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Abstract

Longitudinal intervention studies with repeated measurements over time are an important

type of experimental design in biomedical research. Due to the advent of “omics”-sciences

(genomics, transcriptomics, proteomics, metabolomics), longitudinal studies generate

increasingly multivariate outcome data. Analysis of such data must take both the longitudi-

nal intervention structure and multivariate nature of the data into account. The ASCA

+-framework combines general linear models with principal component analysis and can be

used to separate and visualize the multivariate effect of different experimental factors. How-

ever, this methodology has not yet been developed for the more complex designs often

found in longitudinal intervention studies, which may be unbalanced, involve randomized

interventions, and have substantial missing data. Here we describe a new methodology,

repeated measures ASCA+ (RM-ASCA+), and show how it can be used to model metabolic

changes over time, and compare metabolic changes between groups, in both randomized

and non-randomized intervention studies. Tools for both visualization and model validation

are discussed. This approach can facilitate easier interpretation of data from longitudinal

clinical trials with multivariate outcomes.

Author summary

Clinical trials are increasingly generating large amounts of complex biological data. Exam-

ples can include measuring metabolism or gene expression in tissue or blood sampled

repeatedly over the course of a treatment. In such cases, one might wish to compare

changes in not one, but hundreds, or thousands of variables simultaneously. In order to

effectively analyze such data, both the study design and the multivariate nature of the data

should be considered during data analysis. ANOVA simultaneous component analysis+

(ASCA+) is a statistical method which combines general linear models with principal

component analysis, and provides a way to separate and visualize the effects of different

factors on complex biological data. In this work, we describe how repeated measures
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linear mixed models, a class of models commonly used when analyzing changes over time

and treatment effects in longitudinal studies, can be used together with ASCA+ for analyz-

ing clinical trials in a novel method called repeated measures-ASCA+ (RM-ASCA+).

This is a PLOS Computational Biology Methods paper.

Introduction

In recent decades, scientific and technological developments have increased our ability to both

collect and manage large amounts of data. In biomedicine this has contributed to the rise of

various “-omics”-fields (e.g. genomics, transcriptomics, proteomics, and metabolomics),

where the focus is not on single variables such as individual genes, proteins or metabolites, but

rather on the whole genome, proteome, or metabolome. Because “-omics”-datasets may con-

tain hundreds to thousands of variables, considering each variable individually may be ineffi-

cient. In addition, “-omics”-data are multivariate by nature, and performing separate analyses

for each variable does not take the interrelatedness between the variables into consideration.

A subset of the methods developed to analyze such data are based on the idea of combining

two different kinds of statistical methods: 1) analysis of variance (ANOVA), and 2) dimension-

ality reduction methods such as principal component analysis (PCA) [1]. Combining these

methods in various ways allows the researcher to separate and visualize effects from different

sources of variation in the data, while also accounting for the correlations between the out-

come variables. One such method is ANOVA simultaneous component analysis (ASCA),

where the response matrix is first decomposed into effect matrices according to the experi-

mental design, and the impact of each experimental factor is visualized by applying PCA to the

effect matrices [2]. This methodology has since been extended to unbalanced designs by the

adoption of the general linear model (GLM)-framework in estimating the effects, in a method

called ASCA+ [3]. A related approach was recently developed, termed linear mixed model-

PCA (LiMM-PCA), in which the ASCA+ methodology is adapted to include random effects

[4].

Longitudinal intervention studies with repeated measurements over time are an important

type of experimental design in biomedical research. Such designs allow separating within-sub-

ject variation from between-subject variation, and also permit the study of trends over time.

However, repeated measures data have properties which preclude the use of standard linear

regression methods, such as fixed effects ANOVA, the most important one being that the

observations belonging to the same individual are not independent. While the classical ASCA

methodology has long been applied for longitudinal data analysis [2,5], this approach has gen-

erally required strongly balanced designs to yield valid results. In contrast, longitudinal inter-

vention studies routinely have many complicating features, such as unbalanced designs,

randomized interventions, and substantial missing data. Repeated measures linear mixed

models provide a powerful way to handle these issues [6], but these capabilities have so far not

been extended to the multivariate case.

In this paper we introduce a new methodology, repeated measures ASCA+ (RM-ASCA+),

using repeated measures linear mixed models in conjunction with ASCA+. We show how this

method can be used in the analysis of longitudinal multivariate data with unbalanced designs

and missing outcome data, including both visualization of results and assessment of model
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uncertainty. We also discuss other linear models for longitudinal data which can be used to

estimate the effects, and comment on their suitability for ASCA+. We discuss how to adjust

the analyses depending on whether the intervention is randomized or not, and we illustrate

these differences by analyzing two different metabolomics datasets. We compare our findings

with the original research papers for these datasets, and discuss the added benefit of

RM-ASCA+ for biological interpretation in this setting.

Methods

Linear models for longitudinal data

A key step in ASCA+ is to define an appropriate linear model to use for estimating the effects.

In this section we discuss some possible model types for analysis of longitudinal repeated mea-

sures data, and comment on their suitability for ASCA+. These models differ both in how they

handle missing data, and whether they control for the baseline value of the response variable.

The latter point can strongly affect the effect estimates if the groups come from different pre-

baseline populations, which is known as Lord’s paradox [7]. The models to be discussed are: 1)

repeated measures models, 2) longitudinal analysis of covariance (ANCOVA), and 3) analysis

of changes. All model types discussed here involve including a random intercept for each sub-

ject, except for longitudinal ANCOVA and analysis of changes in the case of only two mea-

surement occasions, as in this setting each subject only appears once in the response vector,

and there is no need to account for within-subject correlation. The linear models presented

here are the same as presented in the paper by Twisk et al., concerning different ways of ana-

lyzing randomized controlled trials with repeated measurements [8].

Repeated measures. In a repeated measures model, the baseline value of the response var-

iable is included in the responses in the same way as the follow-up measurements. Suppose

that a response variable y is measured at K timepoints (k = 1..K) for a total of I subjects (i = 1..

