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A B S T R A C T   

Understanding the in-sewer stability of analgesic biomarkers is important for interpreting wastewater-based 
epidemiology (WBE) data to estimate community-wide analgesic drugs consumption. The in-sewer stability of 
a suite of 19 analgesics and their metabolites was assessed using lab-scale sewer reactors. Target biomarkers were 
spiked into wastewater circulating in simulated gravity, rising main and control (no biofilm) sewer reactors. In- 
sewer transformation was observed over a hydraulic retention time of 12 h. All investigated biomarkers were 
stable under control reactor conditions. In gravity sewer conditions, diclofenac, desmetramadol, ibuprofen 
carboxylic acid, ketoprofen, lidocaine and tapentadol were highly stable (0–20% transformation in 12 h). Val-
decoxib, parecoxib, etoricoxib, indomethacin, naltrexone, naloxone, piroxicam, ketoprofen, lidocaine, tapenta-
dol, oxymorphone, hydrocodone, meperidine, hydromorphone were considered as moderately stable biomarkers 
(20–50% transformation in 12 h). Celecoxib and sulindac were considered unstable biomarkers (>50% trans-
formation in 12 h). Ketoprofen, lidocaine, tapentadol, meperidine, hydromorphone were transformed to 0–20% 
whereas diclofenac, desmetramadol, ibuprofen carboxylic acid, valdecoxib, parecoxib, etoricoxib, indomethacin, 
naltrexone, piroxicam were transformed up to 20–50% in 12 h in rising main reactor (RMR). These biomarkers 
were considered as highly stable and stable biomarkers in RMR, respectively. Sulindac, celecoxib, naloxone, 
oxymorphone and hydrocodone were transformed more than 50% in 12 h and considered as unstable biomarkers 
in RMR. This study provides the information for a better understanding of the in-sewer loss of the analgesics 
before using them in WBE biomarkers for estimating drug loads at the population level.   

1. Introduction 

Physical pain is almost an unavoidable part of human life. It is one of 
the major reasons patients seek medical assistance (Fishman 2007). 
Treatment of pain is complex but pain medications, known as analgesics, 
are considered effective and quick treatment options to relieve pain. 
Analgesics comprise mainly non-steroidal anti-inflammatory drugs 
(NSAIDs) and opioids (Brower 2000). While analgesics act to relieve 
body pain, misuse and overdose of analgesics, and specifically opioids, 
can pose a health burden and additional mortality to our communities 
(Berterame et al., 2016). 

Assessing the prevalence of pain in a community or population can 
be challenging. Individual pain assessment tools provide the scope to 
measure pain (Relland et al., 2019) but are often limited to an individual 
or personal scale. We recently proposed a new theoretical method 
through the wastewater-based measurement of the population treated 

pain burden (Ahmed et al., 2020b). A theoretical basis for quantifying 
analgesic drugs in wastewater followed by normalisation of the relative 
drug potency to estimate community pain burden was presented 
(Ahmed et al., 2020b). The proposed method would allow us to estimate 
analgesics and rank the population treated pain burden area within and 
between populations. 

Wastewater-based epidemiology (WBE) entails the systematic sam-
pling and analysis of chemical markers in wastewater to estimate human 
consumption of or exposure to chemicals through the analysis of 
wastewater (Daughton 2018; Zuccato et al., 2008). WBE has been suc-
cessfully applied to estimate illicit drug consumption (Ort et al., 2014b; 
Sodré et al., 2018; Thomas et al., 2012) and lifestyle-related factors, 
such as alcohol (Reid et al., 2011) and tobacco use (Zheng et al., 2017). 
WBE can also provide information about the health, diet and diseases 
associated with a community (Ahmed et al., 2020a; Ahmed et al., 2020c; 
Choi et al., 2018a; Choi et al., 2018b; Ryu et al., 2016). WBE relies on the 
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quantification of specific biomarkers in wastewater that ideally are: 1) 
excreted through urine in consistent amounts with an adequate con-
centration once diluted in wastewater, 2) sufficiently stable in waste-
water during the transport process and 3) unique to human metabolism 
(Chen et al., 2014; Gracia-Lor et al., 2017; McCall et al., 2016). 
Consumed analgesics can remain as the parent compound or transform 
into a metabolite through human metabolic pathways before excretion 
in urine into the sewer system. 

