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Abstract
A frequentist confidence interval can be constructed by inverting a hypothesis test, 
such that the interval contains only parameter values that would not have been 
rejected by the test. We show how a similar definition can be employed to construct 
a Bayesian support interval. Consistent with Carnap’s theory of corroboration, the 
support interval contains only parameter values that receive at least some minimum 
amount of support from the data. The support interval is not subject to Lindley’s 
paradox and provides an evidence-based perspective on inference that differs from 
the belief-based perspective that forms the basis of the standard Bayesian credible 
interval.

In frequentist statistics, there is an intimate connection between the p value null-
hypothesis significance test and the confidence interval of the test-relevant param-
eter. Specifically, a [100 × (1 − �)] % confidence interval contains only those param-
eter values that would not be rejected if they were subjected to a null-hypothesis 
test with level � . That is, frequentists confidence intervals can often be constructed 
by inverting a null-hypothesis significance test (e.g., Natrella 1960; Stuart et  al. 
1999, p. 175). Thus, the construction of the confidence interval involves, at a con-
ceptual level, the computation of p values.

In Bayesian statistics, in contrast, there exists a conceptual divide between the 
Bayes factor hypothesis test and the credible interval. On the one hand, the Bayes 
factor (e.g., Etz and Wagenmakers 2017; Haldane 1932; Jeffreys 1939; Kass et al. 
1995; Wrinch and Jeffreys 1921) reflects the relative predictive adequacy of two 
competing models or hypotheses, say H0 (which postulates the absence of the 
test-relevant parameter) and H1 (which postulates the presence of the test-relevant 
parameter). On the other hand, under the assumption that H1 is true, the associated 

 *	 Eric‑Jan Wagenmakers 
	 EJ.Wagenmakers@gmail.com

1	 Department of Psychology, University of Amsterdam, Nieuwe Achtergracht 129B, 
1018 VZ Amsterdam, The Netherlands

2	 University of California, Irvine, USA

http://orcid.org/0000-0003-1596-1034
http://crossmark.crossref.org/dialog/?doi=10.1007/s10670-019-00209-z&domain=pdf


590	 E.-J. Wagenmakers et al.

1 3

credible interval for the test-relevant parameter provides a range that contains 95% 
of the posterior mass. In other words, the Bayes factor test seeks to quantify the evi-
dence for the presence or absence of an effect, whereas the credible interval quanti-
fies the size of the effect under the assumption that it is present. For this reason, 
one may encounter paradoxical situations in which the following are simultaneously 
true: (1) the Bayes factor supports the point hypothesis H0 ∶ � = �0 over the com-
posite hypothesis H1 in which � is assigned some continuous prior distribution; and 
(2) the central 95% credible interval excludes the value �0.

As a concrete example, consider a binomial test with H0 ∶ �0 = 1∕2 and 
H1 ∶ � ∼ Beta(1, 1) , and assume we observe 60 successes and 40 failures. Figure 1 
shows that the Bayes factor slightly favors H0 ∶ �0 = 1∕2 , whereas the 95% credible 
interval just excludes that point.

There are different responses to this paradoxical state of affairs:

1.	 One may blame the Bayes factor, or, more specifically, one may blame the fact 
that the prior distribution for � under H1 is overly wide, which harms predictive 
performance of H1 . However, the conflict arises irrespective of the prior distribu-
tion; that is, if person X specifies, for instance, a Beta(a, b) prior, then person Y 
can present a fictitious data set for which the paradox emerges. This implies that 
the prior for � cannot be the cause of the conflict.

2.	 One may recognize that Fig. 1 does not in fact present the complete posterior 
distribution for � . Instead, the complete (marginal) distribution for � consists of 
a posterior spike at �0 = 1∕2 under H0 and the continuous distribution for � under 
H1 (e.g., Rouder et al. 2018). Ignoring the posterior spike at �0 paints an overly 
optimistic picture of what values � is likely to have.

Fig. 1   Based on 60 successes and 40 failures, a binomial test with H0 ∶ �0 = 1∕2 versus 
H1 ∶ � ∼ Beta(1, 1) yields (very slight) evidence in favor of H0 ∶ �0 = 1∕2 , whereas the central 95% 
credible interval under H1 ranges from 0.502 to 0.691, just excluding the point �0 = 1∕2 . Figure from 
JASP, www.jasp-stats​.org

http://www.jasp-stats.org
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3.	 One may realize that the paradox is a contradiction that is only apparent; thus, 
one may simply accept that intervals computed under H1 may exclude values that, 
when considered in isolation, remain relatively plausible.

