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ABSTRACT
The Savage–Dickey density ratio is a specific expression of the Bayes factor when testing a precise (equality
constrained) hypothesis against an unrestricted alternative. The expression greatly simplifies the compu-
tation of the Bayes factor at the cost of assuming a specific form of the prior under the precise hypothesis
as a function of the unrestricted prior. A generalization was proposed by Verdinelli and Wasserman such
that the priors can be freely specified under both hypotheses while keeping the computational advantage.
This article presents an extension of this generalization when the hypothesis has equality as well as order
constraints on the parameters of interest. The methodology is used for a constrained multivariate t-test
using the JZS Bayes factor and a constrained hypothesis test under the multinomial model.
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1. Introduction

The Savage–Dickey density ratio (Dickey 1971) is a special
expression of the Bayes factor, the Bayesian measure of sta-
tistical evidence between two statistical hypotheses in light of
the observed data (Jeffreys 1961; Kass and Raftery 1995). The
Savage–Dickey density ratio is relatively easy to compute from
Markov chain Monte Carlo (MCMC) output without requiring
the marginal likelihoods under the hypotheses. Consider a test
of a normal mean θ with unknown variance σ 2, Hc : θ = 0
versus Hu : θ ∈ R, with independent observations yi ∼
N(θ , σ 2), for i = 1, . . . , n. The indices “c” and “u” refer to
a constrained hypothesis and an unconstrained hypothesis.1
Denote the priors for the unknown parameters under Hc and
Hu by πc(σ 2) and πu(θ , σ 2), respectively, which reflect which
values for the parameters are likely before observing the data.
Under Hu we consider a unit information prior πu(θ |σ 2) =
N(0, σ 2) and a conjugate inverse gamma prior for the nuisance
parameter, say, πu(σ 2) = IG( 1

2 , 1
2 ) (the exact choice of the

hyperparameters does not qualitatively affect the argument; see,
e.g., Verdinelli and Wasserman 1995). The marginal prior for
θ under Hu then follows a Cauchy distribution (equivalent to
a Student’s t-distribution with 1 degree of freedom) centered at
θ = 0 with a scale parameter of 1. The marginal posterior for θ

under Hu, πu(θ |y), also has a Student’s t-distribution. When the
prior for the nuisance parameter σ 2 under Hc equals the condi-
tional prior for σ 2 under Hu given the restriction under Hc, that

1The test can equivalently be formulated as a test of Hc : θ = 0 versus Hu :
θ �= 0 as θ = 0 has zero probability under Hu when using a continuous prior
for θ . The formulation Hu : θ ∈ R is used however to make it explicit that
the constrained hypothesis Hc is nested in the unconstrained hypothesis
Hu .
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is, πc(σ 2) = πu(σ 2|θ = 0), the Bayes factor for Hc against Hu
can then be written as the Savage–Dickey density ratio: the ratio
of the unconstrained posterior and unconstrained prior density
evaluated at the constrained null value under Hc (Dickey 1971),
that is,

Bcu = pc(y)
pu(y)

=
∫

p(y|0, σ 2)π1(σ 2)dσ 2∫∫
p(y|θ , σ 2)πu(θ , σ 2)dθdσ 2 = πu(θ = 0|y)

πu(θ = 0)
,

where p(y|θ , σ 2) denotes the likelihood of the data given the
normal mean θ and variance σ 2, and pc(y) and pu(y) denote the
marginal likelihoods under Hc and Hu, respectively. For the cur-
rent problem, we would thus need to divide the posterior t dis-
tribution of θ under Hu evaluated at θ = 0 by the prior Cauchy
distribution at θ = 0, which both have analytic expressions.
Note, of course, that the same expression would be obtained
by deriving the marginal likelihoods which also have analytic
expressions in this scenario. For more complex statistical models
with more nuisance parameters, for which the marginal likeli-
hoods would not have analytic expressions, the Savage–Dickey
density ratio is particularly useful as we only need to compute
the ratio of the unconstrained posterior and the unconstrained
prior evaluated at the constrained null value, which are generally
easy to obtain, for example, using MCMC output.

Despite its computational convenience, a limitation of the
Savage–Dickey density ratio is that it only holds for a specific
form of the prior for the nuisance parameters under the re-
stricted model which is completely determined by the prior
under the unrestricted model. This imposed prior under the
restricted model may not always have a desirable interpretation.
For example, for the Savage–Dickey ratio to hold in the above
example, the prior for the population variance under Hc equals
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πc(σ 2) = πu(σ 2|θ = 0) = IG(1, 1
2 ). This prior under Hc

is more concentrated around smaller values for σ 2 than under
Hu as can be seen from the prior modes for σ 2 under Hc
and Hu which are 1

4 and 1
3 , respectively. This is contradictory

however because the sample estimate for σ 2 will always be
smaller under Hu where the mean θ is unrestricted. Therefore,
the Savage–Dickey density ratio should be used with care. For
discussions on the Savage–Dickey density ratio, see Marin and
Robert (2010) and Heck (2019). For discussions on priors for
the nuisance parameters, see Consonni and Veronese (2008).