Sewer networks typically contain a mixture of gravity sewers, pump 
stations, rising mains and other structures. Wastewater contains soluble 
and particulate organics which can work as primary substrates for mi-
crobial growth on the sewerage infrastructure surface which is generally 
termed as biofilms (Romaní et al., 2016). Different wastewater charac-
teristics or parameters (e.g. dissolved oxygen, nutrient, pH, tempera-
ture) control the microbial growth and transformation of chemicals in 
the sewer network (Sharma et al., 2013). Gravity sewers are partially 
filled with wastewater where both aerobic and anaerobic microbes can 
exist whereas rising mains are filled with wastewater, typically deprived 
of oxygen, hence anaerobic microbes are largely predominant (Hvit-
ved-Jacobsen et al., 2013). Several studies have already reported the 
in-sewer stability of a limited number of opioids or NSAIDs in lab-scale 
reactors and showed their applicability as a WBE biomarkers (Gao et al., 
2017; O’Brien et al., 2017; Ramin et al., 2017). However, there is a lack 
of information on the stability of different analgesic drugs, particularly 
NSAIDs, and this needs to be addressed to get accurate background in-
formation of their suitability as WBE biomarkers. 

In this study, we examined the stability of 19 NSAIDs and opioids 
biomarkers in the lab-scale sewer reactors simulating real sewers. This is 
to date the first in-sewer stability assessment experiment of a broad 
range of analgesics and metabolites, to evaluate their suitability as 
biomarkers for WBE. Minimal in-sewer biomarker loss increases the 
confidence in WBE estimation of analgesics consumption by the 
population. 

2. Materials and methods 

2.1. Chemicals and reagents 

Nineteen analgesics and their metabolites were selected due to their 
common use as analgesics and potential for abuse. These are diclofenac, 
desmetramadol, ibuprofen carboxylic acid, valdecoxib, parecoxib, cel-
ecoxib, etoricoxib, indomethacin, sulindac, naltrexone, naloxone, pir-
oxicam, ketoprofen, lidocaine, tapentadol, oxymorphone, hydrocodone, 
meperidine, and hydromorphone. Detailed description of the bio-
markers is shown in the SI, Table S1. All reference standards and 
deuterated label internal standards (IS) were supplied from Novachem 
(New South Wales, Australia) and PM separations (Queensland, 
Australia). Methanol (analytical grade) was purchased from Merck Pty 
Ltd. (Highway Bayswater, Australia). MilliQ system (0.22 μm filtered at 
18.2 MΩ cm− 1, Millipore, Bedford, USA) was used for producing MilliQ 
water. 

2.2. Instrumentation 

All compounds were analysed using a validated method (Ahmed 
et al., 2021) with a Shimadzu Nexera X2 UHPLC system coupled to a 
Sciex 6500+ QTRAP mass spectrometer (Ontario, Canada). An Ultra AQ 
C18 (100 × 2.1 mm × 3 µm) column with a guard column (Restek, USA 
CAT #27,475) was used for chromatographic separation at a flow rate of 
0.50 mL/min. The injection volume was used as 2 µL. Mobile phase A 
was 99% water with 0.1% formic acid and mobile phase B was 99.9% 
methanol with 0.1% formic acid. The mobile phase gradient was as 
follows: t = 1.0:12% B, t = 8.20: 80% B, t = 8.50: 98% B, t = 9.5: 0.65% 
B, t = 10.90: 98% B, t = 11.00: 12% B, t = 13: 0.5% B, t = 14: STOP. The 
mass spectrometry parameters and method validation results are listed 
in the SI (Table S2, S3, S4). Data were attained and processed using 

Analyst 1.7.1 (Sciex) and MultiQuant 3.0.2, respectively. 