I), where each subject belongs to one of H groups (h = 1..H). If the number of timepoints

K = 3, and the number of groups H = 2, then a repeated measures model for this data is:

yihk ¼ ðb0 þ g0iÞ þ b1t1k þ b2t2k þ b3gh þ b4ðt1k � ghÞ þ b5ðt2k � ghÞ þ eihk

where β0–5 are the coefficients to be estimated from the data, t1k and t2k are indicator values for

the time factor, gh is an indicator variable value for the group factor, t1k � gh and t2k � gh are fac-

tor interaction values, γ0i represents a subject-specific random intercept, which is� Nð0; s2
uÞ,

and eihk is a residual term, which is� Nð0; s2
eÞ. Both the random intercepts and residuals are

assumed to be independent. The model is here shown for only three timepoints and two

groups, but can easily be extended to an arbitrary number of timepoints and groups by includ-

ing more indicator variables.

When entering categorical variables (e.g. experimental factors such as time and treatment)

into a regression model, a choice must be made regarding how the different factor levels

should be represented in the model. In general, to enter a categorical factor with k levels, (k– 1)

variables are needed. While choice of coding does not impact the overall fit of the model, it

determines the interpretation of the model coefficients, and therefore also the interpretation of

the effect matrices estimated by ASCA. Two commonly used coding systems for representing

categorical variables are reference coding and sum coding. With reference coding, one of the

factor levels is selected as the reference level, and represented by setting all indicator variables

to zero, while the other levels are represented by one of the indicator variables taking on the
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value 1. Thus, representing the time factor with reference coding can be done as:

t1 t2

k ¼ 1 0 0

k ¼ 2 1 0

k ¼ 3 0 1

This coding causes the effects of t1 and t2 to be expressed relative to the baseline timepoint

t0 (k = 1, the reference level). In sum coding no reference level is selected, but every level is

instead compared to the mean across all levels. To represent the time factor with sum coding,

instead of representing the omitted level with a row of zeros, it is represented by a row of -1:

t1 t2

k ¼ 1 � 1 � 1

k ¼ 2 1 0

k ¼ 3 0 1

With this coding, the effects of t1 and t2 are expressed relative to the mean response across all

three levels. The effect of t0, or whichever level is omitted, is not directly estimated, but can be cal-

culated from the remaining effects. In the models discussed in this section, the indicator variables

for time (t1 and t2) will be reference coded with the first timepoint as the reference level. Depend-

ing on whether the indicator variable g is reference coded (0 or 1) or sum coded (-1 or 1), the

coefficients for time, β1 and β2 in the repeated measures model will represent either the time

effect (i.e. change from baseline) for the reference group, or the average time effect across both

groups. In both cases β3 represents the group differences at baseline, while the interaction effects

β4 and β5 represent the group difference in within-group change from baseline to each of the

timepoints. If g is reference coded, the intercept (β0) represents the estimated baseline mean for

the reference group, while if g is sum coded, it represents the baseline mean across both groups.

When assessing whether the mean change in the response variable over time is different

between the groups, a decision has to be made whether an adjustment for baseline differences in

the response variable should be made. Although it is often believed that such an adjustment is

made by assessing changes instead of directly comparing means, this is not correct (8). This is in

part because the group with the highest baseline value will be expected to decrease slightly more

than the group with the lowest baseline value, due to regression to the mean, even if the treatment

has no effect. Conversely, the group with the lowest baseline value will be expected to increase

slightly more. Simply comparing changes without adjusting for this variation can therefore lead

to either over- or underestimation of the true treatment effect. The interaction coefficients β4 and

β5 in the above model are unadjusted, because they are only assessing whether the within-group

change is different between the groups. Typically, one adjusts for a variable by including it as a

covariate. However, in a repeated measures model, where the baseline values already are included

in the responses, an adjustment can instead be made by removing the main effect for treatment,

β3gh, from the model while keeping its interactions with time:

yihk ¼ ðb0 þ g0iÞ þ b1t1k þ b2t2k þ b3ðt1k � ghÞ þ b4ðt2k � ghÞ þ eihk

Because the time factor is reference coded with baseline as the reference level, and because

there is no main effect for treatment, the estimated group means are constrained to be the

same at baseline. This is also known as a constrained longitudinal data analysis (cLDA) model

[9], while the previous model with the main effect for treatment included is sometimes referred
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to as an unconstrained longitudinal data analysis (ucLDA) model. The result of this constraint

is that the interaction effects β3 and β4 will be adjusted for baseline.

In addition to adjusting for the baseline value of the response variable, it is also possible to

adjust for other baseline covariates. In general, the decision of whether to adjust for baseline

covariates depends primarily on the study design, and the research question of interest. When

using general linear (mixed) models to analyze treatment effects in a randomized controlled

trial, and the treatment effect is expressed as a difference in means, it is generally recom-

mended to adjust for baseline (pre-randomization) covariates which are known in advance to

influence the response variable [10–12]. Because of the randomization, doing so does not bias

or change the interpretation of the treatment effect, but results in smaller standard errors, and

thereby increased precision [13]. This property of the treatment effect estimator is referred to

as collapsibility, meaning that the marginal and conditional treatment effect estimates are on

expectation equal in the absence of confounding. Another situation where covariate adjust-

ment can increase statistical power is in trials with stratified randomization. This is because

the stratification induces a positive correlation between the treatment groups, which results in

too wide confidence intervals for the treatment effect estimate. This can be accounted for by

including the stratification factor as a covariate in the model [14,15]. These possibilities have

so far not been leveraged in ASCA, but this can be done in our framework.

For non-randomized studies, the situation is more complex. In this situation, the treatment

groups are typically already different before treatment is given. Adjusting for baseline covari-

ates in this setting can induce spurious effects, except in situations in which the treatment allo-

cation is determined by the included baseline covariates (e.g. regression discontinuity designs)

[10]. The adjusted estimate will then have a different interpretation from the unadjusted one.

This phenomenon is known as Lord’s paradox [16], and implies that baseline adjustments

must be done with care in non-randomized settings. In general, the decision to adjust for any

covariate is dependent on prior knowledge about the study design and the measured variables,

as well as on assumptions about how they causally interact. This applies to all forms of covari-

ate adjustment, of which baseline adjustment is only a special case. Causal diagrams in the

form of directed acyclic graphs provide a general framework for determining whether adjust-

ment for a given variable creates or reduces bias with respect to the effect of interest [17].