Here we explore a fourth response, one that attempts to define a Bayesian interval based 
on the same principles that underlie the construction of the frequentist confidence inter-
val. This rather unconventional interval defines a set of values of � that predicted the 
observed data relatively well, and it prevents the paradoxical situation outlined above 
from arising. Before introducing the interval, which is based on earlier work by Keynes 
(1921), Carnap (1950), Evans (1997, 2015), Morey et  al. (2016), and Rouder and 
Morey (2019), we provide some background information on the Bayes factor.

1 � Background on the Bayes Factor

The Bayes factor quantifies the degree to which data y change the relative prior plau-
sibility of two hypotheses (say H0 and H1 ) to the relative posterior plausibility, as 
follows:

For concreteness, consider a binomial test between H0 ∶ �0 = 1∕2 vs. 
H1 ∶ � ∼ Beta(2, 2) . Suppose the data at hand consist of 8 successes and 2 failures. 
In this specific case, the Bayes factor is given by

the ratio of the predictive performances for H0 and H1 . But now consider only 
H1 ∶ � ∼ Beta(2, 2) , and observe how the data change the relative plausibilities of 
the different values of � under H1:

The updating factor in Eq.  (3), assessed for the value � = 1∕2 , is identical to the 
Bayes factor in Eq. (1). In other words, when we consider only H1 , and evaluate the 
change from prior to posterior ordinate at a specific �0 , we may equally well inter-
pret this as the Bayes factor for H0 ∶ � = �0 vs. H1 ∶ � ∼ Beta(2, 2) . This relation 
holds generally (e.g., Dickey and Lientz 1970; Wetzels et al. 2010; but see Marin 
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and Robert 2010; Verdinelli and Wasserman 1995). Thus, “strength of evidence for 
a parameter value is precisely the relative gain in predictive accuracy when condi-
tioning on it” (Rouder and Morey 2019). Specifically, we can rewrite Eq. (3) as

which shows that the ratio of posterior to prior density for a parameter value is pre-
cisely equal to its predictive updating factor.

To underscore this key point, Fig. 2 highlights the changes from prior to posterior 
distribution for the above binomial example; if the posterior ordinate for a specific 
�0 is higher than the prior ordinate, the data have made that �0 more credible than it 
was before: the updating factor exceeded 1, meaning that �0 predicted the observed 
data better than average (Morey et al. 2016; Wagenmakers et al. 2016).

2 � The Support Interval

As illustrated in Fig. 2, some values of � received support from the data—the updat-
ing factor was in their favor—whereas other values of � are undermined by the data; 
for these values, the posterior ordinate is lower than the prior ordinate, signaling a 
loss in credibility. We can use this information to define an interval containing only 
those values of � that receive a certain minimum level of corroboration from the 
data. This leads to the following definition.

Definition of the   BF = k   Support Interval: A BF = k support interval for a 
parameter � contains only those values for � which predict the observed data y at 

(4)
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Fig. 2   In Bayesian parameter estimation, the plausibility update for a specific value of � (e.g., �0 ) is 
mathematically identical to a Bayes factor against a point-null hypothesis H0 ∶ � = �0 . In this example, 
� is assigned a Beta(2, 2) prior distribution (i.e., the dotted line), the data y consist of 8 successes out of 
10 trials, and the resulting posterior for � is a Beta(10, 4) distribution. Note the similarity to the Savage–
Dickey density ratio test (e.g., Dickey and Lientz 1970; Wetzels et al. 2010)
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least k times better than average; these are values of � that are associated with an 
updating factor p(y ∣ �)∕p(y) ≥ k.

2.1 � Example: Choosing a value of k

The definition of the support interval makes it apparent that in practice one must 
choose a value for the critical updating factor k. The choice of k depends on what 
we want our interval to convey about the evidence in the data. Consider again the 
binomial scenario illustrated in Fig. 2 and suppose we seek a BF = 1 support inter-
val for � , that is, an interval that contains only those values whose credibility is not 
decreased by observing the data. This interval contains all values for � where the 
posterior ordinate is equal to or exceeds the prior ordinate, and serves as a natural 
default choice for k. In this case, the interval ranges from � ≈ 0.57 to � ≈ 0.94.