2.3. Lab-scale sewer reactors 

Representative lab-scale sewer reactors were used to assess the 
transformation of selected analgesics and their metabolites under real-
istic sewer conditions. These lab-scale sewer reactors comprised a rising 
main reactor (RMR), a gravity sewer reactor (GSR), and a control reactor 
(CR) (Li et al., 2018). The diameter of RMR was 80 mm and was made of 
Perspex™ with a volume of 0.75 L. Four stainless-steel rods (1-cm 
diameter) inside the reactor were used to facilitate the biofilm growth. 
The GSR was partially filled with real wastewater with similar dimen-
sion of RMR. The GSR had a mixture of biofilm (aerobic and anaerobic). 
RMR and GSR have been established and operating over years under 
anaerobic and aerobic conditions, respectively (Banks et al., 2018; Jiang 
et al., 2009). 

Mature biofilms were cultivated on the inner surfaces of the reactor 
walls, with a calculated biofilm-area-to-wastewater-volume (A/V) ratio 
of 72.5 m2/m3 in RMR and 50 m2/m3 in GSR. Biofilms in both the RMR 
and the GSR showed strong biological activities, as indicated by their 
sulfidogenic and methanogenic activities (see Section 3.1 for results). 
Domestic sewage was used to feed the reactors and was pumped in with 
a peristaltic pump (Masterflex 7520–47) every 6 h. A magnetic stirrer 
was used for continuous mixing (250 rpm) inside each reactor to confirm 
homogeneous distribution. Typical sewage parameters are shown in the 
SI, Section 1. Due to regular cleaning and a lack of plastic carriers which 
facilitate biofilm growth, the CR has no biofilm formation and contains 
wastewater only. 

Triplicate batch tests were conducted to estimate the transformation 
of the analgesic compounds and their biomarkers. A chemical mix of 
target biomarkers (10 μg/L) were spiked into the reactors. Before 
spiking the target biomarkers, wastewater was warmed to room tem-
perature and then mixed rapidly before feeding to the drained reactors. 
Wastewater samples were collected at multiple time points during each 
12 hrs batch test (0, 0.5, 1, 2, 4, 6, 8 and 12 hrs), filtered, and then stored 
at − 80 ◦C until further analysis. Before instrumental analysis, samples 
were defrosted to room temperature and spiked with internal standards 
(10 µg/L), then immediately analysed by direct injection. Due to the 
high spiked levels, direct injection analysis was sufficient. 

2.4. Acceptable criteria to select the stability of compounds 

In this study, we grouped the biomarkers in the following criteria to 
assess their stability in the sewer reactor.  

a Highly stable biomarkers: 0–20% transformation within 12 h.  
b Moderately stable biomarkers: 20–50% transformation within 12 

h.  
c Unstable biomarkers: >50% transformation within 12 h. 

2.5. Quality assurance and quality control (QA/QC) 

A nine-point calibration curve was used (0.1 to 100 μg/L, linearity R2 

> 0.99) with isotopically labelled internal standards (10 μg/L) for 
quantification. For every ten samples analysed, a calibration point, a 
duplicate sample, a pooled wastewater sample, a native spiked pooled 
wastewater sample and a method blank were analysed to confirm and 
monitor the instrument and analytical method performance. The results 
of QA/QC are listed in supplementary information (SI, Table S5) 

2.6. Data processing 

At time 0, the concentration of chemicals was considered as the 
initial concentration (100%). For each 12 h experiment, all concentra-
tions were normalised to a percentage relative to the initial concentra-
tion. To evaluate the degradation profile under sewer conditions, zero- 
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order or first-order kinetics models were applied and the best fit kinetic 
model was identified based on the highest correlation (r) value. Half-life 
in pseudo first-order model was computed in pseudo first-order model. 
Analyses were carried out using GraphPad Prism 9 (GraphPad Software 
Inc) and Matlab (version 2020b). 