In our examples we model time as a categorical variable, as is typical in ASCA. However,

time can also be modeled as a continuous variable, where different functional forms can be

assumed for the time effect, e.g. linear, polynomial, or splines [18,19]. Additionally, more com-

plex random effect structures can be considered, for example modeling time with random

slopes. However, we will limit our discussion to random intercept models, in order to keep the

number of estimated parameters to a minimum.

Longitudinal ANCOVA. The method of longitudinal ANCOVA involves using the base-

line value, yih1, as a covariate, instead of modeling it as a response together with the follow-up

values. When K = 3, and H = 2, this model can be written as:

yihk ¼ ðb0 þ g0iÞ þ b1tk þ b2gh þ b3ðtk � ghÞ þ b4yih1 þ eihk

In this example, because the first timepoint is not included in the response vector, only two

timepoints are represented in y, which can be described by one indicator variable t. In this

model β2 represents the treatment effect at the first follow-up timepoint, while (β2 + β3) repre-

sents the treatment effect at the second follow-up timepoint, and β4 represents the effect of the

baseline value on the follow-up measurements. The effects β0 and (β0 + β1) represent the

expected change from baseline to the first and second follow-up timepoints, respectively, for a

subject for which the baseline covariate is equal to zero. Since this is often not biologically
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meaningful, especially if the baseline covariate cannot plausibly take on this value in reality, it

is sometimes recommended to baseline-center both the responses and the baseline covariates

[20]. If this is done, then β0 and (β0 + β1) can be interpreted as the expected change from base-

line to the first and second follow-up for the reference group, which is the same interpretation

as β1 and β2, respectively, in the repeated measures model.

Like the repeated measures model, this model can be extended to more timepoints by

increasing the number of indicator variables for time and its interaction with group. Clearly,

longitudinal ANCOVA involves an adjustment for baseline, because it is included as a covari-

ate in the model. It can be shown that cLDA and longitudinal ANCOVA are mathematically

related. Differences in point estimates and confidence intervals for the group effect disappear

with increasing sample size under randomization, and are usually small for non-randomized

data [11]. However, a disadvantage of longitudinal ANCOVA compared with cLDA is that

subjects with missing baseline data are excluded from the analysis.

Analysis of changes. Analysis of changes involves expressing all follow-up values as differ-

ences from baseline, without including the baseline response as either a response or covariate

in the model. A linear model, or mixed model if there is more than one follow-up measure-

ment, is then made to assess whether the average (yihk−yih1) differs significantly depending on

group and time:

yihk � yih1 ¼ ðb0 þ g0iÞ þ b1tk þ b2gh þ b3ðtk � ghÞ þ eihk

Testing β2 and (β2 + β3) in this model effectively amounts to testing the same null hypotheses

as β4 and β5, respectively, in the ucLDA-model, namely whether the time effect, or equivalently,

the within-group change, is the same in both groups [11]. Similarly to longitudinal ANCOVA

with baseline-centering, the coefficients β0 and (β0 + β1) represent the expected change from

baseline to the first and second follow-up timepoints, respectively, for the reference group. While

all available response data is used in ucLDA, analysis of changes excludes responses where either

the baseline or follow-up measurement is missing. As with ucLDA, no baseline adjustment is

made in this model. If the baseline value is added as a covariate, then the model becomes equiva-

lent to a longitudinal ANCOVA (8). Analysis of changes shares the previously mentioned disad-

vantages as longitudinal ANCOVA, such as not including the baseline measurements in the

response vector, and poorer efficiency in the presence of missing outcome data.

ASCA+ / LiMM-PCA

ASCA. Suppose we have measured J (j = 1..J) response variables for I (i = 1..I) subjects at

K (k = 1..K) measurement occasions. The responses are collected in a IK×J response matrix Y.

In classical ASCA, the response matrix Y is decomposed into effect matrices according to the

experimental design with standard ANOVA calculations, using differences in level averages:

Y ¼ Mm þMT þMG þMT�G þ E

where Mμ is an overall offset matrix, MT contains the estimated level averages for the time fac-

tor, MG contains the estimated level averages for the group main effect, MT�G contains the level

averages for the interaction between time and group, and E is the residual matrix. Scaling can

also be applied to the columns of Y before estimating the effect matrices. The type of scaling

will usually depend on the type of data being analyzed, and which effect is being investigated

[21]. The effect matrices can then be analyzed and interpreted using PCA:

Y ¼ Mm þ TTPT
0 þ TGPG

0 þ TT�GPT�G
0 þ E
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For each fixed effect f where f2{T, G, T�G}, Tf is an IK×Af score matrix, and Pf is a J×Af load-

ing matrix, where Af is the number of principal components needed to describe Mf. The sym-

bol 0 indicates the matrix transpose. Because the effects estimated in classical ASCA are

expressed relative to the overall mean, the effect matrices are implicitly mean-centered. How-

ever, in later sections in this paper we will also apply a bootstrapping step in the analysis,

which involves re-centering the matrices before PCA. For this reason, we will always apply

mean-centering before PCA in the following sections.

By applying PCA to the effect matrices, as opposed to the full response matrix Y, each mul-

tivariate sub-model will be optimal for describing the variation contributed by that factor.

However, this method is limited in that it only allows inclusion of fixed effects, and that classi-

cal ANOVA effect estimators based on differences in level means results in biased effect esti-

mates for unbalanced designs. Classical ASCA is therefore only valid for longitudinal studies if

the design is strongly balanced, and with fixed effects only.

ASCA+. In ASCA+, the original ASCA-methodology is extended to unbalanced designs

by using general linear models (GLM) to estimate the effect matrices, instead of the classical

ANOVA estimators based on differences in means. The GLM can be written as:

y ¼ Xbþ e

Where y is an IK×1 vector containing the responses, X is an IK×p design matrix for the cho-

sen linear model, where p is the number of fixed effect predictors, β is a p×1 vector of coeffi-

cients to be estimated from the data, and e is an IK×1 vector containing the residuals. In ASCA

+, this equation is extended to multivariate responses:

Y ¼ XBþ E

where Y now represents an IK×J response matrix, where J (j = 1..J) is the number of response

variables, B is a p×J parameter matrix, where the j-th column of B corresponds to the regres-

sion coefficients belonging to the j-th column of Y, and E is a IK×J residual matrix. To estimate

B, a GLM based on the design matrix X is applied to every column of Y separately, and the

coefficients are collected in the matrix B.