We may seek an interval of values for � that enjoy more impressive support 
from the data. This interval is a smaller subset of the initial BF = 1 interval. For 
instance, choosing k = 3 would produce an interval that contains all parameter val-
ues that receive at least “moderate” support from the data (according to conventions 
set by Jeffreys 1939). In our binomial example, the BF = 3 support interval for � 
ranges from � ≈ 0.75 to � ≈ 0.84 . On the other hand, by choosing k < 1 we may also 
broaden our interval to encompass those values that are not strongly contraindicated 
by the data. The interpretation of such intervals would be analogous to how a fre-
quentist confidence interval contains all the parameter values that would not have 
been rejected if tested at level � . For instance, a BF = 1∕3 support interval encloses 
all values of � for which the updating factor is not stronger than 3 against; in our 
example this interval ranges from � ≈ 0.47 to � ≈ 0.97.

3 � Comparison to the Credible Interval

The support interval is based on evidence—how the data change our beliefs—
whereas the credible interval is based on the posterior beliefs directly. Because evi-
dence and belief are different concepts, it is straightforward to present situations in 
which the two intervals yield different results.

For instance, the top panel in Fig. 3 shows an example of unexpected data: a 
Beta(10, 3) prior distribution (dotted line) for a binomial parameter � is updated 
to a posterior distribution (solid line) after having observed y = 3 successes out 
of n = 20 trials. In order to underscore that the data are unexpected under the 
prior, the panel also presents the likelihood (dashed line). The posterior is a com-
promise between prior and likelihood that is blind to any conflict between them; 
specifically, the exact same posterior (and, consequently, the exact same 95% 
central credible interval) for � would have resulted if � had been assigned, say, 
a Beta(5, 8) prior distribution and y = 8 successes out of n = 20 trials had been 
observed. The support interval, in contrast, is sensitive to the unexpected nature 
of the data. Specifically, a BF = 1 support interval for � comprises all values of � 
that predict the data at least as well as average: these are the values for � where 
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the posterior distribution equals or exceeds the prior distribution, which happens 
here even for a relatively wide range of values of �.

The bottom panel in Fig. 3 shows an example of relatively uninformative data: 
a Beta(10, 10) prior distribution (dotted line) is updated to a posterior distribu-
tion (solid line) based on having observed a single success out of two trials. The 
95% credible interval is relatively wide, indicating substantial uncertainty about 
the true value of � ; in contrast, the BF = 1 support interval is relatively narrow, 
as relatively few values of � predicted the data better than average. For a deeper 
understanding of the source of the discrepancies we now take a closer look at the 
likelihood.
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Fig. 3   Differences between the support interval and the credible interval. The top panel shows a 
Beta(10, 3) prior distribution (dotted line) which is updated to a posterior distribution based on observing 
y = 3 successes out of n = 20 trials; the BF = 1 support interval is much larger than the central 95% cred-
ible interval. The bottom panel shows a Beta(10, 10) prior distribution which is updated to a posterior 
distribution based on observing y = 1 successes out of n = 2 trials; the BF = 1 support interval is smaller 
than the central 95% credible interval. See text for details
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4 � A Likelihood Perspective

The construction of the support interval is based on the change from the prior to the 
posterior distribution, that is,

The denominator is the marginal likelihood—a constant number that does not 
depend on � , so that the updating factor can also be written as c ⋅ p(y ∣ �) . Figure  4 
shows the updating factor function from the second binomial example (see Fig. 2). 
The construction of the BF = k support interval involves, first, the selection of a 
threshold level of evidence, say BF = 1 (marked in the figure with a dotted hori-
zontal line), and then the identification of the values of � for which the function 
exceeds that threshold (i.e., the values of � in between the two gray dots that mark 
the intersection of the threshold with the updating factor function). Higher evidence 
thresholds mean smaller intervals; for instance, in Fig.  4 the BF = 3 support inter-
val ranges from approximately � = .75 to � = .84 . If the evidence threshold is raised 
to 3.5 or higher, an empty interval is obtained, indicating that the data do not sup-
port any value of � this strongly.