To retain the computational convenience of the Savage–
Dickey density ratio, while allowing researchers to freely spec-
ify the prior for the nuisance parameters under the restricted
model, Verdinelli and Wasserman (1995) proposed a general-
ization. In a multivariate setting when testing a vector of key
parameters θ , that is, Hc : θ = r, where r is a vector of constants,
against an unconstrained alternative, Hu : θ unconstrained,
with nuisance parameters φ, where the priors under Hc and Hu
are denoted by πc(φ) and πu(θ , φ), respectively, the multivariate
generalized Savage–Dickey density ratio is given by

B1u = πu(θ = r|y)
πu(θ = r)

× E

{
πc(φ)

πu(φ|θ = r)

}
, (1)

where the expectation is taken over the conditional posterior
under the unconstrained model, πu(φ|θ = r, y). As can be seen,
the generalization is equal to the original Savage Dickey density
ratio (the first factor on the right hand side of (1)) multiplied
with a correction factor based on the ratio of the freely chosen
prior for the nuisance parameters, πc(φ), and the imposed prior
for the nuisance parameters under the Savage–Dickey density
ratio, πu(φ|θ = r). In the above example, one might want to use
the same marginal prior for the nuisance parameter under Hc as
under Hu, that is, πc(σ 2) = IG( 1

2 , 1
2 ).

The generalization in (1) was not derived when the con-
strained hypothesis contains order (or one-sided) constraints
in addition to equality constraints, say, Hc : θ e = re & θo >

ro. Scientific theories however are very often formulated with
combinations of equality and order constraints (Hoijtink 2011).
In repeated measures studies, for instance, theory may suggest
a specific ordering of the measurement means (de Jong, Rigotti,
and Mulder 2017) or measurement variances (Böing-Messing
and Mulder 2020), in a regression model theory may suggest
that a certain set of predictor variables have zero effects, while
other variables are expected to have a positive or a negative ef-
fects (Mulder and Olsson-Collentine 2019), or order constraints
may be formulated on regression effects (Haaf and Rouder
2017) or intraclass correlations (Mulder and Fox 2013, 2019) in
multilevel models. The goal of the current article is therefore to
show the generalization of the Savage–Dickey density ratio in
(1) for a constrained hypothesis with equality and order con-
straints on certain key parameters. This is shown in Section 2,
where the generalization is related to existing special cases of
the Bayes factor. Section 3 presents two applications of Bayesian
constrained hypothesis testing under two statistical models: A
multivariate Bayesian t-test for standardized effects under the
multivariate normal model using a novel extension of the JZS
Bayes factor (Rouder et al. 2009), and a constrained hypothesis
test on the cell probabilities under a multinomial model. The
article ends with some short concluding remarks in Section 4.

2. Extending the Savage–Dickey Density Ratio

Lemma 1 presents our main result.

Lemma 1. Consider a constrained statistical model, Hc, where
the parameters θ e are fixed with equality constraints, that is,
θ e = re, and order (or one-sided) constraints are formulated
on the parameters θo, that is, θo > ro, with (unconstrained)
nuisance parameters φ, and an alternative unconstrained model
Hu, where (θ e, θo, φ) are unrestricted. If we denote the priors
under Hc and Hu according to πc(θo, φ) and πu(θ e, θo, φ),
respectively, then the Bayes factor of model Hc against model
Hu given a dataset y can be expressed as

Bcu = πu(θ e = re|y)
πu(θ e = re)Prc∗(θo > ro)

(2)

× E

{
πc∗(θo, φ)

πu(θo, φ|θ e = re)
1{θo>ro}(θo)

}
,

where the expectation is taken over the conditional posterior of
(θo, φ) given θ e = re under Hu, that is, πu(θo, φ|y, θ e = re),
and πc∗(θo, φ) denotes the “completed” prior under the com-
pleted constrained hypothesis where the one-sided constraints
are omitted, that is, Hc∗ : θ e = re, such that πc(θo, φ) =
Prc∗(θo > ro)−1πc∗(θo, φ)1{θo>ro}(θo), where 1{θo>ro}(θo) is
the indicator function which equals 1 if θo > ro holds, and 0
otherwise, and Prc∗(·) denotes the prior probability of θo > ro
under the completed prior under Hc∗ .

Proof. Appendix A.