After estimation of B, the effect matrices are then made by multiplying the corresponding

columns of X together with the corresponding rows of B. For example, in order to make the

effect matrix for the time effect, all columns in X and rows in B except those belonging to the

time factor are turned into zero, and the following operation is done to produce the effect

matrix for time, MT:

Int T1 T2 G T1G T2G

0 � 1 � 1 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 � 1 � 1 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

..

. ..
. ..

. ..
. ..

. ..
.

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

�

0 � � � 0

b11 � � � b1J

b21 � � � b2J

0 � � � 0

0 � � � 0

0 � � � 0

0

B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
A

¼ MT

The effect matrix MT, which now contains the estimated level averages for the factor for

time, can be analyzed by PCA in order to visualize the multivariate differences between the

timepoints.
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In ASCA+, all fixed effects are encoded using sum coding. This causes all main effects to be

expressed relative to the grand mean, and all fixed effects to sum to zero. This coding ensures

that the estimated effect matrices are orthogonal to each other in balanced designs. Because of

this, we can quantify the unique variance contribution from each factor as:

kYk2
¼ kMmk

2
þ kMTk

2
þ kMGk

2
þ kMT�Gk

2
þ kEk2

where kMk2 denotes the squared Frobenius norm of the matrix M. This allows quantification

of how much of the total variation is explained by each of the factors in the model [1].

LiMM-PCA. In LiMM-PCA, the ASCA+ methodology is further adapted to also include

random effects, making it a potentially suitable method for correctly modeling the longitudinal

structure of intervention studies. In LiMM-PCA, the response matrix Y is first reduced and

orthogonalized by PCA, so that TA is used instead of Y directly:

Y ¼ TAPA
0 þ EA

where TA is an IK×A score matrix, A is the number of included components in the model, and

PA is a J×A loading matrix. The residual matrix EA is assumed to be negligible. The score

matrix TA is then analyzed following the ASCA+ methodology, but using mixed models

instead of GLMs.

TA ¼ XBþ ZU þ E

where B now is a p×A fixed effect coefficient matrix, Z is an IK×R design matrix for the ran-

dom effects, where R is the number of random effect coefficients for one response variable,

and U is an R×A matrix containing all the random effect coefficients. The matrix TA is then

decomposed into effect matrices for the fixed effects (f = 1..F) and random effects (r = 1..R) as:

TA ¼ Mm þ
XF

f¼1

Mf þ
XR

r¼1

Mr þ E

Each effect matrix can now be analyzed with PCA, as shown previously. However, because

of the initial orthogonalization of the response variables, the loadings for each sub-model have

to be transformed back into the original variable space of Y before interpretation. As long as A
is set sufficiently high so that all of the variation in Y was included during the initial PCA-step,

this will result in score- and loading plots close or identical to what would have been obtained

if the procedure was applied directly to Y.

In LiMM-PCA the statistical significance for a fixed or random effect g is assessed

using a multivariate extension of the log likelihood ratio test, which is here briefly

described. First the likelihood ratio is calculated for each of the column vectors in TA. For

fixed effects, maximum likelihood must be used. Because the columns vectors in TA are

orthogonal, these likelihood ratios may be added together into a global log likelihood ratio

test statistic:

GLLRgtest statistic ¼ 2½
XA

a¼1

ðlogðLikelihoodðH1aÞÞ � logðLikelihoodðH0aÞÞÞ�

where LikelihoodðH1aÞ denotes the likelihood of the full model as calculated for the a-th col-

umn vector in TA, and LikelihoodðH0aÞ denotes the likelihood of the model without the

effect(s) g. A null hypothesis distribution for the GLLR-statistic is simulated using

parametric bootstrapping, which is compared with the observed GLLR-statistic to calcu-

late a p-value.
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RM-ASCA+. In the methodology presented here, RM-ASCA+, we combine repeated

measures linear mixed models with ASCA+ to estimate the multivariate effects of time

and the interaction between time and group in an unbalanced setting, while also account-

ing for within-subject dependency. We do this without applying the initial PCA-step as

done in LiMM-PCA, and the effects are therefore estimated directly based on the full

response matrix:

Y ¼ XBþ ZU þ E

where B is a p×J fixed effect parameter matrix, and U is an IK×J matrix containing the ran-

dom effect coefficients, and E is an IK×J residual matrix. Since all of the variation in Y is

included when estimating the effects, it avoids the issue of selecting the appropriate num-

ber of components as in LiMM-PCA, although the methods for hypothesis testing and

quantifying explained variance are also lost as a result. The effect matrices are then con-

structed in the same way as in ASCA+/LiMM-PCA:

Y ¼ Mm þ
XF

f¼1

Mf þ
XR

r¼1

Mr þ E

However, in order to obtain the baseline constraint as shown previously, it is necessary to

deviate from the sum coding usually used in ASCA+. This is because constraining the baseline

means requires the time factor to be reference coded with baseline as the reference timepoint,

as was shown in cLDA. For illustration, suppose we fit a RM-ASCA+ model using an ucLDA-

model, where the time effect is reference coded with baseline as reference, and group is sum

coded:

Int T1 T2 G T1G T2G

1 0 0 � 1 0 0

1 1 0 � 1 � 1 0

1 0 1 � 1 0 � 1

1 0 0 1 0 0

1 1 0 1 1 0

1 0 1 1 0 1

..

. ..
. ..

. ..
. ..

. ..
.

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

�

b01 � � � b0J

b11 � � � b1J

b21 � � � b2J

b31 � � � b3J

b41 � � � b4J

b51 � � � b5J

0

B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
A

¼ M0 þMT þMG þMT�G

With this coding system the intercept matrix M0 represents the overall baseline mean, while

MT represents the time effect expressed as the change from M0. The matrix MG represents the

group differences at baseline, expressed as deviations from M0, while MT�G represents the

group difference in within-group change (i.e. the treatment effect) from baseline to each of the

timepoints, expressed as deviations from the general time effect.

