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Abstract

Unsupervised representation learning has proved to be

a critical component of anomaly detection/localization in

images. The challenges to learn such a representation are

two-fold. Firstly, the sample size is not often large enough

to learn a rich generalizable representation through con-

ventional techniques. Secondly, while only normal samples

are available at training, the learned features should be dis-

criminative of normal and anomalous samples. Here, we

propose to use the “distillation” of features at various lay-

ers of an expert network, which is pre-trained on ImageNet,

into a simpler cloner network to tackle both issues. We de-

tect and localize anomalies using the discrepancy between

the expert and cloner networks’ intermediate activation val-

ues given an input sample. We show that considering mul-

tiple intermediate hints in distillation leads to better ex-

ploitation of the expert’s knowledge and a more distinctive

discrepancy between the two networks, compared to utiliz-

ing only the last layer activation values. Notably, previous

methods either fail in precise anomaly localization or need

expensive region-based training. In contrast, with no need

for any special or intensive training procedure, we incorpo-

rate interpretability algorithms in our novel framework to

localize anomalous regions. Despite the striking difference

between some test datasets and ImageNet, we achieve com-

petitive or significantly superior results compared to SOTA

on MNIST, F-MNIST, CIFAR-10, MVTecAD, Retinal-OCT,

and two other medical datasets on both anomaly detection

and localization.

1. Introduction

Anomaly detection (AD) aims for recognizing test-time

inputs that look abnormal or novel to the model according

to previously seen normal samples during training. AD has

been a vital demanding task in computer vision with various

applications, like in industrial image-based product quality

control [27, 7], or health monitoring processes [26]. These

∗ Denotes equal contribution.

Figure 1: Our precise heatmaps are localizing anomalous

features in MVTecAD (top two rows) and normal features

in MNIST and CIFAR-10 (two bottom rows).

tasks also require pixel-precise localization of anomalous

regions, called defects. This is pivotal for comprehend-

ing the dynamics of monitored procedures, triggering the

apt antidotes, and providing pertinent data for downstream

models in industrial settings.

Traditionally, the AD problem has been approached in a

one-class setting, where anomalies represent a broadly dif-

ferent class from normal samples. Recently, considering

subtle anomalies has attracted attention. This new setting

further necessitates precise anomaly localization. However,

performing excellently in both settings on various datasets

is highly appreciated but is not fully achieved.

Due to the unsupervised nature of the AD problem and

the restricted data access, only having anomaly-free data in

training, the majority of AD methods [36, 31, 40, 18, 34]

model the normal data abstraction by extracting semanti-

cally meaningful latent features. These methods perform
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well solely on either of the two mentioned cases. This

problem, called the generality problem [39], highly declines

trust in them on unseen future datasets. Moreover, anomaly

localization is either impossible inadequate in most of them

[36, 31, 33] and leads to intensive computations that hurt

their real-time performance. Additionally, many earlier

works [33, 31] suffer from unstable training, requiring un-

principled early stopping to achieve acceptable results.

Though not fully explored in the AD context, using pre-

trained networks could potentially be an alternative track.

This is especially helpful when the sample size is small and

the normal class shows significant variations. Some ear-

lier studies [4, 12, 28, 29] try to train their model based

on pre-trained features of the normal data. These methods

either miss anomaly localization [4, 12], or tackle the prob-

lem in a region-based fashion [28, 53], i.e., splitting images

into smaller patches to determine the sub-regional abnor-

mality. This is computationally expensive and often leads

to inaccurate localization. To evade this issue, Bergmann et

al. [8] train an ensemble of student networks to mimic the

last layer of a teacher network on the anomaly-free data.

However, performing a region-based approach in this work

makes it heavily rely on the size of the cropped patches and

hence susceptible to the changes in this size, and intensi-

fies the training cost severely. Furthermore, imitating only

the last layer misses fully exploiting the knowledge of the

teacher network [32]. This makes them complicate their

model and employ other complementary techniques, such

as self-supervised learning in parallel.

Lately, Zhang et al. [52] have demonstrated that activa-

tion values of intermediate layers of neural networks are a

solid perceptual representation of their input images. By

this premise, we propose a novel knowledge distillation

method for AD that is designed to distill the comprehen-

sive knowledge of an ImageNet pre-trained source network,

solely on the normal training data, into a simpler cloner net-

work. This happens by forcing the cloner’s intermediate

embedding of normal training data at several critical lay-

ers to conform to those of the source. Consequently, the

cloner learns the normal data manifold thoroughly and yet

earns no knowledge from the source about other possible in-

put data. Hence, the cloner will behave differently from the

source when fed with the anomalous data. Furthermore, a

simpler cloner architecture enables avoiding distraction by

non-distinguishing features and enhances the discrepancy in

the behavior of the two networks on anomalies.

