used for the data quality assessment of a
hierarchical triples structure was developed in 1996 by Wang and Strong [7]. They identified
four main quality dimensions: intrinsic, contextual, representational, and accessibility [7].
A framework proposed in 2007 [8] and built on [7] introduces a taxonomy of Information
Quality dimensions. Zaveri et al. [4] focused on a quality evaluation framework for linked data,
gathering 18 quality dimensions (with 69 quality metrics), including the dimensions introduced
by [7]. Chen et al. [9] adjusted the framework proposed by [4] for KGs. They created 18
requirements on knowledge graphs quality and mapped them to knowledge graph applications.
Raad and Cruz [10] also gathered evaluation methodologies for ontologies. Raad and Cruz
distinguished several validation criteria (such as accuracy, completeness, consistency) and
presented four evaluation approaches.

The dimension that maps to the evaluation (assessment) of automatically expanding large
scale KGs is the semantic accuracy dimension [4], or just accuracy [10]. Zaveri et al. [4] define
it as the degree to which data values correctly represent real-world concepts. Our research
develops a method to evaluate one component of this dimension: whether the hierarchy of a
KG is accurate.

2.2. Knowledge Graph Triple Classification

We propose to use a (binary) triple classification task approach to address the problem of KG
hierarchy evaluation. We describe how our method compares with the current state-of-the-art



in KG evaluation.
A triple classification task aims to predict whether an unseen Knowledge Graph triple is true

or not. For that we can consider KGs entities and their relationships as real-valued vectors,
and assess the triples plausibility. Real-valued vector representations are called Knowledge
Graph embeddings [11]. There are two types of approaches for creating the KG embeddings:
translational distance models and semantic matching models [11]. The main difference is
the use of scoring function: translational models use distance-based functions and semantic
matching models use similarity-based scoring functions. Examples of translational models
are: TransE [12], TransH [13], TransR [14], or TransG [15]. RESCAL [16] and DistMult [17]
are representatives of semantic matching models. All of these methods use only the data’s
structural information, and do not leverage external information such as entity type, or textual
description, to improve model performance.

KG-BERT was introduced to address this limitation by taking advantage of textual information
in addition to structural information [6]: instead of creating Knowledge Graph embeddings to
represent the structure of the data (using the relationships presented in the data), it uses a textual
(distributed) representation of the triples in a corpus. It first creates a representations of each
of the entities in a triple using pre-trained BERT [5] embeddings. These embeddings are then
updated to minimize the loss function for the triple classification task. Finally, a binary classifier
predicts from its embedding, whether a triple is true or not with an associated confidence score.

One consequence of initialization through BERT is that the model takes advantage of knowl-
edge encoded within BERT during its training. This feature was one of the reasons to explore
the use of KG-BERT for the this evaluation task.

3. Methodology

We elaborate now on our technical and methodological decisions. First, we present the datasets
that are used in this research. Each dataset is from a different domain and used in a different
community, but they all hierarchically structured. We introduce our negative sampling ap-
proaches as we evaluate our results against a gold set of triples that should only be true. We
then describe KG-BERT in more detail, along with the evaluation approach.

3.1. Datasets

We selected four Knowledge Graphs from different domains (described in more details in Table
1), which are all hierarchical knowledge graphs (structured with the classification inclusion [18]
relation). We discarded here the benchmark datasets of WN11 and FB13 typically used for triple
classification tasks, as they contain a wide variety of relationships and were not representative
of our target KGs.

WordNet [19] is a large lexical database representing relationships between words in the
English language. It is widely used for tasks such as natural language processing or image
classification [20]. We extracted a subset of WordNet focused on the classification inclusion



Table 1
Overview of the experimental datasets

Dataset Example of the Triple No. of Triples No. of Entities

WordNet Refried Beans is a Dish 62,323 48,048
UMLS Enzyme is a Chemical 500 135
Physics Seismology is a concept of Geophysics 5,404 3,697
Mathematics Outlier is a concept of Summary Statistics 2,770 2,126

relation: we extracted only nouns - excluding proper names - in a hyponymy relation. We
performed this filtering on the hyponymy Wordnet subset.2

The Unified Medical Language System (UMLS) [21] is a comprehensive ontology of
biomedical concepts. UMLS is made of two distinct KGs: the Semantic Network and a Metathe-
saurus of biomedical vocabularies. The Semantic Network represents broad subject categories
together with their semantic relations. It groups and organizes the concepts from the Metathe-
saurus in one of the four relationships: "consist of", "is a", "method of", "part of".