As discussed, the treatment effect estimated in a ucLDA-model is not adjusted for

baseline. If the treatment effect should be adjusted for baseline, this can be achieved by

removing the treatment main effect, G, from the design matrix before fitting the
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model:

Int T1 T2 T1G T2G

1 0 0 0 0

1 1 0 � 1 0

1 0 1 0 � 1

1 0 0 0 0

1 1 0 1 0

1 0 1 0 1

..
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.
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b01 � � � b0J

b11 � � � b1J

b21 � � � b2J

b31 � � � b3J

b41 � � � b4J

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

¼ M0 þMT þMT�G

When the main effect for treatment, G, is omitted from the model matrix X, the treatment

effect described by MT�G will be adjusted for baseline.

It is also possible to use reference coding for both the time and treatment factor:

Int T1 T2 G T1G T2G

1 0 0 0 0 0

1 1 0 0 0 0

1 0 1 0 0 0

1 0 0 1 0 0

1 1 0 1 1 0

1 0 1 1 0 1

..

. ..
. ..
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.
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b21 � � � b2J

b31 � � � b3J

b41 � � � b4J

b51 � � � b5J

0
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B
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B
@
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C
C
C
C
C
C
C
C
C
C
A

¼ M0 þMT þMG þMT�G

If this coding is used, the time effect will change from describing the overall time effect, to

only describing the time effect of the reference group. The treatment effect will then be

expressed as deviations from the trajectory of the reference group. These two approaches (i.e.

using either sum or reference coding for the treatment effect) are related to two earlier meth-

ods, known as scaled-to-maximum, aligned, and reduced trajectories (SMART)-analysis [22],

and principal response curves (PRC) [23], which involve expressing temporal trajectories rela-

tive to a baseline timepoint, or relative to a control group, respectively. Analyzing MT + MT�G

is similar to SMART, whereas if we reference code both the time and treatment factors, and

then analyze MG + MT�G, the result will be similar to PRC. However, neither SMART nor PRC

allow inclusion of random effects or baseline adjustments, whereas both are possible in our

framework.

Using reference coding for the time factor has implications for the orthogonality of the

effect matrices. Because reference coding does not result in orthogonal contrasts, the effect

matrices estimated using the repeated measures model are also not mutually orthogonal.

Hence, the variance decomposition method commonly used in ASCA is not possible here.

However, the interpretation of the effect matrices is still meaningfully defined, as discussed in

the previous paragraph. It should also be noted that whenever continuous covariates are

included in the model, the design will generally not be fully orthogonal, as there will always be

imbalances in the covariate levels between the groups. Hence, the main goal of this approach is

not to precisely quantify and decompose mutually independent sources of variation, but rather
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to estimate and visualize time-varying multivariate treatment effects with improved precision,

by extending covariate adjustment strategies used in RCTs to the multivariate case.

So far the random effects structure in the model is only used when estimating the fixed

effects in B. However, the random effects themselves can also be included and visualized in

various ways. In ASCA+/LiMM-PCA the effect matrices are often augmented with the model

residuals in order to visualize residual variability in the score plots. For example, if we apply

PCA to the time effect matrix, so that MT = TTPT
0, the augmented score matrix is calculated as

Ta
T ¼ ðMT þ EÞ � PT [24]. This can be used to assess the size of the effect compared with the

unexplained variation, thereby providing an indirect and qualitative measure of statistical sig-

nificance. Similarly, we can also augment the effect matrices with the random effects, (ZU+E),

which can be used to visualize the individual offsets (ZU), as well as residual variability in

response over time (E). This can for example be done by applying PCA to the combined effect

matrices for the time- and time�treatment interaction effect matrices, so that (MT + MT�G) =

TT+T�GPT+T�G
0, and then calculating the augmented score matrix as

Ta
TþT�G ¼ ðMT þMT�G þ ZU þ EÞ � PTþT�G. If no other covariates have been included, this

becomes equivalent to projecting the raw values onto the components estimated for (MT +

MT�G). Alternatively, it is also possible to analyze the random effects matrix ZU and the resid-

ual matrix E separately. In a repeated measures model with only a random intercept, the ran-

dom effect matrix ZU is essentially the estimated intercepts for each subject, and will therefore

give similar results to a direct PCA on the baseline values. Analyzing the residual matrix E is

useful for discovering patterns unaccounted for by the model, as well as violations of model

assumptions.

Model validation. For validation we use nonparametric bootstrapping to construct 95%

confidence intervals for the score and loadings associated with each of the effect matrices [19].

This involves resampling whole cases, i.e. all rows in X, Z, and Y belonging to the same subject,

until the bootstrap sample reaches the original sample size. We do this within each treatment

group separately (i.e. the bootstrapping is stratified by treatment group), which ensures that

the number of subjects in each group remains constant across bootstrap samples. The proce-

dure involves first estimating the RM-ASCA+ model from the original data, and collecting the

score- and loading estimates from the effect matrices. A bootstrap sample is then created, and

the same model is re-estimated. The bootstrapped loading matrices are then rotated towards

their corresponding non-bootstrapped loadings using orthogonal Procrustes rotation, and the

resulting rotation matrix is then multiplied with the associated bootstrapped score matrix

[25,26]. This procedure is repeated a high number of times, e.g. 1000, 10 000, or higher, and

the 2.5th and 97.5th percentiles of the bootstrapped score- and loading estimates are used as the

lower and upper bounds for the confidence intervals. The bootstrapped effect matrices are

mean-centered before PCA during every iteration, in order to focus on variability in the con-

trast between the levels, rather than their overall magnitude. If scaling is used for the response

matrix Y, the scaling factors are re-calculated from the bootstrapped data and re-applied dur-

ing each iteration. This approach only provides an approximate measure of the uncertainty of

the estimated mean differences, and should not be interpreted as parametric 95% confidence

intervals. However, a simulation study which assessed bootstrapping-based confidence inter-

vals in PRC, suggested that percentile based methods provided generally good coverage at the

sample sizes used in this paper [19,27].

Software and data analysis

All statistical analysis and figure creation were done in MATLAB 2020b. The fitlmematrix-

function was used for mixed models, and the pca-function in the Statistics and Machine
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Learning Toolbox was used for PCA-analysis. MATLAB-code to reproduce the results is avail-

able on GitHub at (https://github.com/ntnu-mr-cancer/RM_ASCA). All datasets used in this

paper are analyzed using RM-ASCA+ and univariate mixed models. The response variables

are scaled to their baseline standard deviation before analysis, to emphasize metabolites with

higher variability over time. Mean centering is done prior to PCA on the effect matrices.