Remark 1. Note that in the special case where

πc(θo, φ) = πu(θo, φ|θ e = re)Pru(θo > ro|θ e = re)
−11{θo>ro}(θo),

so that the completed prior under Hc∗ is equal to πu(θo, φ|θ e =
re), then (2) results in the known generalization of the Savage–
Dickey density ratio of the Bayes factor for an equality and order
hypothesis against an unconstrained alternative,

Bcu = πu(θ e = re|y)
πu(θ e = re)

× Pru(θo > ro|y, θ e = re)

Pru(θo > ro|θ e = re)
. (3)

This expression has been reported in Mulder and Gelissen
(2018), for example.

Remark 2. In the special case with no order constraints, the
parameters θo would be part of the nuisance parameters φ, and
thus (2) becomes equal to (1).

Remark 3. The importance of the “completed” prior where
the one-sided constraints are omitted was also highlighted by
Pericchi, Liu, and Torres (2008) for intrinsic Bayes factors.

Lemma 1 shows which four ingredients need to be computed
to obtain the Bayes factor of a constrained hypothesis against an
unconstrained alternative. The computation of these four ingre-
dients can be done in different ways across different statistical
models. To give readers more insights about the computational
aspects, the next section shows the application of the result
under two different statistical models: the multivariate normal
model for multivariate continuous data and the multinomial
model for categorical data.
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3. Applications

3.1. A Multivariate t-Test Using the JZS Bayes Factor

The Cauchy prior for standardized effects is becoming increas-
ingly popular for Bayes factor testing in the social and behavioral
sciences (Rouder et al. 2009, 2012; Rouder and Morey 2015).
This Bayes factor is based on key contributions by Jeffreys
(1961), Zellner and Siow (1980), and Liang et al. (2008), and is
therefore also referred to as the JZS Bayes factor. Here, we extend
this to a Bayesian multivariate t-test under the multivariate
normal model, and show how to compute the Bayes factor for
testing a hypothesis with equality and order constraints on the
standardized effects using Lemma 1. Note that this test differs
from multivariate t-tests on multiple coefficients using a multi-
variate Cauchy prior under univariate linear regression models
(Rouder and Morey 2015; Heck 2019) as we consider a model
with a multivariate outcome variable.

Let a multivariate dependent variable of p dimensions, yi,
follow a multivariate normal distribution, that is, yi ∼ N(μ, �),
for i = 1, . . . , n. To explicitly model the standardized effects, we
reparameterize the model according to

yi ∼ N(L�δ, �), (4)

where δ are the unknown standardized effects, and L� is the
lower triangular Cholesky factor of the unknown covariance
matrix �, such that L�L′

� = �. The model in (4) is a generaliza-
tion of the univariate model considered by Rouder et al. (2009),
yi ∼ N(σδ, σ 2).

As a motivating example we consider the bivariate dataset
(p = 2) presented in Larocque and Labarre (2004), where
yi = (yi1, yi2)′ contains the cell count differences of CD45RA
T and CD45RO T cells of n = 36 HIV-positive newborn infants
(Sleasman et al. 1999). We are interested in testing whether the
standardized effects of the cell count differences of the two cell
types are equal and positive, that is,

Hc : δ1 = δ2 > 0
Hu : (δ1, δ2) ∈ R

2.

The sample means were ȳ = (86.94, 193.47)′ and the estimated
covariance matrix equaled �̂ = [20197 23515; 23515 106350].

Extending the prior proposed by Rouder et al. (2009) to the
multivariate normal model, we set an unconstrained Cauchy
prior on δ under Hu and the Jeffreys’ prior for the covariance
matrix:

πu(δ, �) = πu(δ) × πu(�)

= Cauchy(δ|Su,0) × |�|− p+1
2 .

A diagonal prior scale matrix is set for δ given by Su,0 =
diag(s2

1, s2
2), with s2

1 = s2
2 = 0.25. This prior implies that

standardized effects of about 0.5 are likely under Hu. Under the
constrained hypothesis Hc, the free parameters are the common
standardized effect, say, δ = δ1 = δ2, and the error covariance
matrix, �. We set a univariate Cauchy prior for δ with scale s1
truncated in δ > 0, and the Jeffreys’ prior for �, that is,

πc(δ, �) = π1(δ) × π1(�)

= 2 × Cauchy(δ|s1) × 1(δ > 0) × |�|− p+1
2 ,

where πc∗(δ) = Cauchy(δ|s1) denotes the completed prior, and
2 serves as a normalizing constant for the completed prior as
Prc∗(δ > 0)−1 = 2. As δ has a similar interpretation as δ1 and
δ2 under Hu, the prior scale is also set to s1 = 0.5.

By applying the following linear transformation on the stan-
dardized effects,

θ =
[

θe
θo

]
=

[
δ1 − δ2

δ2

] [
1 −1
0 1

] [
δ1
δ2

]
= Tδ, (5)

the model can equivalently be written as yi ∼ N(LT−1θ , �),
and the hypotheses can be written as

Hc : θe = 0, θo > 0
Hu : (θe, θo) ∈ R

2.