We selected the Semantic Network for our research because it has more generic concepts
than the Metathesaurus and is better structured. We decided to investigate the performance
of our model on the subset of that network consisting of the triples in a hierarchical ("is a")
relationship (the classification inclusion relation).

OmniScience [2] is an all-science domains knowledge graph that is used, amongst others,
for the annotations of research articles. It connects external publicly available vocabularies
with the entities required in Elsevier platforms and tools. It is maintained by scientific experts
from Elsevier. OmniScience is a poly-hierarchy, in which scientific concepts can belong to
multiple domains. The relationship between OmniScience concepts can be described as a
hyponymy relation, or "is a" relation. OmniScience has several domain branches, such as
Physics, Mathematics, or Medicine and Dentistry. We used two branches as test cases, namely
Physics and Mathematics.

3.2. Negative Sampling

We considered all of the KGs above to consist of correct triples. Therefore, negative sampling
is necessary to prepare a training set for a classification problem. We followed the approach
proposed in [22] and use the 1:3 ratio for negative samples. We followed three strategies to
generate these negative samples:

1. per each head entity we randomly sample a tail entity;
2. per each tail entity we randomly sample a head entity;
3. per each pair we exchange the head entity with the tail entity, which gives us “reversed”

samples, that should help train the model with respect to the direction of the relation.

After sampling 3 negative examples per each proper pair, we filtered out all of the generated
samples did that occur in the original set of triples from KG to ensure that there are not
contradictory samples in the training set.

2The subset is available at https://www.w3.org/TR/wordnet-rdf/.

https://www.w3.org/TR/wordnet-rdf/


3.3. Data preparation

Two approaches of dataset preparation were selected. In the first approach, negative examples
were generated globally and then the dataset was split into three subsets: training, validation,
and test dataset. A proportion 80/10/10 was used for WordNet and OmniScience branches. For
the UMLS split 90/5/5 was selected, as the dataset is much smaller and we wanted to give the
model a higher number of training examples.

In the second approach, in order to test the ability of the model to generalize to unseen triples,
the KGs triples were first divided into three datasets (with the same proportion as before). Then
for each of the datasets, negative triples were generated separately. In the end, we excluded the
examples that occurred in the intersection of the datasets. A summary of the datasets used for
the experiments is presented in Table 4.

Table 2
Number (#) of correct and incorrect triples

Experiment Performance Experiment Generalization Experiment
Dataset Train Set Val Set Test Set Train Set Val Set Test Set

WordNet 49,075 / 99,481 6,096 / 12,474 6,070 / 12,499 48,797 / 148,294 6,210 / 18,659 6,221 / 18,670
UMLS 447/957 28/51 25/53 362/840 47/134 50/127
Physics Branch 4,340 / 12,857 565 / 1,585 499 / 1,651 4,321 / 12,835 541 / 1,613 540 / 1,609
Mathematics Branch 2,221 / 6,536 272/823 277/818 2,215 / 6,561 277/822 277/825

3.4. KG-BERT

KG-BERT is a state-of-the-art method [6] for triple classification tasks. The main idea behind
it is to represent the KG triples as text, using their labels to create a lexicalization in natural
language and gather contextual sentences from a corpus. This text can then be used to fine-tune
the existing pre-trained BERT embeddings, for a classification task. As part of this lexicalization,
we explored a set of equivalent ways to represent the notion of hyponymy. In our cases, where
we had access to a large corpus is a concept of gave the best performance for the model for
OmniScience and is a for UMLS.

The format of the model’s input is as follows: each of the triple elements is separated by the
[SEP] token, and at the beginning of the input a [CLS] token is added. Each entity name, as
well as the relation’s textual description is tokenized. An example of such a representation for
the text "Linear Algebra is a concept of Mathematics" is: [CLS] linear algebra [SEP] is a concept
of [SEP] mathematics [SEP]. In the case of the absence of words in the vocabulary, the model is
considering their sub-words and is adding specified tokens for the missing parts of the sentence.
Cross-entropy is used as a loss function. For our research, we used the code3 provided by the
authors [6] as a basis. We obtained good performance with "bert-base-uncased" BERT base.