Materials

To demonstrate RM-ASCA+, two published datasets are here used. These will be briefly

described, and the reader is directed to their source publications for further details.

The NeoAva-trial

The first dataset used is from the NeoAva-trial, which is a randomized controlled trial assess-

ing the effect of adding bevacizumab, an anti-angiogenic monoclonal antibody, to conven-

tional chemotherapy in breast cancer patients with locally advanced HER2-negative tumors in

a neoadjuvant treatment setting. In a study by Euceda et al., repeated tumor biopsies obtained

over the course of treatment were analyzed with high resolution magic angle spinning (HR

MAS) MR spectroscopy, using a CPMG sequence [28]. The spectral region between 1.40–

4.70 ppm, containing the majority of low-molecular weight metabolites, was selected as the

region of interest, and spectral regions containing mostly lipids, ethanol, acetone and lidocaine

were excluded. Spectra were PQN-normalized after removal of these areas [29], and metabo-

lites were quantified by peak integration. For further details on spectral acquisition and pro-

cessing we refer to the original publication by Euceda et al. [28]. Metabolic changes were

related to treatment group and tumor response. The published dataset includes 16 quantified

and log-transformed metabolites from 122 patients, of whom 60 received bevacizumab + che-

motherapy, and 62 received chemotherapy only. Three tumor biopsies were taken; one before

start of treatment, one after 12 weeks of treatment, and the last was taken from the surgically

removed tumor. Data is missing at all timepoints, with 14%, 36%, and 29% missing outcome

data at each timepoint respectively, giving a total of 270 responses in the study.

Metabolic fingerprint after bariatric surgery

The second dataset used is from a study by Gralka et al., which prospectively assessed alter-

ations in serum metabolites in patients undergoing one of three different kinds of bariatric

surgery (proximal Roux-en-Y gastric bypass (RYGB), distal RYGB, and gastric sleeve) [30].

Procedure selection was based on pre-existing clinical factors, such as degree of obesity and

comorbidities. Blood was drawn at baseline before surgery, and at 3, 6, 9, and 12 months after

surgery, and the serum was analyzed using NMR spectroscopy. Spectra were obtained using a

Bruker spectrometer operating at 14.1T, with a triple resonance inverse cryoprobe, and auto-

matic tuning-matching unit and sample changer. A CPMG-sequence was used to acquire the

spectra. The water region between 6.0 and 4.5 ppm was removed, and the non-normalized

spectra were divided into 0.2 ppm bins, which were integrated using AMIX software (version

3.8.4; Bruker BioSpin). Thirty metabolites were quantified, of which 24 showed variability over

time, and 21 were included in the published dataset. The metabolite concentrations were

square root transformed prior to analysis to correct for heteroscedasticity. The study design is

unbalanced, with 60 patients undergoing distal RYGB, 27 undergoing proximal RYGB, and 19

undergoing gastric sleeve. Data is missing at all post-baseline timepoints, with 7%, 8%, 12%,

and 32% missing outcome data at each post-baseline timepoint, respectively, giving a total of

463 responses in the study. The metabolomics data was made freely available by the authors at

the online repository MetaboLights, with the identifier MTBLS242.
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Results

Effect of bevacizumab on tumor metabolism in breast cancer

As the NeoAva study is a randomized controlled trial, a constrained repeated measures model

is used to estimate the effect matrices for RM-ASCA+. The following model was used:

yihk ¼ ðb0 þ g0iÞ þ b1T1 þ b2T2 þ b3ðT1 � BevacizumabÞ þ b4ðT2 � BevacizumabÞ þ eihk

where the time factor was reference coded with baseline (T0) as reference, and the variable Bev-

acizumab was reference coded, where 1 indicates bevacizumab + conventional chemotherapy

(Treatment), and 0 indicates conventional chemotherapy only (Control). In order to visualize

how the treatment modified the metabolic changes during chemotherapy, the effect matrices

for time and the time�treatment interaction factor were added together, and the combined

effect matrix was analyzed with PCA. While this confounds the variation from the time- and

treatment factors, it also facilitates a more direct assessment of how the treatment and control

groups differ at the different timepoints. Results for the time factor and time�treatment factor

in isolation are shown in S1 and S2 Figs, respectively. Results from univariate mixed models

are shown in S1 Table.

In Fig 1, the scree plot shows that the first principal component (PC1) explains approxi-

mately 88% of the variation in the time and time�treatment interaction effects. The scores and

loadings for PC1 show that levels of ascorbate, tyrosine, glycerophosphocholine, phosphocho-

line, choline, creatine and glutathione decrease over time, while levels of glucose, lactate, tau-

rine, glutamine, and alanine increase over time, and that these changes are most rapid and

pronounced for the treatment group. The bootstrapped confidence intervals suggest a signifi-

cant time effect at both the second and third timepoints (Figs 1 and S1). No significant treat-

ment effect is observed at the second timepoint, while a marginally significant treatment effect

is observed at the third timepoint (Figs 1 and S2).

When the effect matrix for time + time�treatment is augmented with the random intercepts

and residuals (Fig 2), we observe significant between-patient variation and heterogeneity in

treatment response, showing that the estimated treatment effect is modest relative to the varia-

tion between subjects and unexplained variation in the model. For comparison, we have

Fig 1. Scree-, score-, and loading plots for the full effect matrix for time + time�treatment. Abbreviations: CTX:

Chemotherapy, B: Bevacizumab, GPC: Glycerophosphocholine, PC: Phosphocholine.

https://doi.org/10.1371/journal.pcbi.1009585.g001
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projected both the fitted values (MT + MT�Bevacizumab + ZU, continuous lines) and with the

residuals added (MT + MT�Bevacizumab + ZU + E, dashed lines), showing that there is significant

residual variation after accounting for the between-subject variation.