Moreover, we derive precise anomaly localization heat

maps without using region-based expensive training and

testing through exploiting the concept of gradient. We eval-

uate our method on a comprehensive set of datasets on vari-

ous anomaly detection/localization tasks, where we exceed

SOTA in both localization and detection. Our training is

highly stable and needs no dataset-dependent fine-tuning.

As we only train the cloner’s parameters, we require just

one more forward pass of inputs through the source com-

pared to a standard network training on the normal data.

We also investigate our method through exhaustive ablation

studies. Our main contributions are summarized as follows:

1. Enabling a more comprehensive transfer of the knowl-

edge of the pre-trained expert network to the cloner

one. Distilling the knowledge into a more compact net-

work also helps to concentrate solely on the features

that are distinguishing normal vs. anomalous.

2. Our method has a computationally inexpensive and

stable training process compared to the earlier work.

3. Our method allows a real-time and precise anomaly

localization based on computing gradients of the dis-

crepancy loss concerning the input.

4. Conducting a considerable number of diverse experi-

ments and outperforming previous SOTA models by a

large margin on many datasets and yet staying com-

petitive on the rest.

2. Related Work

Previous Methods: Autoencoder (AE)-based methods

use the idea that abnormal inputs are not reconstructed as

precisely as normal ones by learning normal latent features.

Hence, anomalous samples will have higher reconstruction

errors than normal ones. To better learn these normal latent

features, LSA [1] trains an autoregressive model at its latent

space, and OC-GAN [31] attempts to force abnormal inputs

to be reconstructed as normal ones. These methods fail on

industrial or complex datasets [38]. SSIM-AE [10] trains

an AE with the SSIM loss [54] instead of MSE, causing it

to perform just better on defect segmentation. Gradient-

based VAE [15] introduces an energy criterion, which is

minimized at test-time by an iterative procedure. Both of

the latter methods do not perform well on one-class settings,

such as CIFAR-10 [23].

GAN-based approaches, like AnoGan [41], f-

AnoGan [40], and GANomaly [3], attempt to find a

specific latent space where the generator’s reconstructions,

obtained from samplings of this space, are analogous

to normal samples. f-AnoGan and GANomaly add an

extra encoder to the generator to reduce the inference

time of AnoGan. Despite their acceptable performance in

localization and detection of subtle anomalies, they fail in

one-class settings.

Methods like uninformed-students [9], GT[18], and

DSVDD [33] keep only the valuable information of normal

data by building a compact latent feature space, in contrast

to AE-based ones that try to miss the least amount of normal
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Figure 2: Visualized summary of our proposed framework. A smaller cloner network, C, is trained to imitate the whole

behavior of a source network, S (VGG-16), on normal data. The discrepancy of their intermediate behavior is formulated

by a total loss function and is used to detect anomalies at the test time. A hypothetical example of distance vectors between

the activations of C and S on anomalous and normal data is also depicted. Interpretability algorithms are employed to yield

pixel-precise anomaly localization maps.

data information. To achieve this, they use self-supervised

learning methods or one-class techniques. However, since

we only have access to normal samples in an unsupervised

setting, the optimization here is more challenging than in

AE-based methods and usually converges to trivial solu-

tions. Unprincipled early stopping is used to solve this is-

sue that lowers the trust in these models on unseen future

datasets. For example, GT fails on subtle anomaly datasets

like MVTecAD while performs well on one-class settings.

Using Pre-trained Features: Some previous methods

use pre-trained VGG last layer to solve the representation

problem [14, 35]. However, [14] sticks in bad local min-

ima as it uses only the last layer. [35] attempts to solve this

by extracting lots of different patches from normal images.

Then, it fits a Gaussian distribution on the VGG extracted

embeddings of the patches. Although this might alleviate

the problem, they fail to provide sound localization or de-

tection on diverse datasets because of using the unimodal

Gaussian distribution and hand-engineered size of patches.

Interpretability: Interpretability methods inspect the

contribution of input elements to a deep network. Gradient-

based ones compute pixels importance using gradients as a

proxy. While Gradients [42] uses rough gradients, Guid-

edBackprop (GBP) [45] filters out negative backpropagated

gradients to only consider positively contributing elements.

As Gradients’ maps can be noisy, SmoothGrad [44] adds

noises to the input and averages the maps obtained for each

noisy input by Gradients. [2, 30] reveal GBP’s flaws by

showing that it reconstructs the image instead of explaining

the outcome function.