3https://github.com/yao8839836/kg-bert

https://github.com/yao8839836/kg-bert


4. Experiments and Results

In this section, the performance of the KG triple classification task and its ability to generalize
are discussed. By Pp and Pn we refer to the value of precision for positive classes and negative
classes respectively, by Rp and Rn we refer to the value of recall for positive and negative classes
respectively. Our primary goal is to use the method for KG maintenance, therefore precision
for positive examples and recall for negative examples is important (rather than a combined
F1 value). With a high score of precision for positive examples, we want to be sure that all
returned positives are true positives. With recall for negative examples, we want to be sure that
all of the negative examples will be returned by the method, meaning every potential incorrect
triple will be returned. Therefore we will focus on these two metrics.

Table 3 presents performance scores for the experiments. WordNet and UMLS were trained
using is a as relation phrase, and OmniScience branches were trained with is a concept of. All of
the models were trained using random seed equal to 42, and bert-base-uncased as a BERT base.
Below we comment in detail on the results.

Table 3
Performance of the model

Dataset Accuracy Precision: P/N Recall: P/N TP FN FP TN

WordNet 90.33% 84.65% 93.16% 86.03% 92.42% 5,222 848 947 11,552
UMLS 91.02% 80.00% 97.92% 96.00% 88.68% 24 1 6 47
Physics 92.41% 81.23% 96.15% 87.58% 93.88% 437 62 101 1,550

Mathematics 88.12% 75.43% 92.68% 78.70% 91.32% 218 59 71 747

Results generalization:
WordNet 90.22% 81.82% 92.86% 78.27% 94.20% 4,869 1,352 1,082 17,588
UMLS 81.35% 60.49% 98.96% 98.00% 74.80% 49 1 32 95
Physics 91.53% 80.07% 95.53% 87.04% 93.04% 470 70 112 1,497

Mathematics 91.01% 87.08% 92.11% 75.45% 96.24% 209 68 31 794

Results domain generalization:
Physics 79.77% 55.1% 89.95% 69.34% 82.92% 346 153 282 1,369

Mathematics 76.98% 52.91% 92.49% 81.95% 75.31% 227 50 202 616

4.1. Performance KG-BERT for different hierarchical Knowledge Graphs

The KG-BERT method applied as a triple classifier is tested using dataset splits described in
Table 4. First, the best set of hyperparameters is selected. For this, the model was tested with a
combination of: different numbers of epochs, of learning rates, of maximum sentences length,
and of training batch size using a grid search approach. We chose the model with the highest
accuracy score on the validation set.

We note a high (>88%) accuracy for all of the KGs, and also high scores for all the metrics
selected by us as important (Pp and Rn). OmniScience’s Physics Branch evaluation gets the
highest scores, while the Mathematics Branch gets the lowest for that experiment.



4.2. Model generalization to fully unseen triples

We investigated the model’s ability for generalizing on unknown data. We performed two
experiments: the first of them (generalization), applied to all four datasets, uses the second split
of data reported in Table 4, and the second sampling approach described in subsection 3.3; the
second experiment (domain generalization) tested specifically whether a model trained on one
OmniScience branch could be applied to another branch. We tested the model trained on one
branch with the test set generated for the other branch, for both branches.

Again, we note a high (>90%) accuracy in the generalization experiments for all of the KGs,
except from UMLS dataset, where the accuracy is equal to 80%. We discuss the performance
on UMLS further in the Discussion section. The Physics Branch classification result gets the
highest accuracy score, but the Mathematics Branch achieved the highest scores in independent
values for Pp and Rn.

The results for the domain generalization experiment that tested how a model trained on the
Mathematics branch of OmniScience performed when classifying examples from the Physics
branch (and another way round) are as follows: 80% accuracy for Physics branch being a test
set, and 77% for Mathematics branch. Pp is equal to 55% and 53% accordingly, and Rn is equal to
83% and 75%. Even if the accuracy score and Rn are relatively high, we note the low ability of
the model to properly classify positive examples (Pp equal to 53-55% in both cases). This means
that a model should be trained per domain for a better performance.

4.3. Prediction of long-distance hierarchy using the model

We carried out an experiment to check whether the model can predict a hierarchical relationship
between concepts further apart in the hierarchical structure. We created some datasets with
triples containing concepts at different levels or hierarchical depth (different hop-levels). As
a point of terminology, given the two triples Optics is a concept of Physics and Fiber Optics is a
concept of Optics, we consider the triple Fiber Optics is a concept of Physics a 2-hop triple. The
three datasets are described in table 4 .