Metabolic effects of bariatric surgery

To estimate the effects for RM-ASCA+ analysis of the bariatric surgery data, an unconstrained

repeated measures model was used:

yihk ¼ ðb0 þ g0iÞ þ b1T1 þ b2T2 þ b3T3 þ b4T4 þ b5ðDistalÞ þ b6ðProximalÞ þ b7ðDistal
� T1Þ þ b8ðDistal � T2Þ þ b9ðDistal � T3Þ þ b10ðDistal � T4Þ þ b11ðProximal � T1Þ

þ b12ðProximal � T2Þ þ b13ðProximal � T3Þ þ b14ðProximal � T4Þ þ eihk

where time was reference coded with baseline as reference, and variables for treatment (Distal
and Proximal) were sum coded, with the third category (Sleeve) specified by setting both Distal
and Proximal equal to -1. In this analysis the effect matrix for the time factor and the effect

matrix for the main effect for treatment together with its interaction with time are analyzed

separately. This is done to better isolate the time effect, as the interaction has a large impact on

the loadings in the combined analysis. To make the effect matrix for time, a matrix containing

the coefficients β1-β4 for each metabolite was multiplied with their corresponding columns in

the design matrix X. To make the effect matrix for (treatment + time�treatment), the same was

done for the coefficients β5-β14. The result from the combined effect matrix is shown in S3 Fig.

Results from univariate mixed models are shown in S2 Table.

The results from PCA on the effect matrix for time is shown in Fig 3. This trend represents

the average change over time across all three groups. Two distinct temporal patterns are

observed in the score plots. Along the first component, which explains 69% of the variance in

Fig 2. Score plot for PC1 for the effect matrix for time + time�treatment, augmented with random effects (continuous

lines) and both random effects and residuals (dashed lines). Only a random subset of patients with complete data are

included in the plot. Orange: Chemotherapy + Bevacizumab. Blue: Chemotherapy only.

https://doi.org/10.1371/journal.pcbi.1009585.g002
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the time effect, there is a highly significant increase in score value between the first and second

timepoint, and this difference persists over time. Metabolites with positive loadings on PC1

include methylsulfonylmethane, and the amino acid glycine, while the amino acids valine, iso-

leucine, tyrosine, and phenylalanine, the alcohols isopropylalcohol and methanol, and the lipo-

protein signal have negative loadings. In the second component, which explains 28% of the

variance in the time effect, a different pattern is observed. There is a temporary increase in

scores after surgery, and then a progressive decrease over time. Metabolites with positive load-

ings on PC2 mainly include citrate and the ketone bodies acetoacetate and hydroxybutyrate,

while methylsulfonylmethane has the most negative loading value.

The results from PCA on the effect matrix for the treatment + time�treatment interaction

effect are shown in Fig 4. The first principal component explains 64% of the variation in the

effects. In the score plot for PC1, the group receiving distal RYGB shows increasing score val-

ues over time, and diverges from the two other surgery groups. The loading plot for PC1 is

characterized by a highly positive loading for methylsulfonylmethane.

Discussion

In this work we have described a novel methodology, RM-ASCA+, suitable for analysis of lon-

gitudinal multivariate data, and we have demonstrated this using two publicly available meta-

bolomics datasets. We find that RM-ASCA+ yields interpretable and efficient representations

of the findings in the original studies, while also revealing trends not previously apparent.

RM-ASCA+ provides a highly flexible methodology that allows different coding systems and

Fig 3. Scree-, score-, and loading plots for the effect matrix for time in the bariatric surgery data. Abbreviations:

PC: principal component, MSM: methylsulfonylmethane.

https://doi.org/10.1371/journal.pcbi.1009585.g003

PLOS COMPUTATIONAL BIOLOGY Repeated measures ASCA+ for analyzing longitudinal multivariate data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009585 November 9, 2021 15 / 21

https://doi.org/10.1371/journal.pcbi.1009585.g003
https://doi.org/10.1371/journal.pcbi.1009585


inclusion of covariates, making the method highly suitable for clinical trials with multivariate

outcomes.

To demonstrate RM-ASCA+, we have used published data from two different clinical trials.

In the first study, by Euceda et al., the impact of neoadjuvant bevacizumab on tumor metabo-

lism was assessed in a randomized controlled trial [28]. The statistical analysis in the published

paper involved a combination of PCA, PLS-DA, and univariate mixed models. A clear overall

metabolic change over time for the entire cohort was described, characterized by increased lev-

els of glucose and lipids, and decreased levels of phosphocholine, glycerophosphocholine, cho-

line, and taurine, which was interpreted as signs of normalization of breast tissue metabolism

[31]. However, no significant discrimination between treatment and control was found at any

timepoint by PLS-DA. When applying RM-ASCA+, we are able to visualize the fact that while

the groups show directionally similar metabolic trajectories over time, the slope is more steep

for the treatment group, suggesting that the addition of bevacizumab may have augmented the

chemotherapy response.

In the second dataset included in this paper, Gralka et al. assessed metabolic changes in

serum after bariatric surgery. In their paper they describe increased levels of the amino acids

glycine, glutamine, histidine, and arginine, along with increased levels of methylsulfonyl-

methane, trimethylamine-N-oxide, and formate, irrespective of procedure type. Conversely,

concentrations of the branched chain amino acids (BCAA) isoleucine, leucine, valine, and the

aromatic amino acids (AAA) phenylalanine and tyrosine were found to decrease, along with

the lipoprotein signal and the gut microbiome derived metabolites methanol and isopropylal-

cohol. They also describe temporarily increased levels of the ketone bodies acetoacetate and

hydroxybutyrate, and citrate after surgery, which was interpreted as reflective of ongoing fat

catabolism. We find that by using RM-ASCA+, and then analyzing the time effect matrix,

these results are visualized as two separate temporal trends. PC1 shows a large increase in

score value from baseline to the first follow-up, and this score remains largely unaltered over

time. This component describes the decreased levels of BCAAs, AAAs, lipoprotein signal, and

methanol and isopropylalcohol, and increased levels of methylsulfonylmethane, glycine and

ketone bodies. The response pattern described by PC2 is characterized primarily by

Fig 4. Scree-, score-, and loading plots for the effect matrix for the treatment + time�treatment interaction effect.