3. Method

3.1. Our Approach

Given a training dataset Dtrain = {x1, ..., xn} consist-

ing only of normal images (i.e., no anomalies in them), we

aim to train a cloner network, C, that detects anomalous

images in the test set, Dtest, and localizes anomalies in

those images with the help of a pre-trained network. As

C needs to predict each sample’s deviation from the man-

ifold of normal data, it needs to know the manifold quite

well. Therefore, it is trained to mimic the comprehensive

behavior of an expert network, called the source network

S. Earlier works in knowledge distillation have conducted

tremendous efforts to transfer one network knowledge to

another smaller one to save computational cost and mem-

ory usage. Many of them strive to teach just the output of S

to C. We, however, aim to transfer the intermediate knowl-

edge of S on the normal training data to C as well.

In [32], it is shown that by using a single intermediate-

level hint from the source, a thinner but deeper cloner even

outperforms the source on classification tasks. In this work,

we provide C with multiple intermediate hints from S by

encouraging C to learn S’s knowledge on normal samples

through conforming its intermediate representations in sev-

eral critical layers to S’s representations. It is known that

layers of neural networks correspond to features at various

abstraction levels. For instance, first layer filters act as sim-

ple edge detectors. They represent more semantic features

when considering later layers. Therefore, mimicking differ-

ent layers educates C in various abstraction levels, which
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leads to a more thorough final understanding of the normal

data. In contrast, using only the last layer shares a small

portion of S’s knowledge with C. Besides, this causes the

optimization to stuck in irrelevant local minima, especially

when dealing with subtle anomalies that share almost all

semantic concepts. On the contrary, using several inter-

mediate hints turns the ill-posed problem into a more well-

posed one. The effect of considering different layers in our

method is more investigated in Sec. 3.3.1.

In what follows, we refer to the i-th critical layer in the

networks as CPi (CP0 stands for the raw input) and the

source activation values of that critical layer as aCPi

s , and

the cloner’s ones as aCPi

c . As discussed in the knowledge

distillation literature [32, 50], the notion of knowledge can

be seen as the value of activation functions. We define the

notion of knowledge as both the value and direction of all

aCPis to intensify the full knowledge transfer from S to

C. Hence, we define two losses, Lval and Ldir to represent

each aspect. The first, Lval, aims to minimize the Euclidean

distance between C’s and S’s activation values at each CPi.

Thus, Lval is formulated as

Lval =
∑NCP

i=1

1

Ni

∑Ni

j=1
(aCPi

s (j)− aCPi

c (j))2, (1)

where Ni indicates the number of neurons in layer CPi

and aCPi

. (j) is the value of j-th activation in layer CPi.

NCP represents the total number of critical layers.

Additionally, we use Ldir to increase the directional sim-

ilarity between the activation vectors. This is more vital

in ReLU networks whose neurons are activated only after

exceeding a zero value threshold. This indicates that two

activation vectors with the same Euclidean distance from

the target vector, may have contrasting behaviors in ac-

tivating a following neuron. For instance, for e being a

positive number, let a1 = (0, 0, e, 0, . . . , 0) ∈ R
k, a2 =

(0, (
√
2 + 1)e, 0, 0, . . . , 0) ∈ R

k be activation vectors of

two disparate cloner networks both trying to mimic the ac-

tivation vector of a source network, a∗, defined as a∗ =
(0, e, 0, 0, . . . , 0) ∈ R

k. It is clear a1 and a2 have the

same Euclidean distance from a∗. However, assuming

W = (0, 1, . . . , 0, 0) as the weight vector of a neuron in

the next layer of the network, we have

WTa1 = 0 ≤ 0,

WTa2 = (
√
2 + 1)e > 0,

WTa∗ = e > 0.

(2)

This means that the corresponding ReLU neuron would be

activated by a2, similar to a∗, while deactivated by a1. To

address this, using the cosine similarity metric, we define

the Ldir as

Ldir =
∑

i

1− vec(aCPi

s )T · vec(aCPi

c )
∥

∥

∥
vec(aCPi

s )
∥

∥

∥

∥

∥

∥
vec(aCPi

c )
∥

∥

∥

, (3)

where vec(x) is a vectorization function transforming a

matrix x with arbitrary dimensions into a 1-D vector. This

encourages the activation vector of C be not only close to

the S’s one in terms of Euclidean distance but also be in the

same direction. Note that Ldir is 1 for a1, and is 0 for a2.

The role of Ldir and Lval is more elaborated in Sec. 3.3.3.

Using the two aforementioned losses, Ltotal is formulated

as

Ltotal = Lval + λLdir, (4)

where λ is set to make the scale of both constituent terms the

same. For this, we find the initial amount of error for each

term on the untrained network and set λ with respect to it.

Training using Ltotal, unlike many other methods [18, 6],

continues to fully converge, which is the only accessible

criterion to measure when to stop training epochs.