Note here that θo corresponds to the common standardized
effect δ under Hc. The prior for (θe, θo) under Hu follows a bi-
variate Cauchy distribution with scale matrix TSu,0T′ = [0.5 −
0.25; −0.25 0.25].

If one would be testing the hypotheses with the Savage–
Dickey density ratio in (3), it is easy to show that the implied
prior for δ under Hc (i.e., the conditional unconstrained prior for
θo given θe = 0 under Hu) follows a Student’s t-distribution with
2 degrees of freedom with a scale parameter of 0.252 = 0.125;
thus assuming that standardized effects of 0.25 are likely under
Hc. As was discussed earlier, there is no logical reason why the
common standardized effect under the restricted hypothesis Hc
is expected to be smaller than the standardized effects under Hu
a priori.

The JSZ Bayes factor for this constrained testing problem
using Lemma 1 based on the actual Cauchy priors for the
standardized effects can be computed using MCMC output from
a sampler under Hu, which is described in Appendix B. The R
code for the computation is given in Appendix C.1. The four key
quantifies in (2) are computed as follows:

• As the unconstrained marginal prior for θe follows a Cauchy
distribution with scale

√
0.5 (Figure 1, left panel, dashed

line), the prior density equals πu(θe = 0|Y) = √
2/π .

• The estimated marginal posterior for θe under Hu follows
from MCMC output. The estimated posterior for θe is plotted
in Figure 1 (left panel, solid line). This yields π̂u(θe = 0|Y) =
0.9871618.

• As the completed prior for δ under Hc∗ follows a Cauchy(0.5)

distribution that is centered at zero, the prior probability
equals Prc∗(δ > 0) = 0.5.

• As the priors for the covariance matrices cancel out
in the fraction, the expected value can be written as
E

{
Cauchy(θo|0.5)

Cauchy(θo|0.25)
1{θo>0}(θo)

}
under the conditional poste-

rior for θo given θe = 0 under Hu. Appendix B also shows
how to get posterior draws from θo under Hu given θe = 0.
The estimated posterior is displayed in Figure 1 (right panel).
A Monte Carlo estimate can then be used to compute the
expectation, which yields 1.098799.

Application of Lemma 1 then yields a Bayes factor for Hc
against Hu of Bcu = 0.9871618√

2/π×0.5 × 1.098799 = 4.8. Thus, there
is 4.8 times more evidence in the data for equal and positive



THE AMERICAN STATISTICIAN 105

Figure 1. Estimated probability densities for the multivariate Student’s t-test. Left panel: Marginal posterior (solid line) and prior (dashed line) for θe = δ1 −δ2. The dotted
lines indicate the estimated density values at θe = 0. Right panel: Estimated conditional posterior for θo given θe = 0 under Hu .

standardized count differences than for the unconstrained alter-
native hypothesis. Assuming equal prior probabilities for Hc and
Hu this would yield posterior probabilities of Pr(Hc|Y) = 0.783
and Pr(Hu|Y) = 0.217. Thus, there is mild evidence for Hc
relative to Hu. To draw clearer conclusions more data would
need to be collected.

3.2. Constrained Hypothesis Testing Under the
Multinomial Model

When analyzing categorical data using a multinomial model,
researchers are often interested in testing the relationships be-
tween the probabilities of the different cells (Robertson 1978;
Klugkist, Laudy, and Hoijtink 2010; Heck and Davis-Stober
2019). As an example, we consider an experiment for testing the
Mendelian inheritance theory discussed by Robertson (1978).
A total of 556 peas coming from crosses of plants from round
yellow seeds and plants from wrinkled green seeds were divided
in four categories. The cell probabilities for these categories are
contained in the vector γ = (γ1, γ2, γ3, γ4), where γ1 denotes
the probability that a pea resulting from such a mating is round
and yellow; γ2 denotes the probability that it is wrinkled and
yellow; γ3 denotes the probability that it is round and green;
and γ4 denotes the probability that it is wrinkled and green.
The Mendelian theory states that γ1 is largest, followed by γ2
and γ3 which are assumed to be equal, and γ4 is expected to be
smallest. This can be summarized as Hc : γ1 > γ2 = γ3 >

γ4. In particular, the theory dictates that the four probabilities
are proportional to 9, 3, 3, and 1, respectively. We translate
this to a completed prior under Hc∗ such that its means satisfy
E(γ1)
E(γ2)

= E(γ2)
E(γ4)