3. Results and discussion 

3.1. Biological activities in the sewer reactors 

Wastewater pH was stable during the batch tests (RMR pH = 7.06 ±
0.1, GSR pH = 7.13 ± 0.1 and CR pH = 7.50 ± 0.2). Biological activity, 
as described by methane and sulfide production rates were monitored in 
the simulated RMR and GSR. Stronger activities of sulfate-reducing 
bacteria and methanogens were found in the RMR reactor. The pro-
duction of dissolved sulfide and methane was lower in the GSR reactors. 
This is likely because of the presence of oxygen and the transfer of 
hydrogen sulfide and methane from the bulk wastewater phase to air in 
GSR. Limited biological activity was observed in CR in the absence of 
biofilms as indicated by the little consumption of sulfate or SCOD. The 

results of the biological activities are comparable with previous studies 
(Table 1) (Gao et al., 2017; Thai et al., 2014a; Thai et al., 2014b). 

3.2. Sewer reactor data analysis 

To assess biomarker stability under the different sewer conditions, 
regression models (zero or first order) were fitted to the biomarker data 
to establish best fit (Table 2). We used the regression with the highest R2 

value except the linear regression had a slope not significantly different 
from zero (indicates the stability over the test period). It indicated that 
relatively large deviation between the observed data and the fitted 
regression model could be attributed to the complexity of the reactors, 
including the potential variations in biological activities and wastewater 
conditions. 

3.2.1. Transformation of biomarkers in the control reactor 
In the CR reactor, the transformation profile is best described by a 

zero-order model. All the studied biomarkers were highly stable in the 
CR. (Table 3 & Fig 1). However, ibuprofen carboxylic acid, naloxone 
and ketoprofen showed slight formation behaviour in the CR. Low rates 
of transformation are expected in the CR as there is no biofilm present 
and microbial activity is likely to be low (Thai et al., 2014a). In a pre-
vious study with the same reactor, O’ Brien et al. (O’Brien et al., 2019) 
outlined that the increased gas-liquid transfer causing the higher dis-
solved oxygen (DO) level in CR which may be responsible for the 
transformation of certain biomarkers in CR (Table 3). All the investi-
gated biomarkers were highly stable for at least 12 h in the CR (Fig. 1). 

3.2.2. Transformation of biomarkers in gravity sewer reactor (GSR) 
In the GSR reactor, the transformation profile was best described by a 

first-order model except ibuprofen carboxylic acid, lidocaine and 
tapentadol (Table 2). Ibuprofen carboxylic acid, lidocaine and tapen-
tadol followed the stable transformation over the experimental time. 
Based on our stability criteria, where 0–20% transformation over 12 h is 
considered highly stable and diclofenac, desmetramadol, ibuprofen 
carboxylic acid, ketoprofen, lidocaine and tapentadol in GSR meet these 
criteria (Table 3 and Fig 1). Valdecoxib, parecoxib, etoricoxib, indo-
methacin, naltrexone, naloxone, piroxicam, ketoprofen, lidocaine, 
tapentadol, oxymorphone, hydrocodone, meperidine, hydromorphone 
were transformed up to 20–50% in 12 h and classified as moderately 
stable biomarkers. Celecoxib and sulindac were considered unstable 
biomarkers in GSR with >50% transformation over 12 h (Table 3 and 
Fig 1). 

Table 1 
List of sulfate-reducing and methanogenic activities in sewer reactors in the 
present study and other similar studies.  

Study Type of 
sewer 

Sulfide generating 
activity in mgS/L/h 

Methanogenic activity 
in mgCOD/L/h 

Present study RMR 
reactor 

4.7 23.1 

GSR 
reactor 

1.7 4.4 

(He et al., 2021) RMR 
reactor 

6.1 25.6 

GSR 
reactor 

1.4 2.6 

(O’Brien et al., 
2017; Banks 
et al., 2018) 

RMR 
reactor 

7.2 29.7 

GSR 
reactor 

4.2 14.8 

(Thai et al., 2014b;  
Thai et al., 
2014a) 

RMR 
reactor 

4.3 18.9 

GSR 
reactor 

0.2 1.5 

(Gao et al., 2017) RMR 
reactor 

5.6 12.1 

(Li et al., 2018) RMR 
reactor 

4.8 12.4  

Table 2 
Regressions model of biomarkers degradation in sewer reactor.  