Moreover, the architecture of C is designed to be simpler

than S to enable knowledge “distillation.” This compression

of the network facilitates the concentration on normal main

features. While the source needs to be a very deep and wide

model to learn all necessary features to perform well on a

large-scale domain dataset, like ImageNet [16], the goal of

the cloner is simply acquiring the source’s knowledge of the

normal data. Hence, superfluous filters are only detrimental

by focusing on non-distinguishing features, present in nor-

mal and anomalous data. Compressing the source prevents

such distractions for the model. This is more effective when

the normal class’ boundary and abnormal samples are ex-

tremely close, e.g., MVTecAD screw class. We investigate

this effect more in Sec. 3.3.2.

Anomaly Detection: To detect anomalous samples,

each test input is fed to both S and C. As S has only taught

the normal point of view to C, anomalies, inputs out of the

normal manifold, are a potential surprise for C. In contrast,

S has insights about images out of the normal manifold as

well. All this leads to a potential discrepancy in their be-

havior for anomalous inputs, which could be detected by

thresholding the loss in Eq. 4.

Anomaly Localization: [15, 58] have shown that

derivative of the loss function with respect to the input has

meaningful information about the significance of each pixel

for the loss value. Hence, we employ the gradients of Ltotal

with respect to the input to find the most impactful pixels

on the loss function, i.e., anomalous regions in anomalous

samples. To obtain our localization map for an input x, we

first acquire the attribution map, Λ, by

Λ =
∂Ltotal

∂x
. (5)

To reduce the natural noises in these maps, we induce Gaus-

sian blur and opening morphological filter on Λ. Hence, the

localization map, Lmap, is achieved by

M = gσ(Λ),

Lmap = (M ⊖B)⊕B,
(6)
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where g denotes the Gaussian filtering with the standard

deviation of σ. ⊖ and ⊕ represent morphological erosion

and dilation by a structuring element B, respectively. To-

gether, called opening, these operations remove small spo-

radic noises and yield clean maps. The structuring element,

B, is a simple binary map usually in the shape of an el-

lipse or disk. Instead of using simple gradients as in Eq.

5, some other gradient-based interpretability methods can

be employed to further illuminate the role of each pixel

on loss value. We discuss different methods more in Sec.

3.3.4. Our proposed framework is illustrated in Fig. 2. Note

that we need only two forward passes for detection and one

backward pass through C for localization at the test time.

3.2. Settings

VGG [43] features have shown remarkable performance

in classification and transfer learning [46, 48]. This high-

lights the practicality of its filters in different domains. By

transferring the knowledge of an ImageNet VGG-16 to a

simple cloner, we exploit the discrepancy of features be-

tween C and S to find anomalies. In our VGG-16 source

network, we choose the four final layers of each convo-

lutional block, i.e., max-pooling layers, to be the critical

points (CPis). Selecting critical points is explored more in

Sec. 3.3.1. For the cloner network, we use the architecture

described in Fig. 2, which is smaller than the source for all

experiments and datasets. As a result, it can benefit from

the advantages of compression discussed in Sec. 3. The

role of cloner architecture is discussed more in Sec. 3.3.2.

Note that, similar to [33], we avoid using bias terms in our

cloner’s network. As proven by [33], networks with bias

in any layer can easily learn constant functions, indepen-

dent of the input. In our work, though it can be negligible

on datasets with diverse normal data, it can be detrimental

when normal images are roughly the same. To be more spe-

cific, for some layers l and l+1 that are between any i-th and

(i − 1)-th CP , the cloner can generate a specific constant

activation vector, aCPi

C , regardless of the input, only by set-

ting the l-th layer weights to zero and adjusting the l+ 1-th

layer bias. As the normal training images are much alike,

the intermediate source activations are also highly similar

for them. Therefore, those constant aCPi

c s can be arbitrarily

close to the source correlated intermediate activations for

any training input, which is the goal of the training phase,

while harming the test procedure since they are constant

outputs indeed. To avoid this, we use a bias-less network

for C. In all experiments, we use Adam optimizer [21] with

learning rate = 0.001 and batch size = 64 for optimization.

3.3. Ablation Studies

3.3.1 Intermediate Knowledge

In this experiment, we examine the effect of involving the

last, the last two, and the last four max-pooling layers as

CPis on MVTecAD and MNIST. We report the average

AUROC of all classes in Fig. 3.3.1. Clearly, a consistent

growth trend exists that shows the effectiveness of consid-

ering more layers. Notice that some MVTecAD classes (e.g.

“screw”) have near-random AUROC in “just the last layer”

setting. This suggests that using just the last layer makes

the problem ill-posed and hard to optimize.

Figure 3: The performance of our proposed method using

various layers for distillation. More intermediate layers lead

to a performance boost on anomaly detection.