= 3. This can be achieved via a Dirich-
let prior under an alternative parameterization, (ξ1, ξ2, ξ4) ∼
Dirichlet(αc1, αc2, αc3), with αc = (9, 6, 1)′. The cell probabil-
ities under Hc∗ are then defined by (γ1, γ2, γ4) = (ξ1, ξ2/2, ξ4),
which then follow a specific scaled Dirichlet distribution, which
we denote by SDirichlet(9, 6, 1).2 The prior for the cell prob-
abilities under Hc is then a truncation of this scaled Dirichlet
distribution truncated under γ1 > γ2 > γ4. The Mendelian

2This specific scaled Dirichlet distribution has probability
density function πc∗ (γ1, γ2, γ4) = SDirichlet(αc1, αc2, αc3) =

2αc2
B(αc1,αc2,αc3)

γ
αc1−1
1 γ

αc2−1
2 (1 − γ1 − 2γ2)αc3−1, with γ4 = 1 − γ1 − 2γ2,

where B(·) is the multivariate beta function.

hypothesis can equivalently be formulated on the transformed
parameters (θe, θo,1, θo,2, φ) = (γ2 − γ3, γ1 − γ2, γ2 − γ4, γ2)
so that Hc : θe = 0, (θo,1, θo,2) > 0, as in Lemma 1. It is
easier however to compute the four quantities in (2) via the
untransformed parameters γ as will be shown below.

The Mendelian hypothesis will be tested against an un-
constrained alternative which does not make any assumptions
about the relationships between the cell probabilities. A uniform
prior on the simplex will be used under the alternative, that is,
πu(γ1, γ2, γ3, γ4) = Dirichlet(1, 1, 1, 1). The observed frequen-
cies in the four respective categories were equal to 315, 101, 108,
and 32.

The R code for the computation of the Bayes factor of Hc
against Hu can be found in Appendix C.2.

• The unconstrained marginal prior density at θe = 0 can be
estimated from a sample of θe = γ2 − γ3 where γ is sampled
from the unconstrained Dirichlet(1, 1, 1, 1) prior, resulting in
π̂u(θe = 0) = 1.476556.

• Similarly, the unconstrained marginal posterior density at
θe = 0 can be obtained by sampling γ from the uncon-
strained Dirichlet(316, 102, 109, 33) posterior, resulting in
π̂u(θe = 0|y) = 13.71403.

• The prior probability under Hc can be obtained by first
sampling (ξ1, ξ2, ξ4) ∼ Dirichlet(9, 6, 1), then transforming
the prior draws according to (γ1, γ2, γ4) = (ξ1, ξ2/2, ξ4),
and taking the proportion of draws satisfying the constraints
Prc(γ1 > γ2 > γ3) ≈ S−1 ∑S

s=1 I(γ (s)
1 > γ

(s)
2 > γ

(s)
3 ) =

0.8949818, where γ (s) denotes the sth draw, for s = 1, . . . , S.
• To get draws from the conditional distribution

(γ1, γ2, γ3, γ4) given γ2 = γ3 when (γ1, γ2, γ3, γ4) ∼
Dirichlet(α1, α2, α3, α4) under Hu, we can sample trans-
formed parameters (ξ1, ξ2, ξ4) ∼ Dirichlet(α1, α2 + α3 −
1, α4), and compute (γ1, γ2, γ3, γ4) = (ξ1, ξ2/2, ξ2/2, ξ4).
This can be used to obtain draws from the conditional
posterior for (γ1, γ2, γ3, γ4) given γ2 = γ3 under Hu
by setting α = (315, 101, 108, 33). The expectation in
(2) can then be computed as the arithmetic mean of
SDirichlet((γ1,γ2,γ4)|α=(9,6,1))
SDirichlet((γ1,γ2,γ4)|α=(1,1,1))

I(γ1 > γ2 > γ4) based on a
sufficiently large sample. This yields an estimate of 10.50881.

In sum the Bayes factor of the Mendelian hypothesis against
the noninformative unconstrained alternative is equal to Bcu =
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13.71403
1.476556×0.8949818 × 10.50881 = 109.0572. This can be inter-
preted as relatively strong evidence for the Mendelian hypothe-
sis against an unconstrained alternative based on the observed
data.

Finally note that by using probability calculus it can be shown
that the first two ingredients have analytic solutions as the
marginal probability density at θe = γ2 − γ3 = 0 under Hu,
when γ ∼ Dirichlet(α), is equal to 
(α2+α3)(α1+α2+α3+α4−1)


(α2)
(α3)(α2+α3−1)2α2+α3−1 .
In the above calculation, numerical estimates were used to
give readers more insights how to obtain these quantities when
analytic expressions are unavailable.