For a likelihoodist, the update factor function is simply a representation of the 
likelihood function, thus conferring the support interval the invariance properties 
enjoyed by likelihood-based inferences (Edwards 1992; Royall 1997). However, for 
a likelihoodist the marginal likelihood constant is arbitrary, and the update factor 
function may therefore be arbitrarily rescaled (e.g., to have maximum 1) without 
changing the inference (Etz 2018). Consequently, a likelihood interval (e.g., Cum-
ming 2014; Hudson 1971; Royall 1997) cannot be constructed by reference to any 

(5)
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Fig. 4   Example of an update factor function that quantifies the change from prior to posterior ordinate 
for binomial rate parameter � . Data y consist of 8 successes and 2 failures, and � is assigned a Beta(2, 2) 
distribution, as in Fig. 2
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horizontal line. Instead, an interval may be constructed by comparing the maximum 
height of the function to the height at any other point. For instance, a likelihood 
ratio interval of 3 (i.e., LR = 3 ) would contain all values of � for which the likeli-
hood ratio against the maximum is less than 3, that is, p(y ∣ 𝜃̂)∕p(y ∣ 𝜃) < 3 (where 𝜃̂ 
denotes the maximum likelihood estimate).

Consider again the case of 8 successes in 10 binomial trials. The maximum likeli-
hood estimate is 𝜃̂ = .8 . To obtain the likelihood ratio interval we can find the two 
boundary values of � whose likelihood ratio against � = .8 is equal to 3, which gives 
an interval from approximately � = .58 to � = .94 . This likelihood ratio interval dif-
fers markedly from the BF = 3 interval, which ranged from � = .75 to � = .84.

Therefore, even though the LR interval and the support interval are based on the 
same updating/likelihood function, the intervals differ: the support interval is based 
on a comparison to an average, whereas the likelihood interval is based on a com-
parison to a maximum.

5 � Conceptual Advantages of the Support Interval

The support interval is a unique, transformation-invariant interval that generalizes to 
situations with multiple parameters of interest in a straightforward fashion (Dickey 
and Lientz 1970; Wetzels et al. 2010). The main advantage of the support interval, 
however, is conceptual: it quantifies directly which values of � are supported by the 
data. Specifically, those values of � that predict the data at least k times better than 
average are part of the BF = k support interval. This definition of an interval for � 
prevents the interval-versus-testing paradox from arising.

The interval-versus-testing paradox that we present here can be seen as an alter-
native interpretation of the famous Lindley paradox (Jeffreys 1939; Lindley 1957). 
Lindley’s paradox states that one can simultaneously have a frequentist test at level 
� reject the null hypothesis while at the same time the corresponding Bayesian test 
overwhelmingly supports the null hypothesis. Whereas this paradox is traditionally 
used to highlight the inevitable divergence of p values and Bayesian posterior proba-
bilities (or Bayes factors) for hypothesis testing, there is an alternative interpretation 
of the paradox as a warning against use of improper priors for Bayesian testing (see 
Bartlett 1957; DeGroot 1982; Robert 2014). However, the duality of p values and 
confidence intervals suggests yet another re-interpretation of the paradox, namely, 
that of a divergence between confidence intervals and Bayesian hypothesis tests. In 
turn, because most Bayesian credible intervals are approximately confidence inter-
vals (which converge asymptotically) Lindley’s paradox can be seen highlighting the 
divergence of Bayesian hypothesis tests and conventional interval estimation more 
broadly.

Reconsider our first binomial example, shown in Fig. 1, featuring 60 successes 
and 40 failures and a Beta(1, 1) distribution for � under H1 . In this scenario, a 
BF = 1 interval ranges from � ≈ .498 to � ≈ .697 , and a BF = 1∕3 interval ranges 
from � ≈ .475 to � ≈ .717 . The BF = 1 interval includes � = 1∕2 , indicating that 
the data have increased its plausibility and it should therefore not be excluded from 
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consideration; the paradoxical difference between conclusions drawn from the inter-
val estimate and the Bayes factor hypothesis test no longer exists.

6 � Nuisance Parameters

The presence of nuisance parameters can pose a challenge for the Savage–Dickey 
representation of the Bayes factor, and thus for the interpretation of a support inter-
val as containing those parameters which would result in a BF = k test if they were 
used as the test value of � . Consider a case where there is one parameter of interest � 
and a vector of nuisance parameters � . Bayes’ theorem dictates that after observing 
data y, the joint posterior of � and � under the alternative is given by

where the final term is a joint updating factor for pairs of � and � values. It would 
seem that a support interval for � (the parameter of actual interest) could be obtained 
by marginalizing � out of both the joint posterior and joint prior, and computing the 
marginal updating factor for � as in Eq. (4) using the marginal posterior and prior of 
� . While it is true that a value of � contained in a k-support interval constructed in 
this way is indeed one which marginally becomes k-times more plausible, it will not 
necessarily correspond to a BF = k test. Thus, in the presence of nuisance param-
eters a support interval does not necessarily correspond to an inversion of the Bayes 
factor hypothesis test.