Biomarkers CR GSR RMR  
R2 Best fit model K value R2 Best fit model K value R2 Best fit model K value 

Diclofenac  n. s 0.01132 0.50 First order 0.01476 0.70 First order 0.03243 
Desmetramadol  n. s 0.01515 0.43 First order 0.01600 0.85 First order 0.01600 
Ibuprofen carboxylic acid  n. s − 0.0004229  n. s 0.001302  n. s 0.02446 
Valdecoxib  n. s 0.003772 0.64 First order 0.04732 0.54 First order 0.1045 
Parecoxib  n. s 0.006518 0.47 First order 0.03407 0.74 First order 0.05630 
Celecoxib  n. s 0.01337 0.62 First order 0.06653 0.52 First order 0.04714 
Etoricoxib  n. s − 0.0003481 0.52 First order 0.03777 0.74 First order 0.09152 
Indomethacin  n. s 0.009781  n. s 0.04055 0.85 First order 0.04509 
Sulindac  n. s 0.01181 0.90 First order 0.08575 0.94 First order 0.2000 
Naltrexone  n. s 0.005403 0.56 First order 0.03574 0.63 First order 0.04794 
Naloxone  n. s − 0.0006439  n. s 0.03260 0.52 First order 0.09281 
Piroxicam  n. s 0.007292  n. s 0.02050 0.51 First order 0.03967 
Ketoprofen  n. s − 0.01615  n. s 0.009019  n. s 0.01587 
Lidocaine  n. s − 0.002656  n. s 0.01200  n. s − 0.004793 
Tapentadol  n. s 9.686e-005  n. s − 0.004409  n. s 0.005998 
Oxymorphone  n. s − 0.005292 0.5 First order 0.04001 0.54 First order 0.05906 
Hydrocodone  n. s 1.114e-005  n. s 0.02911 0.50 First order 0.07956 
Meperidine  n. s − 0.003908 0.32 First order 0.01639 0.50 First order 0.02384 
Hydromorphone  n. s − 0.003389 0.26 First order 0.01598  n. s 0.01603 

n. s = slope not significantly different from zero. CR = control reactor, GSR = gravity sewer reactor, RMR= rising main reactor. 
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3.2.3. Transformation of biomarkers in the rising main reactor (RMR) 
Lidocaine and tapentadol were stable over the 12 h experimental 

period. Ketoprofen, lidocaine, tapentadol, meperidine, hydromorphone 
were transformed by 0–20% over the experimental period in RMR 
(Table 3 and Fig 1). Diclofenac, desmetramadol, ibuprofen carboxylic 
acid, valdecoxib, parecoxib, etoricoxib, indomethacin, naltrexone, pir-
oxicam were transformed up to 20–50% in 12 h. These biomarkers were 
considered moderately stable biomarkers in RMR. Sulindac, celecoxib, 

naloxone, oxymorphone and hydrocodone were transformed more than 
50% in 12 h and considered as unstable biomarkers in the RMR (Table 3 
and Fig 1). 

3.3. Implication for wastewater-based epidemiology 

The primary goal of WBE is to quantify community-wide chemical 
consumption or exposure. The method is subject to several uncertainties 

Table 3 
Stability of biomarkers in sewer reactor conditions.  

Biomarkers Time to 10% transformation (h) Time to 20% transformation (h) Time to 50% transformation (h)  
CR GSR RMR CR GSR RMR CR GSR RMR 