4. Concluding Remarks

As Bayes factors are becoming increasingly popular to test hy-
potheses with equality as well as order constraints on the pa-
rameters of interest, more flexible and fast estimation methods
to acquire these Bayes factors are needed. The generalization of
the Savage–Dickey density ratio that was presented in this article
will be a useful contribution for this purpose. The expression
allows one to compute Bayes factors in a straightforward man-
ner from MCMC output while being able to freely specify the
priors for the free parameters under the competing hypotheses.
The applicability of the proposed methodology was illustrated
in a constrained multivariate t-test using a novel extension of
the JSZ Bayes factor to the multivariate normal model and in a
constrained hypothesis test under the multinomial model.

Appendix A. Proof of Lemma 1

As the constrained model Hc : θe = re & θo > ro is nested in the
unconstrained model Hu, the likelihood under Hc can be written as
the truncation of the unconstrained likelihood, that is, pc(y|θo, φ) =
pu(y|θe = re, θo, φ)1{θo>ro}(θo). The result in Lemma 1 then follows
via the following steps,

Bcu = pc(y)
pu(y)

=
∫∫

θo>ro
pc(y|θo, φ)πc(θo, φ)dθodφ∫∫∫

pu(y|θ e, θo, φ)πu(θ e, θo, φ)dθ edθodφ

=
∫∫

θo>ro

pu(y|θ e = re, θo, φ)1{θo>ro}(θo)πc(θo, φ)

pu(y)πu(θ e = re|y) dθodφ

×πu(θ e = re|y)
=

∫∫
θo>ro

pu(y|θ e = re, θo, φ)πc(θo, φ)

pu(y)πu(θ e = re, θo, φ|y) πu(θo, φ|y, θ e = re)dθodφ

×πu(θ e = re|y)
=

∫∫
θo>ro

πc(θo, φ)

πu(θ e = re, θo, φ)
πu(θo, φ|y, θ e = re)dθodφ

×πu(θ e = re|y)
=

∫∫
θo>ro

πc(θo, φ)

πu(θo, φ|θ e = re)
πu(θo, φ|y, θ e = re)dθodφ

×πu(θ e = re|y)
πu(θ e = re)

=
∫∫

πc∗ (θo, φ)1{θo>ro}(θo)

πu(θo, φ|θ e = re)Prc∗ (θo > ro)
πu(θo, φ|y, θ e = re)dθodφ

×πu(θ e = re|y)
πu(θ e = re)

=
∫∫

πc∗ (θo, φ)1{θo>ro}(θo)

πu(θo, φ|θ e = re)
πu(θo, φ|y, θ e = re)dθodφ

×Prc∗ (θo > ro)
−1 × πu(θ e = re|y)

πu(θ e = re)
,

which completes the proof. Note that in the third step the indicator
function, 1{θo>ro}(θo), was omitted as the integrand is integrated over
the subspace where θo > ro. In the second last step, the completed
version of the constrained hypothesis has the order constraints omitted,
that is, Hc∗ : θe = re, with completed prior πc∗(θo, φ), such that
πc(θo, φ) = πc∗(θo, φ)Prc∗(θo > ro)−11{θo>ro}(θo).

Appendix B. MCMC Sampler for the Multivariate
Student’s t-test

1. Drawing the standardized effects δ. It is well-known that a multivari-
ate Cauchy prior of p dimensions can be written as a Multivariate
normal distribution with an inverse Wishart mixing distribution on
the normal covariance matrix with p degrees of freedom, that is,

πu(δ) = Cauchy(δ|S0)

=
∫

N(δ|0, �) × IW(�|p, S0)d�.

Thus, the conditional prior for δ given the auxiliary parameter
matrix � follows a N(0, �) distribution. Consequently, as z�,i =
L−1
� yi ∼ N(δ, Ip), the conditional posterior of δ follows a multi-

variate normal posterior,

δ|�, �, y ∼ N(n(�−1 + nIp)−1z̄� , (�−1 + nIp)−1),

where z̄� are the sample means of z�,i, for i = 1, . . . , n.
2. Drawing the auxiliary covariance matrix �. The conditional poste-

rior for � only depends on the standardized effects and it follows an
inverse Wishart distribution,

�|δ ∼ IW(p + 1, S0 + δδ′).

3. Drawing the error covariance matrix �. The conditional posterior
for the covariance matrix does not follow a known distribution. For
this reason we use a random walk (e.g., Gelman et al. 2004) for
sampling the separate elements of �.

The sampler under the unconstrained model while restricting δ1 =
δ2 (= δ) is very similar except that the prior for δ is now univariate
Cauchy(δ|0.25) and � = [φ2] is a scalar, and thus the conditional
posterior for δ is univariate normal N(2n(φ−2 + 2n)−1z̄� , (φ−2 +
n)−1), where z̄� is the mean of z̄� . Also note that the inverse Wishart
distribution in Step 2 is now for a 1 × 1 covariance matrix which is
equivalent to an inverse gamma distribution.