3.3.2 Distillation Effect (Compact C)

As motivated initially in the knowledge distillation field,

smaller C plays an essential role in our approach by elim-

inating non-distinguishing filters causing various distrac-

tions. It is especially more important when performing on

normal data, where the scope is dramatically limited. Here,

we probe the effect of the cloner architecture. As in Fig.

4, anomaly detection, on MVTecAD, using a compact C

outperforms a C with equal size to S. This is especially

noticeable in the classes where anomalies are partial (like

in “toothbrush” or “screw”). Overall, the smaller network

performs better with a margin of ∼ 3%.

Figure 4: The performance of our proposed method using

different equal/smaller cloner architectures compared to the

source. The smaller network performs better in general.
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3.3.3 Ldir and Lval

In this part, we discuss each loss component effect to show

the insufficiency of solely considering the Euclidean dis-

tance or directional loss in practice. The high impact of

using Ltotal can be seen in Fig. 5. We report the mean AU-

ROC over all classes in the datasets. Refer to the supple-

mentary for a class-detailed report. Using only Ldir shows

top results in cases where anomalies are essentially different

from normal cases and are more diverse, like in CIFAR-10.

In contrast, in cases with subtle anomalies, as in MVTecAD,

MSE loss performs better. While Ldir and Lval fail notice-

ably in either of the cases, our proposed Ltotal, which is

a combination of the two losses, achieves the highest per-

formance considering both classification-based and defect

detection settings at the same time. These results highlight

the positive impact of considering a direction-wise notion

of knowledge in addition to an MSE approach.

Figure 5: The performance of our proposed method using

different loss functions. Ltotal performs well on both cases

while individual directional or Euclidean losses fail in one.

3.3.4 Localization using Interpretability Methods

Here, in addition to simple Gradients explained in Eq. 6, we

use other interpretability methods for anomaly localization

based on our framework. In Table 1, we report the results on

MVTecAD with and without applying the Gaussian filter.

As expected, SmoothGrad highlights the anomalous parts

Table 1: Pixel-wise (AUROC) of anomaly localization on

MVTecAD using different interpretability methods with

and without Gaussian filtering.

Method Gradients SmoothGrad GBP

Without
Gaussian Filter 86.16% 86.97% 84.38%

With
Gaussian Filter 90.51% 90.54% 90.08%

better as it discards Gradients’ wrongly highlighted pixels

by calculating an average over the gradients of noisy inputs.

GBP, however, performs the worst since it tends more to re-

construct the image instead of staying faithful to the func-

tion [2, 30]. Anyway, after applying the noise-removing

filters, the methods perform almost the same. Hence, we

use simple Gradients in the rest of our experiments instead

of SmoothGrad, requiring severe additional computations.

4. Experiments

In this section, extensive experiments have been done to

demonstrate the effectiveness of our method. As explored

in [39], some methods’ performance are harmed if trained

for more than their hard-coded number of epochs. We report

our results on average of the 10 last epochs for 10 different

seeds plus the variances to show our stability. We report

our method’s running time in the supplementary. We stress

that S is pre-trained on ImageNet and has not seen any data

from the test datasets. Hence, the comparison is fair.

4.1. Experimental Setup

Datasets: We test our method on 7 datasets as follows:

MNIST [24]: 60k training and 10k test 28× 28 gray-scale

handwritten digit images. Fashion-MNIST [49]: similar

to MNIST (with 10k more training images) made up of 10

fashion product categories. CIFAR-10 [23] 50k training

and 10k test 32 × 32 color images in 10 equally-sized nat-

ural entity classes. MVTecAD [7]: an industrial dataset

with over 5k high-resolution images in 15 categories of ob-

jects and textures. Each category has both normal images

and anomalous images having various kinds of defects (only

for testing). All images have been down-scaled to the size

128 × 128. Retinal OCT Images (optical coherence to-

mography) [17]: consisting of 84,495 X-Ray images and

4 categories. HeadCT [22]: a medical dataset contain-

ing 100 128 × 128 normal head CT images and 100 with

hemorrhage. Each image comes from a different person.

BrainMRI for brain tumor detection [13]: consisting of

98 256× 256 normal MRI images and 155 with tumors.

Evaluation Protocol: Medical datasets: 10 random

normal images + all anomalous ones for test, the rest normal

ones for training. MVTecAD & Retinal-OCT: datasets

train and test sets are used. Others: one class as normal

and others as anomaly, at testing: the whole test set is used.