For the equivalence of the Bayes factor in favor of �0 and the predictive updat-
ing factor for � = �0 under the alternative to hold in the presence of nuisance 
parameters � , we must ensure that marginalization of � from both models yields 
p(y ∣ �0,H0) = p(y ∣ � = �0,H1) . That is, it must be true that

The above equality will hold if and only if the prior distribution of � under the null 
model matches the conditional prior distribution for � given � = �0 under the alter-
native model, that is, if and only if p(� |H0) = p(� | � = �0,H1) (Dickey 1971). 
Verdinelli and Wasserman (1995) show that whenever these priors do not match, the 
Bayes factor and marginal updating factor will be off by a multiplicative constant, 
say c. Thus, if we are not careful to construct priors on nuisance parameters in just 
the right fashion, we will have a set of � values in a k-support interval which corre-
spond to BF = c ⋅ k test.

One way to satisfy this condition on the priors for � is to take � 
and � as a priori independent under the alternative hypothesis, that is, 
p(�, � |H1) = p(� |H1)p(� |H1) . Subsequently one can directly set p(� |H1) equal 
to p(� |H0) . However, in many modeling contexts the construction of independ-
ent priors can be difficult—and sometimes undesirable. For instance, Heck (2018) 

(6)p(�,� ∣ y,H1) = p(�, � ∣ H1) ×
p(y ∣ �,�,H1)

p(y ∣ H1)
,

(7)
∫Φ

p(y ∣ �0,�,H0)p(� ∣ H0) d� = ∫Φ

p(y ∣ � = �0,�,H1)p(� ∣ � = �0,H1) d�.
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demonstrates that multivariate Cauchy priors do not generally satisfy the marginal-
conditional condition above.

7 � Earlier Work

The key relation between strength of evidence and relative predictive perfor-
mance, expressed in Eq. (4) above, was previously discussed by Carnap (1950, pp. 
326–333), who called it the “general division theorem”. More specifically, Carnap 
termed the ratio of posterior plausibility to prior plausibility the “relevance quo-
tient”, and this quotient was a critical component in Carnap’s theory of confirma-
tion: a datum D supports hypothesis H if and only if P(H |D) > P(H) , that is, if and 
only if P(H |D)∕P(H) > 1 . Still earlier, the predictive updating factor was discussed 
by Keynes (1921), who called it the “coefficient of influence” (p. 170; as acknowl-
edged by Carnap). Keynes attributed his coefficient of influence to a set of unpub-
lished notes provided to him by W. E. Johnson, stating that his exposition relating to 
the coefficient of influence is “derived in its entirety from his [Johnson’s] notes” (p. 
170). Carnap, Keynes, and Johnson were all considering how the data impact our 
belief in a singular claim or hypothesis and did not discuss the possibility of extend-
ing these ideas into an estimation context, although we should stress that this is a 
small step from their original ideas.

Our proposal to construct intervals based on the relative support lent by the data 
is similar to a more recent proposal by Evans (1997, 2015). Evans first puts for-
ward a method for point estimation which amounts to choosing the parameter value 
which maximizes the posterior to prior ratio (i.e., the updating factor).1 To quantify 
the uncertainty in this point estimate, Evans then constructs a “relative surprise” (or 
“relative belief”) interval for � that contains � % of the posterior mass, such that any 
value in the interval has a higher updating factor than any value outside the interval 
(see also Shalloway 2014).

The relative surprise interval is similar to a traditional credible interval in that it 
contains a fixed, predetermined proportion of the posterior mass. Thus, a 95% rela-
tive surprise interval for � is constructed by finding a set of � values such that (1) 
the posterior probability of this set is 95%, and (2) any values not in the set have 
smaller updating factor than those contained in the set. The construction of a relative 
surprise interval is not unlike that of a � % highest-density interval for � , which is 
constructed such that (1) the posterior probability of the interval is � %, and (2) any 
values within the interval have higher posterior density than any values outside the 
interval. In fact, because the updating factor is proportional to the likelihood func-
tion, the relative surprise interval for a one-to-one transformation of � , say � = g(�) , 

1  It would appear this procedure corresponds to using the MLE as an estimate of � because the updating 
factor is proportional to a likelihood function, at least in problems without nuisance parameters. How-
ever, this correspondence may not agree in general for inferences involving non-invertible functions of 
the model parameters (e.g., Example 1 in Evans 1997).
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is equivalent to a highest-density interval whenever the prior distribution induced 
for � is uniform.