Diclofenac >12 7.1 3.2 >12 >12 6.9 >12 >12 >12 
Desmetramadol >12 6.6 3.6 >12 >12 7.7 >12 >12 >12 
Ibuprofen carboxylic acid >12 >12 4.3 >12 >12 9.1 >12 >12 >12 
Valdecoxib >12 2.2 1.1 >12 4.7 2.1 >12 >12 >12 
Parecoxib >12 3.1 1.9 >12 6.5 6.9 >12 >12 >12 
Celecoxib >12 1.6 1.7 >12 3.4 3.6 >12 10.4 11.2 
Etoricoxib >12 2.8 1.5 >12 5.9 2.4 >12 >12 >12 
Indomethacin >12 2.6 2.3 >12 4.9 4.9 >12 >12 >12 
Sulindac >12 1.2 0.5 >12 2.6 1.1 >12 8.0 3.5 
Naltrexone >12 2.9 2.2 >12 6.2 4.7 >12 >12 >12 
Naloxone >12 3.3 1.1 >12 6.8 2.4 >12 >12 7.5 
Piroxicam >12 5.1 2.7 >12 11.9 5.6 >12 >12 >12 
Ketoprofen >12 >12 6.6 >12 >12 >12 >12 >12 >12 
Lidocaine >12 >12 >12 >12 >12 >12 >12 >12 >12 
Tapentadol >12 >12 >12 >12 >12 >12 >12 >12 >12 
Oxymorphone >12 2.6 1.8 >12 5.6 3.8 >12 >12 11.7 
Hydrocodone >12 3.2 1.1 >12 6.9 2.4 >12 >12 7.5 
Meperidine >12 6.4 6.6 >12 >12 >12 >12 >12 >12 
Hydromorphone >12 6.6 6.6 >12 >12 >12 >12 >12 >12  

Fig. 1. Transformation profile of studied analgesics and their metabolites under different sewer conditions (Green: control reactor, Blue: gravity sewer, Red: rising 
main). X – axis: time (hours) after spiking. Y – axis: percentage (%) of concentration at t = 0. Concentrations for each sample are from triplicate sewer reactor 
experiments. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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associated with different steps. Detailed understanding of biomarker 
stability under different sewer conditions can help improve the accuracy 
of final estimates and assist in interpretation. In this study, diclofenac, 
desmetramadol, ibuprofen carboxylic acid, piroxicam, ketoprofen, 
lidocaine, tapentadol, meperidine and hydromorphone were stable (≤
20% transformation within 12 h) considering all conditions and the type 
of sewers. 

However, the type of sewer reactor and hydraulic retention time 
(HRT) could play a crucial part in interpretation of our results. It is noted 
that most wastewater catchments mainly comprise gravity sewer with 
the median in-sewer residence time of approximately 4 h (Ort et al., 
2014a). Based on this study, we could say only celecoxib and sulindac 
had 20% loss in 4 h before entering the network and passing the sam-
pling location at the WWTP. 

Biofilms in both GSR and RMR increased the transformation of the 
biomarkers, hence, to estimate the analgesic consumption through WBE, 
we need to also consider the associated uncertainties (sewer in-
frastructures, population characteristics, etc.). Further knowledge about 
the sorption and transformation behaviour of chemicals could help to 
develop a systematic model that can reduce the uncertainties in back- 
estimating consumption using WBE. 

4. Limitations 

There are several limitations that need to be acknowledged in this 
study. In a real world scenario, the surface area to volume ratio (A/V) of 
RM and GS is different compared to lab-scale sewer reactors (Gao et al., 
2017). It is also noted that for certain biomarkers the GS and RM sewer 
reactors may overestimate the degradation profile compared to pilot 
sewers functioning with GSR and RMR mode (Choi et al., 2020). In this 
study, we only measured the free and non-conjugated forms of the 
analgesic analytes. Also, there may be residual concentrations that 
transform to the biomarkers in the sewer reactors but at the levels it was 
spiked we believe this would have negligible impact. As opioids typi-
cally have a relatively high log Kow, they may be prone to sorption to 
particulate matter and biofilms (Baker et al., 2012; Subedi and Kannan 
2014). 

5. Conclusions 

This study examined the potential for a panel of analgesic bio-
markers to be used for WBE. The transformation of analgesics and their 
metabolites are sewer-specific and depend on the proportion of GSR and 
RMR in the catchment area. Diclofenac, desmetramadol, ibuprofen 
carboxylic acid, piroxicam, ketoprofen, lidocaine, tapentadol, meperi-
dine and hydromorphone in GSR and ketoprofen, lidocaine, tapentadol, 
meperidine and hydromorphone in RMR were shown to be stable bio-
markers, respectively. In the future, a comprehensive in-sewer study 
including mathematical modelling could help to reduce the un-
certainties in overall estimation. 
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