Appendix C. R Code for Empirical Analyses

C.1. R Code for Multivariate t-Test in Section 3.1

library(mvtnorm)
library(Matrix)

# computing the unconstrained marginal prior
density at \theta_e=0:priorE <- dcauchy(0,
location = 0,scale = sqrt(.5))

# computing the unconstrained marginal posterior
density at \theta_e=0:

# read data
Y <- t(matrix(c(242,1708,569,569,270,757,-25,499,
309,231,22,338,-42,26,-233,119,206,163,-106,
-186,55,54,85,48,30,50,194,525,-87,-110,159,
148,29,102,89,364,-9,36,158,234,76,122,15,24,
3,36,93,71,160,44,66,128,180,155,237,85,105,
76,16,6,167,364,-10,-18,-61,-21,-7,-2,15,32,
160,188),



THE AMERICAN STATISTICIAN 107

nrow=2))
set.seed(123)
#dimension
p <- ncol(Y)
nums <- p*(p+1)/2
n <- nrow(Y)
#initial parameter values based on burn-in period
delta <- c(.5,.2)
Sigma <- matrix(c(2,2,2,11),2,2) * 10**4
L <- t(chol(Sigma))
Phi <- diag(p)
#selection of unique elements in \Sigma
lowerSigma <- lower.tri(Sigma,diag=TRUE)
welklower <- which(lowerSigma)
# tranformation matrix
Trans <- matrix(c(1,0,-1,1),ncol=2)
#prior hyperparameters
S0 <- diag(p) * .5**2
# random walk sd’s for the elements of \Sigma
# to have an efficient acceptance probability
# based on burn-in period.
sdstep <- c(9,13,48) * 10**3
#store draws
numdraws <- 1e5
storeDelta <- matrix(0,nrow=numdraws,ncol=p)
storeSigma <- storePhi <- array(0,dim=c(numdraws,

p,p))
#draws from stationary distribution
for(s in 1:numdraws){

#draw delta
deltaMean <- c(apply(Y%*%t(solve(L)),2,mean))
SigmaDelta <- solve(n*diag(p) + solve(Phi))
muDelta <- c(SigmaDelta%*%deltaMean*n)
delta <- c(rmvnorm(1,mean=muDelta,sigma=
SigmaDelta))

#draw Phi
Phi <- solve(rWishart(1,df=p+1,Sigma=solve(S0 +
delta%*%t(delta)))[,,1])
#draw Sigma using MH

for(sig in 1:nums){
welknu <- welklower[sig]
step1 <- rnorm(1,sd=sdstep[sig])
Sigma0 <- matrix(0,p,p)
Sigma0[lowerSigma] <- Sigma[lowerSigma]
Sigma0[welknu] <- Sigma0[welknu] + step1
Sigma_can <- Sigma0 + t(Sigma0) - diag
(diag(Sigma0))

if(min(eigen(Sigma_can)$values) > .000001){
#the candidate is positive definite
L_can <- t(chol(Sigma_can))
#acceptance probability
R_MH <- exp( sum(dmvnorm(Y,mean=c(L_can%*
%delta),sigma=Sigma_can,
log=TRUE)) - (p+1)/2*log(det(Sigma_can))-
sum(dmvnorm(Y,mean=c(L%*%delta),sigma=
Sigma,log=TRUE)) +
(p+1)/2*log(det(Sigma)) )

if(runif(1) < R_MH){
#accept draw
Sigma <- Sigma_can
L <- t(chol(Sigma))

}
}

}

storeDelta[s,] <- delta
storeSigma[s,,] <- Sigma

storePhi[s,,] <- Phi
}
drawsE <- storeDelta[,1] - storeDelta[,2]
denspost <- density(drawsE)
df <- approxfun(denspost)
postE <- df(0)
# Figure 1 (left panel)
plot(denspost,xlim=c(-3,3),main="",xlab="theta_e")
seq1 <- seq(-3,3,length=1e3)
lines(seq1,dcauchy(seq1,scale=sqrt(.5)),lty=2)

# computing the prior probability of \theta_o>0
under H_c: priorO <- 1 - pcauchy(0, location = 0,
scale = .5)

# computing the expectation of the ratio of the
# priors from a posterior sample under H_c given
# \theta_e = 0 initialization
set.seed(123)
p1 <- 1
p <- ncol(Y)
nums <- p*(p+1)/2
n <- nrow(Y)
S0 <- diag(1)*.25**2
# initial parameter values based on burn-in

period
delta <- .55
Phi <- matrix(1)
Sigma <- matrix(c(23,22,22,89),nrow=2) * 10**3
L <- t(chol(Sigma))
# random walk sd’s for the elements of \Sigma to
# have an efficient acceptance probability based
# on burn-in period.
sdstep1 <- c(10,15,48) * 10**3
lowerSigma <- lower.tri(Sigma,diag=TRUE)
welklower <- which(lowerSigma)
# store draws
numdraws <- 1e5
storeDelta1 <- matrix(0,nrow=numdraws,ncol=1)
storePhi1 <- array(0,dim=c(numdraws,p1,p1))
storeSigma1 <- array(0,dim=c(numdraws,p,p))
for(s in 1:numdraws){
#draw delta
deltaMean <- mean(c(apply(Y%*%t(solve(L)),2,
mean)))
SigmaDelta <- solve(2*n*diag(p1) + solve(Phi))
muDelta <- c(SigmaDelta%*%deltaMean*2*n)
delta <- c(rmvnorm(1,mean=muDelta,sigma=
SigmaDelta))