4.2. Results

4.2.1 MNIST & Fashion-MNIST & CIFAR10

First, we evaluate our method on the conventional AD task

on MNIST, Fashion-MNIST, and CIFAR-10 as described in

Sec. 4.1. This targets detecting anomalies disparate from

Code to reproduce the results is provided at https://github.

com/rohban-lab/Knowledge_Distillation_AD
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Figure 6: Anomaly localization maps on different types of anomalies in MVTecAD dataset sample classes. Pixels with low

score are omitted from the heatmap. This indicates our method precise maps, no matter the defections variety.

Table 2: AUROC in % for anomaly detection on several datasets. As shown, our model shows SOTA results on MNIST [24]

and Fashion-MNIST [49]. On CIFAR-10 [23] dataset our result is 13% higher than SOTA.

Dataset Method 0 1 2 3 4 5 6 7 8 9 Mean

MNIST[24]

ARAE[38] 99.8 99.9 96.0 97.2 97.0 97.4 99.5 96.9 92.4 98.5 97.5

OCSVM[14] 99.5 99.9 92.6 93.6 96.7 95.5 98.7 96.6 90.3 96.2 96.0

AnoGAN[41] 96.6 99.2 85.0 88.7 89.4 88.3 94.7 93.5 84.9 92.4 91.3

DSVDD[33] 98.0 99.7 91.7 91.9 94.9 88.5 98.3 94.6 93.9 96.5 94.8

CapsNetPP [25] 99.8 99.0 98.4 97.6 93.5 97.0 94.2 98.7 99.3 99.0 97.7

OCGAN[31] 99.8 99.9 94.2 96.3 97.5 98.0 99.1 98.1 93.9 98.1 97.5

LSA[1] 99.3 99.9 95.9 96.6 95.6 96.4 99.4 98.0 95.3 98.1 97.5

CAVGA-Du[47] 99.4 99.7 98.9 98.3 97.7 96.8 98.8 98.6 98.8 99.1 98.6

U-Std[9] 99.9 99.9 99 99.3 99.2 99.3 99.7 99.5 98.6 99.1 99.35

OURS 99.82± 0.023 99.82± 0.017 97.79± 0.272 98.75± 0.098 98.43± 0.096 98.16± 0.182 99.43± 0.038 98.38± 0.178 98.41± 0.157 98.1± 0.152 98.71

Fashion-MNIST[49]

ARAE[38] 93.7 99.1 91.1 94.4 92.3 91.4 83.6 98.9 93.9 97.9 93.6

OCSVM[14] 91.9 99.0 89.4 94.2 90.7 91.8 83.4 98.8 90.3 98.2 92.8

DAGMM[59] 30.3 31.1 47.5 48.1 49.9 41.3 42.0 37.4 51.8 37.8 41.7

DSEBM[51] 89.1 56.0 86.1 90.3 88.4 85.9 78.2 98.1 86.5 96.7 85.5

DSVDD[33] 98.2 90.3 90.7 94.2 89.4 91.8 83.4 98.8 91.9 99.0 92.8

LSA[1] 91.6 98.3 87.8 92.3 89.7 90.7 84.1 97.7 91.0 98.4 92.2

OURS 92.5± 0.298 99.21± 0.064 92.48± 0.255 93.8± 0.095 92.95± 0.159 98.21± 0.157 84.87± 0.126 99.02± 0.331 94.33± 0.164 97.51± 0.055 94.49

CIFAR-10[23]

ARAE[38] 72.2 43.1 69.0 55.0 75.2 54.7 70.1 51.0 72.2 40.0 60.23

OCSVM[14] 63.0 44.0 64.9 48.7 73.5 50.0 72.5 53.3 64.9 50.8 58.56

AnoGAN[41] 67.1 54.7 52.9 54.5 65.1 60.3 58.5 62.5 75.8 66.5 61.79

DSVDD[33] 61.7 65.9 50.8 59.1 60.9 65.7 67.7 67.3 75.9 73.1 64.81

CapsNetPP[25] 62.2 45.5 67.1 67.5 68.3 63.5 72.7 67.3 71.0 46.6 61.2

OCGAN[31] 75.7 53.1 64.0 62.0 72.3 62.0 72.3 57.5 82.0 55.4 65.66

LSA[1] 73.5 58.0 69.0 54.2 76.1 54.6 75.1 53.5 71.7 54.8 64.1

DROCC[19] 81.66 76.74 66.66 67.13 73.62 74.43 74.43 71.39 80.02 76.21 74.23

CAVGA-Du[47] 65.3 78.4 76.1 74.7 77.5 55.2 81.3 74.5 80.1 74.1 73.7

GT[18] 76.2 84.8 77.1 73.2 82.8 84.8 82 88.7 89.5 83.4 82.3

U-Std[9] 78.9 84.9 73.4 74.8 85.1 79.3 89.2 83 86.2 84.8 81.96

OURS 90.53± 0.158 90.35± 0.797 79.66± 0.415 77.02± 0.51 86.71± 0.346 91.4± 0.279 88.98± 0.2 86.78± 0.595 91.45± 0.148 88.91± 0.349 87.18

the normal samples in essence and not only slightly. As

CIFAR-10 images are natural images, they have been re-

sized and normalized according to the ImageNet properties.