Table 4
Number (#) of correct and incorrect triples for long-distance hierarchy prediction experiment

Dataset Train Set Val Set
Test Set

1-hop 2-hop

WordNet 49,075 / 99,481 6,096 / 12,474 6,070 / 12,499 96,236 / 288,246
Omni. Physics Branch 4,340 / 12,857 565 / 1,585 499 / 1,651 3,532 / 10,325
Omni. Math Branch 2,221 / 6,536 272 / 823 277 / 818 1,099 / 3,054

For all of the datasets, scores such as accuracy, Pp, and Rn are decreasing with the increase of
hop distance. For Pp the decrease is substantial in every dataset (20-30% decrease). For WordNet
Pp decreased to 51% for the 2-hop triples, for Physics to 68%, and for Mathematics Branch Pp
decreased to 45%. Rn decreased less suddenly (5-8%). For 3-hop, 4-hop, and pairs with more



concepts in-between Pp and Rn continued to decrease. This shows that our model performs
well to predict a direct hypernym relationship, but not for hypernym at more than one hop
distance.

4.4. Evaluation of classification error output

We performed an error analysis on the incorrectly classified triples output. We found triples
such as blue is a clothing, cold is an apartment or smoker is a passenger car were classified as
a FP examples in WordNet: these are clearly pure errors of the model’s output. In the FP
examples for Mathematics and Physics branch of OmniScience, we noticed words overlap
between two concepts from the considered triples. For Mathematics branch 43.5% of FP have
3-letter overlapping subwords, almost 30% FP have 4-letter, 23% have 5-letter, and 17.4% have
6-letter overlap. For Physics branch we noted 3-letter overlap for 36.63% of FP, 28% FP noted
4-letter, 21.8% have a 5-letter, and almost 20% have 6-letter overlap. Therefore, we can see that
the model has difficulties with establishing the hierarchy between concepts with a large lexical
overlap in their naming.

5. Discussion

Performance scores across the selected metrics for QA are high (Precision for positive triples
and Recall for negative triples). For every dataset, we noted an accuracy score above 88%.
Accuracy for the generalization experiment, where we wanted to see how the model can deal
with examples that it did not use for training, yielded decent results (accuracy above 80%).
However, testing a model build on one OmniScience branch on another scientific domain of the
same KG did not give accurate results. Therefore, the model can generalize well, but needs to
be trained per domain.

The reproducibility of the method tested here is a strong point: we showed that this approach
can be used on four very different datasets used in different research contexts. However, the
accuracy for the UMLS dataset was not as high as the others. The main reason for the lack of
performance is the small size of the sample. We further investigated the converge of the model,
and concluded that for OmniScience’s Physics and Mathematics datasets, the model started to
learn with around 1.7k examples. Moreover, for the Physics branch we noted good results from
6.8k training examples (40% of the data), and for Mathematics branch from around 5.6k (65 % of
the data). These proportions should be taken into consideration when applying our method.

Our recommendation on how to prepare the model for hierarchy evaluation is as follows:

• the model should be trained per domain,
• relation sentence (or lack of it) could be selected as one of the hyperparameters, and used

for the models’ optimization,
• proper negative sampling strategy should be selected, the one that can be the most

representative strategy of the possible errors in the KGs,
• depending on the scientific domain, different BERT bases could be selected (e.g. bio-

clinical-bert [23] or sci-bert [24] could be used for KGs in the medical or biological domain).



6. Conclusion

In this study, we explored the use of contextual word embeddings for quality assessment of
knowledge graph hierarchies. We used KG-BERT, which uses textual information about KGs
triples to enrich structure-based embeddings. We described how to use this approach for quality
assessment and showed that it works well for both large scale corporate knowledge graphs
as well as subsets of one publicly available knowledge graph (WordNet). Moreover, we tested
whether the model can generalize across unseen examples and between domains.

We see different paths for future work. First, exploring how to apply the method for the
KG maintenance in a real-life practical settings: besides using this framework for a global QA
pipeline in real life, this method can also be tested to propose a candidate placement in an existing
KG for an incoming candidate concept (by assessing the plausibility of all possible combinations
of that candidate with existing concept from a given domain or KG). We have observed good
empirical results, but still have to test the idea at scale for the automatic development of KGs.

Secondly, testing the method on other KGs, particularly KGs that have a less consistent
hierarchical structure would add value to our understanding of the limitations of the use of
BERT embeddings for quality assessment.

In terms of QA methods for the triples assessment, a gold set based approach (assessing the
quality of a KG by rebuilding it and comparing it with the original set) could help assessing the
feasibility of this method for the automatic generation of large KGs.
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