#draw Phi
Phi <- solve(rWishart(1,df=p1+1,Sigma=solve(S0+
delta%*%t(delta)))[,,1])

#draw Sigma using MH
deltavec <- rep(delta,2)
for(sig in 1:nums){
welknu <- welklower[sig]
step1 <- rnorm(1,sd=sdstep1[sig])
Sigma0 <- matrix(0,p,p)
Sigma0[lowerSigma] <- Sigma0[lowerSigma] +
Sigma[lowerSigma]
Sigma0[welknu] <- Sigma0[welknu] + step1
Sigma_can <- Sigma0 + t(Sigma0) -
diag(diag(Sigma0))

if(min(eigen(Sigma_can)$values) > .000001 ){
#the candidate is positive definite
L_can <- t(chol(Sigma_can))
#dit zou sneller kunnen via onafhankelijke
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univariate normals
R_MH <- exp( sum(dmvnorm(Y,mean=c(L_can%
*%deltavec),
sigma=Sigma_can,log=TRUE)) - (p+1)/2*
log(det(Sigma_can)) -
sum(dmvnorm(Y,mean=c(L%*%deltavec),
sigma=Sigma,log=TRUE))
+ (p+1)/2*log(det(Sigma)) )

if(runif(1) < R_MH){
#accept draw
Sigma <- Sigma_can
L <- t(chol(Sigma))

}
}

}

storeDelta1[s,] <- delta
storePhi1[s,,] <- Phi
storeSigma1[s,,] <- Sigma

}
expratio <- mean(dcauchy(c(storeDelta1),
scale=.5) / dcauchy(c(storeDelta1),scale=.25)
* (c(storeDelta1)>0))

# Figure 1, right panel
plot(density(c(storeDelta1)),main="",
xlab="theta_o")

# computation of the Bayes factor
Bcu <- postE / (priorE * priorO) * expratio

C.2. R Code for Multinomial Model in Section 3.2

library(MCMCpack)
set.seed(123)

# computing the unconstrained marginal prior
density at \theta_e=0: uncpriorsample <-
rdirichlet(n=1e7, alpha=c(1,1,1,1))
densprior <- density(uncpriorsample[,2]-
uncpriorsample[,3])
df <- approxfun(densprior)
priorE <- df(0)
remove(uncpriorsample)

# computing the unconstrained marginal posterior
density at \theta_e=0:uncpostsample <-
rdirichlet(n=1e7, alpha=c(1+315,1+101,1+108,

1+32))
denspost <- density(uncpostsample[,2]-

uncpostsample[,3])
df <- approxfun(denspost)
postE <- df(0)
remove(uncpostsample)

# computing the prior probability of \theta_o>0
under H_c:priorsample1 <- rdirichlet
(n=1e7,alph=c(9,6,1))priorsample1[,2] <-
priorsample1[,2]/2
priorO <- mean(priorsample1[,1] > priorsample1[,2]

& priorsample1[,2] > priorsample1[,3])
remove(priorsample1)

# computing the expectation of the ratio of
# priors: first define probability density
# for (gamma1,gamma2)
SDirichlet <- function(gamma1,gamma2,alpha1,
alpha2,alpha3){
alphavec <- c(alpha1,alpha2,alpha3)
B1 <- exp(sum(lgamma(alphavec)) - lgamma(sum

(alphavec)))
return(
2ˆalpha2 / B1 * gamma1ˆ(alpha1-1) *
gamma2ˆ(alpha2-1) * (1-gamma1-2*gamma2)

ˆ(alpha3-1)
)

}
condpostsample <- rdirichlet(n=1e7, alpha=c(316,
210,33))
condpostsample[,2] <- condpostsample[,2]/2
expratio <- mean(SDirichlet(condpostsample[,1],

condpostsample[,2],9,6,1) /
SDirichlet(condpostsample[,1],condpostsample
[,2],1,1,1) *
(condpostsample[,1]>condpostsample[,2] &
condpostsample[,2]>condpostsample[,3])

)
remove(condpostsample)

# computing the Bayes factor of $H_c$ against
$H_u$: Bcu <- postE/(priorE*priorO)*expratio
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