No normalization and resizing are done for other datasets.

For evaluation, like previous works, we use the area under

the receiver operating characteristic curve (AUROC). We

compare our method with an exhaustive set of state-of-the-

art approaches, including generative, self-supervised, and

autoencoder-based methods, in Table 2. We outperform

all other methods on F-MNIST and CIFAR-10 while stay-

ing comparatively well on MNIST, though avoiding com-

plicated training procedures. Note that some methods, like

U-Std, apply dataset-dependent fine-tunings. We, however,

avoid such fine-tunings.

4.2.2 MVTecAD

Detection: In this part, we report the results of our method

performance on AD using MVTecAD. As shown in Table

3, our method outperforms all others with a large margin

of ∼ 10%. This is remarkable since other methods fail to

perform well in both one-class settings and defect detection

simultaneously. In contrast, we achieve SOTA in both cases.

Localization: We not only accomplish SOTA in AD

but we also outperform previous SOTA methods in anomaly

localization. As stated in 3.3.4, we use simple gradients to

obtain maps. We use the Gaussian filter with σ = 4 and

a 3 × 3 ellipse structural element kernel. We compare our

method against others in Table 4. We use AUROC, based on

each pixel anomaly score, to measure how well anomalies

are localized. Vividly, we outperform previous methods.

Fig. 6 shows our localization maps on different defect types

in MVTecAD.

4.2.3 Medical Datasets

To further evaluate our method in various domains, we use

three medical datasets and compare our method with others.
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Table 3: AUROC in % for anomaly detection on MVTecAD [7]. We surpass the SOTA by ∼ 10%

Method Bottle Hazelnut Capsule Metal Nut Leather Pill Wood Carpet Tile Grid Cable Transistor Toothbrush Screw Zipper Mean

AVID [37] 88 86 85 63 58 86 83 70 66 59 64 58 73 66 84 73

AESSIM [11] 88 54 61 54 46 60 83 67 52 69 61 52 74 51 80 63

AEL2 [11] 80 88 62 73 44 62 74 50 77 78 56 71 98 69 80 71

AnoGAN[41] 69 50 58 50 52 62 68 49 51 51 53 67 57 35.0 59 55

LSA[1] 86 80 71 67 70 85 75 74 70 54 61 50 89 75 88 73

CAVGA-DU[47] 89 84 83 67 71 88 85 73 70 75 63 73 91 77 87 78

DSVDD[33] 86 71 69 75 73 77 87 54 81 59 71 65 70 64 74 72

VAE-grad[15] 86 74 86 78 71 80 89 67 81 83 56 70 89 71 67 77

GT*[18] 74.29 33.32 67.79 82.37 82.51 65.16 48.24 45.9 53.86 61.91 84.7 79.79 94 44.58 87.44 67.06

OURS 99.39± 0.032 98.37± 0.285 80.46± 0.19 73.58± 0.376 95.05± 0.208 82.7± 0.646 94.29± 0.226 79.25± 0.8 91.57± 0.66 78.01± 0.621 89.19± 0.378 85.55± 0.212 92.17± 0.323 83.31± 0.643 93.24± 0.247 87.74

Table 4: AUROC in % for anomaly localization on MVTecAD [7].

Method Bottle Hazelnut Capsule Metal Nut Leather Pill Wood Carpet Tile Grid Cable Transistor Toothbrush Screw Zipper Mean

AESSIM[11] 93 97 94 89 78 91 73 87 59 94 82 90 92 96 88 87

AEL2[11] 86 95 88 86 75 85 73 59 51 90 86 86 93 96 77 82

AnoGAN[41] 86 87 84 76 64 87 62 54 50 58 78 80 90 80 78 74

CNN-Dict[28] 78 72 84 82 87 68 91 72 93 59 79 66 77 87 76 78

VAE-grad[15] 92.2 97.6 91.7 90.7 92.5 93 83.8 73.5 65.4 96.1 91 91.9 98.5 94.5 86.9 89.3

OURS 96.32 94.62 95.86 86.38 98.05 89.63 84.8 95.64 82.77 91.78 82.4 76.45 96.12 95.96 93.9 90.71

Table 5: AUROC in % on Retinal-OCT [56]. We outperform all other SOTA methods.