Abbreviations: PC: principal component, MSM: methylsulfonylmethane.

https://doi.org/10.1371/journal.pcbi.1009585.g004
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temporarily increased levels of ketone bodies and citrate. These metabolites increase after sur-

gery, before decreasing over time and appearing to approach a steady state, which is not yet

reached at the final follow-up. Both the temporal development and metabolite loadings of PC2

suggest that this component may reflect changes in fat catabolism, which presumably is highest

in the first months after surgery, and then tapers off as the patients lose weight and reach a

new energy equilibrium. Ketone bodies generally increase during periods of increased fat oxi-

dation, due to increased availability of acetyl-CoA, which then react to produce ketone bodies

[32]. Analysis of the time-treatment interaction effect showed that the metabolic effects of

proximal RYGB and GS were similar, while the group receiving distal RYGB showed a differ-

ent metabolic trajectory. The loading plots show that this divergence is mainly driven by differ-

ent effects on the metabolite methylsulfonylmethane, where the group receiving distal RYGB

showed more pronounced increases compared with proximal RYGB or GS.

We have discussed three commonly used types of longitudinal linear models: 1) repeated

measures models (cLDA/ucLDA), 2) longitudinal ANCOVA, and 3) analysis of changes.

While the model types will in some settings yield equivalent results, and all will give unbiased

estimates of the treatment effect for randomized studies [33], repeated measures models have

some general advantages which make them more suitable for ASCA-type models. In addition

to including the baseline responses in the effect matrices, which is useful when visualizing the

effects over time in score plots, they can also accommodate both randomized and non-ran-

domized study designs. While longitudinal ANCOVA and analysis of changes also can esti-

mate the time effect, the multivariate results generated using these models are somewhat more

difficult to interpret, because the baseline responses are not included in the effect matrices.

Repeated measures models also make full use of all available data. For these reasons, we find

repeated measures models to be the most suitable for analyzing such studies using ASCA+ or

LiMM-PCA.

While LDA-models use all available data when estimating the effects, they require missing

data to be missing at random (MAR) in order to provide unbiased estimates. This means that

the probability of missingness must be conditionally independent of the value of the unob-

served response, given the subject’s observed covariates [34]. For example, if missing samples

are metabolically different from non-missing samples from patients with the same covariates,

missing data will bias the effect estimates regardless of which linear model is used. This is

referred to as missing not at random (MNAR), or non-ignorable missing data. If there is sub-

stantial missing data, and it is suspected to be non-ignorable, it is recommended to perform

multiple imputation to assess how different assumed distributions for the missing data affect

the findings [35]. This can also be implemented in our framework. One relevant example in

the context of clinical trials is reference-based imputation [36], where missing responses are

imputed under the assumption that their distribution is the same as the observed distribution

as one of the treatment arms. If the control group is set as the reference group, this is equiva-

lent to an assumption of no treatment effect for the missing responses. This will lead to a more

conservative treatment effect estimate, and may be preferable in cases where MAR is unlikely

to hold, and an intention-to-treat analysis is desirable.

An important goal of statistical modeling in clinical trials is to assess whether the treatment

effect is statistically significant. In ASCA, the statistical significance of model factors is com-

monly assessed by permutation testing [37]. However, permutation tests are only approximate

for interaction effects [38]. Another approach is to use resampling techniques (e.g. bootstrap-

ping) to generate confidence intervals for the scores and loadings associated with the effect

matrices, which is the approach taken in this paper. While this does not provide formal statisti-

cal inference or exact p-values, bootstrap-based confidence intervals have been explored for

several related methods, including multilevel simultaneous component analysis (ML-SCA)
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[27], which can be considered a special case of ASCA, and PRC [19], and have been found to

perform reasonably well provided a sufficient sample size. Because principal components

based on different data are not necessarily comparable due to rotational ambiguity, we also

performed a rotation step before obtaining the percentiles [25,26]. The rotation was done

using the loadings as the target matrix, and this naturally results in more narrow confidence

intervals for the loadings. While this approach has the advantage of providing confidence

intervals for both scores and loadings, the exact interpretation of these intervals has still not

been properly studied, and further investigation into their inferential properties is still needed.

An alternative way of assessing statistical significance of experimental factors is provided by

the GLLR-test in the LiMM-PCA method. Given that the main aim of clinical trials is to esti-

mate and test the effect of treatments, further research should be done to systematically com-

pare the different methods for assessing statistical significance in the ASCA+ / LiMM-PCA

frameworks in the context of randomized controlled trials.

A limitation of RM-ASCA+ is that mixed models are computationally demanding, and

applying mixed models to potentially tens of thousands of variables may not be feasible. In

such situations, the pre-transformation of the response matrix by PCA done in LiMM-PCA

can drastically reduce the number of response variables, making LiMM-PCA the more scalable

alternative for high-dimensional data. Another issue is the impact of pre-processing. Both scal-

ing and normalization methods, as well as variable transformations such as log- or square root

transformations, can strongly impact multivariate models, including ASCA [21]. A discussion

of the impact of these issues is outside the scope of this paper, but they should be carefully con-

sidered in any multivariate analysis study. Finally, there is also the possibility of extending this

methodology to count and binary data using generalized linear mixed models. This extension

may be problematic for LiMM-PCA, because the initial PCA-step may not be well suited for

these data types, while this is less of an issue in RM-ASCA+, which does not include this step.

In conclusion, repeated measures linear mixed models can be used to visualize and com-

pare multivariate changes between groups over time. This approach is not limited to metabolo-

mics data, but may be suitable for any study using a longitudinal repeated measures design

with a multivariate endpoint.
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S1 Fig. Scree-, score-, and loading plots for the effect matrix for time for the NeoAva-data.

Abbreviations: CTX: Chemotherapy, B: Bevacizumab, GPC: Glycerophosphocholine, PC:

Phosphocholine.

(TIF)

S2 Fig. Scree-, score-, and loading plots for the effect matrix for time�treatment interaction

for the NeoAva-data. Abbreviations: CTX: Chemotherapy, B: Bevacizumab, GPC: Glycero-

phosphocholine, PC: Phosphocholine.

(TIF)

S3 Fig. Scree-, score-, and loading plots for the effect matrix for time + treatment + time-
�treatment interaction for the bariatric surgery data. Abbreviations: PC: principal compo-

nent, MSM: methylsulfonylmethane.

(TIF)

S1 Table. Table with results from analyses with individual linear mixed models (con-

strained LDA-model) on each metabolite for the NeoAva-data.
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strained LDA-model) on each metabolite for the bariatric surgery data.
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