Clearly, the relative surprise interval and our proposed support interval are 
closely related. Both intervals have the property that any values inside the interval 
have a larger updating factor than those outside the interval, and both intervals are 
invariant under smooth reparameterization. It is straightforward to shift the interpre-
tation of a relative surprise interval into a support interval, and vice-versa. To deter-
mine what relative surprise coefficient � corresponds to a BF = k support interval, 
one can simply find the posterior probability contained in the support interval. For 
instance, the BF = 3 support interval for our second binomial example ranges from 
� = .75 to � = .84 , and the posterior probability of that interval is .274; hence, this 
BF = 3 support interval is a � = 27.4 % relative surprise interval. Likewise, comput-
ing the updating factor corresponding to the boundary points of a relative surprise 
interval gives the critical value of a support interval.

The important difference between the two intervals is that the set of � values in a 
support interval is defined by a critical value of the updating factor, so the propor-
tion of the posterior distribution in a support interval is not fixed in advance. Indeed, 
a given choice of critical updating factor can even result in an empty support inter-
val; for instance, this would occur in our second binomial example when the critical 
updating factor is taken to be 3.5. In contrast, a � % relative surprise interval will 
always have posterior probability � . For relatively large � (e.g., � = .95 ), this neces-
sitates including values of � in the relative surprise interval which have an updating 
factor smaller than one. In other words, the interval can include parameter values 
that the data have undermined. The relative surprise interval is more a summary of 
the posterior distribution, whereas the support interval is more a summary of the 
evidence in the data. This behavior of the relative surprise interval has led Evans 
(2015) to recommend reporting instead a so-called plausible interval, which only 
contains parameter values which have evidence in their favor—in other words, a 
support interval for k = 1 . These ideas have also been expanded upon by Baskurt 
and Evans (2013) in the context of evidence calibration, and by Evans and Tomal 
(2018) in the context of multiple testing and sparsity.

More recently, Rouder and Morey (2019) have argued that the updating factor 
should receive more attention when teaching Bayes’ rule. They display an example 
of an updating factor function, and mention that in their teaching, “we ask students 
to find intervals where the data have decreased the plausibility by more than 10-1.” 
Similar remarks can be found in Morey et al. (2016), where their Fig. 2 shows an 
example of a BF = 1 support interval. In sum, the support interval discussed here is 
a more elaborate description that is inspired by earlier work conducted by Keynes, 
Carnap, Evans, and Rouder, Romeijn, and Morey.2

2  After this work was completed we learned that Wiebe Pestman, Wolf Vanpaemel, and Francis Tuer-
linckx had developed the same idea, but never published it (Wolf Vanpaemel, personal communication).
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8 � Concluding Comments

The support interval is based on evaluating, for each parameter value, the degree 
to which it predicted the observed data better than the average prediction across 
all parameter values. One may argue that by omitting p(�) and focusing entirely 
on the evidence that is provided by the data, the support interval is not sufficiently 
Bayesian; on the other hand, one may argue that the quantify ∫ p(y ∣ �)p(�) d� , the 
marginal likelihood or average predictive performance across � , is too dependent 
on p(�)—this is the common objection to Bayes factor model selection (e.g., Liu 
and Aitkin 2008).

All intervals come with assumptions, limitations, and advantages, and we 
believe it is useful to know which parameter values have received more than a 
specific level of corroboration from the data. Alternatively, one could of course 
forgo the computation of an interval altogether and simply plot the prior and the 
posterior distributions (e.g., Fig.  1). However, the forces of habit or nature are 
likely to lead researchers to extract, by eye, the intervals of interest. One interval 
that catches the eye is the credible interval, which is based purely on the pos-
terior; another interval that stands out is the support interval, the collection of 
parameter values for which the posterior height and the prior height differ by a 
specific factor.

Despite its intuitive appeal, the support interval has received scant attention in 
the Bayesian literature on estimation. One may speculate that objective Bayesians 
perhaps undervalue their prior distribution, whereas subjective Bayesians overvalue 
it. Regardless of why measures of support in estimation have been spurned for so 
long, we believe that practical and theoretical considerations suggest that the sup-
port interval can provide a useful summary of what was learned from the data.
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