DSVDD[33] Auto-Encoder[55] AnoGan[41] VAE-GAN[5] Pix2Pix[20] GANomaly[3] Cycle-GAN[57] P-Net[56] GT[18] OURS

RESC (OCT)[17] 74.40 82.07 84.81 90.64 79.34 91.96 87.39 92.88 60.13 97.01 ± 0.426

First, we use the Retinal-OCT dataset, a recent dataset for

detecting abnormalities in retinal optical coherence tomog-

raphy (OCT) images. According to Table 5, our method

outplays all the SOTA methods by a considerable margin.

This shows that the knowledge of the pre-trained network,

S, has been precious to the cloner, C, even in an entirely dif-

ferent domain of medical retinal OCT inputs. Furthermore,

the unawareness of C about the outside of the normal data

manifold intensifies the discrepancy between them. This ex-

presses the generality of our method to even future unseen

datasets, something missed in many methods.

Moreover, we validate our performance on brain tu-

mor detection using brain MRIs. In this dataset, images

with tumors are assumed as anomalies while healthy ones

are considered normal. In Table 6, our method achieves

SOTA results alongside LSA. While slightly (∼ 0.5%) less

than LSA, our method shows a significantly lower variance,

magnifying its stability compared to the others. It is also

noteworthy that LSA fails substantially on other tasks such

as CIFAR-10 and MVTecAD anomaly detection with AU-

ROCs ∼ 23% and ∼ 25% below our method’s, respectively.

Lastly, using HeadCT (hemorrhage) dataset, we discuss an

important aspect of our model. Performing on head com-

puted tomography (CT) images for AD, we outperform OC-

GAN and GT by a considerable margin and perform ∼ 3%
below LSA. Since the training data is dramatically limited,

our method may face difficulties transferring the S’s knowl-

edge to C. However, this can be addressed by using sim-

ple data augmentations. We use 20-degree rotation in ad-

dition to scaling in the range of [0.9, 1.05] to augment the

Table 6: AUROC in % medical datasets. The top two meth-

ods are in bold.

BrainMRI HeadCT

LSA*[1] 95.61 ± 1.433 81.67 ± 0.358

OCGAN*[31] 91.74± 3.050 51.22± 3.626
GT*[18] 80.82± 1.996 49.85± 3.873

OURS 95.01 ± 0.229 78.04± 0.225
OURS+AUG - 80.42 ± 0.006

images. These augmentations are generic non-tuned ones

aiming solely to increase the amount of data with no depen-

dency on the dataset. Table 6 shows that by utilizing aug-

mentations, the proposed method achieves similar results to

LSA while outperforming it on other tasks significantly.

5. Conclusion

We show that “distilling” the intermediate knowledge

of an ImageNet pre-trained expert network on anomaly-

free data into a more compact cloner network, and then

using their different behavior with different samples, sets

a new direction for finding specific criteria to detect and

localize anomalies. Without using intensive region-based

training and testing, we leverage interpretability methods

in our novel framework for obtaining localization maps.

We achieve superior results in various tasks and on many

datasets, even with domains far from the ImageNet domain.

14909



References

[1] Davide Abati, Angelo Porrello, Simone Calderara, and Rita

Cucchiara. Latent space autoregression for novelty detec-

tion. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 481–490, 2019.

[2] Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Good-

fellow, Moritz Hardt, and Been Kim. Sanity checks for

saliency maps. In Advances in Neural Information Process-

ing Systems, pages 9505–9515, 2018.

[3] Samet Akcay, Amir Atapour-Abarghouei, and Toby P

Breckon. Ganomaly: Semi-supervised anomaly detection

via adversarial training. In Asian Conference on Computer

Vision, pages 622–637. Springer, 2018.

[4] Jerone Andrews, Thomas Tanay, Edward J Morton, and

Lewis D Griffin. Transfer representation-learning for

anomaly detection. JMLR, 2016.

[5] Christoph Baur, Benedikt Wiestler, Shadi Albarqouni, and

Nassir Navab. Deep autoencoding models for unsupervised

anomaly segmentation in brain mr images. pages 161–169,

04 2018.

[6] Liron Bergman and Yedid Hoshen. Classification-based

anomaly detection for general data. arXiv preprint

arXiv:2005.02359, 2020.

[7] Paul Bergmann, Michael Fauser, David Sattlegger, and

Carsten Steger. Mvtec ad–a comprehensive real-world

dataset for unsupervised anomaly detection. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 9592–9600, 2019.

[8] Paul Bergmann, Michael Fauser, David Sattlegger, and

Carsten Steger. Uninformed students: Student-teacher

anomaly detection with discriminative latent embeddings. In

Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, pages 4183–4192, 2020.

[9] Paul Bergmann, Michael Fauser, David Sattlegger, and

Carsten Steger. Uninformed students: Student-teacher

anomaly detection with discriminative latent embeddings. 03

2020.
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