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Abstract
The success of correctly identifying all the components of a nonlinear mixed-
effects model is far from straightforward: it is a question of finding the best 
structural model, determining the type of relationship between covariates and 
individual parameters, detecting possible correlations between random effects, 
or also modeling residual errors. We present the Stochastic Approximation for 
Model Building Algorithm (SAMBA) procedure and show how this algorithm 
can be used to speed up this process of model building by identifying at each step 
how best to improve some of the model components. The principle of this algo-
rithm basically consists in “learning something” about the “best model,” even 
when a “poor model” is used to fit the data. A comparison study of the SAMBA 
procedure with Stepwise Covariate Modeling (SCM) and COnditional Sampling 
use for Stepwise Approach (COSSAC) show similar performances on several real 
data examples but with a much reduced computing time. This algorithm is now 
implemented in Monolix and in the R package Rsmlx.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Existing model-building methods for nonlinear mixed-effects models have high 
computational time, especially for selecting the covariate model.
WHAT QUESTION DID THIS STUDY ADDRESS?
The study describes the principle of the Stochastic Approximation for Model 
Building Algorithm (SAMBA) procedure, which allows to build a covariate, a 
correlation, and an error model automatically and compares it with Stepwise 
Covariate Modeling (SCM) and COnditional Sampling use for Stepwise Approach 
(COSSAC) procedures.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
SAMBA allows to select the best covariate model without having to fit the com-
plete nonlinear mixed-effects model to the data for each possible covariate model. 
This study confirms that it is possible to obtain relevant information on the model 
we are looking for, even when another model is fitted to the data. This allows to 
drastically reduce the computation time with respect to other existing procedures 
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INTRODUCTION

Construction of a complex (nonlinear) mixed-effects 
model1 is a challenging process which requires confirmed 
expertise, advanced statistical methods, and the use of 
sophisticated software tools, but, above all, time and pa-
tience. Indeed, the success of correctly identifying all the 
components of the model is far from straightforward: it is a 
question of finding the best structural model, determining 
the type of relationship between covariates and individual 
parameters, detecting possible correlations between ran-
dom effects, or also modeling residual errors. Our goal is 
to accelerate and optimize this process of model building 
by identifying at each step how best to improve some of 
the model components.

The procedure for constructing a model is usually iter-
ative: one adjusts a first model to the data, and diagnosis 
plots and statistical tests allow to detect possible mis-
specifications in the proposed model. A new model must 
then be proposed to correct these defects and improve the 
predictive abilities of the model. Most of the common 
approaches consist in stepwise procedures consisting in 
testing the addition of variable forward and their elimina-
tion backward alternatively and progressing through the 
choice of models using a criterion derived from the log-
likelihood. A widely used approach is Stepwise Covariate 
Modeling (SCM),2 which consists in an exhaustive search 
in the covariates space. Each covariate addition or dele-
tion is tested in turn selecting models at each step leading 
to the best adjustment according to the objective crite-
rion. Approaches such as Wald Approximation Method 
(WAM)3 and COnditional Sampling use for Stepwise 
Approach based on Correlation tests (COSSAC)4 are less 
computationally intensive as they use, respectively, a like-
lihood ratio test and a correlation test to move in the co-
variates space, which allows the testing of less models. All 
these methods are nevertheless computationally intensive 
as they require to re-estimate the model parameters and 
the likelihood many times. In particular, these methods 
are very sensitive to “the curse of dimensionality” when 
the number of covariates to test on parameters is large.

The Generalized Additive Model (GAM) method5,6 
is computationally appealing as it does not require as 

many models fitting. Indeed, it is based on a regression 
on the empirical Bayes estimates (EBEs). The EBEs are 
the modes of the conditional distributions of the individ-
ual parameters. In other words, they are the most likely 
value of the individual parameters, given the estimated 
population parameters and the data. These estimates are 
known to be misleading and prone to shrinkage when 
data are sparse.7 An efficient method which can correct 
the bias caused by the shrinkage of the EBEs have been 
recently proposed for covariate analysis.8,9 In this paper, 
we propose to develop similar method which relies on 
the use of random samples from the conditional distri-
bution of each individual parameters instead of EBEs. 
Indeed, the random sample of the posterior distribu-
tion has been shown to correctly control the type I error 
when performing tests to detect misspecifications in the 
model.10

As for most of the model-building procedures, the ob-
jective of Stochastic Approximation for Model Building 
Algorithm (SAMBA) is to find a model that minimizes 
some information criterion, such as Akaike information 
criterion (AIC), Bayesian Information Criteria (BIC), or 
corrected BIC (BICc).11 The main principle of SAMBA is 
to use the results obtained with a wrong model to learn 
the right model. Then, SAMBA is an iterative procedure 
where a new model is used at each iteration of the algo-
rithm. The values of the population parameters of the 
model are found by maximum likelihood estimation, and, 
then, the individual parameters are sampled from the con-
ditional distribution defined under this estimated model. 
These simulated individual parameters combined with 
the observed data can now be used to select a new sta-
tistical model. It is important to underline that, as most 
of the iterative procedures for non-convex optimization, 
SAMBA does not pretend to be capable of always finding 
the global minimum of the used criterion, but it always 
allows to quickly find a very good solution.

Two contributions mainly constitute the content of 
this paper. First, we describe the novel algorithm called 
SAMBA for fast automatic model building in nonlinear 
mixed-effects models (section 1). Second, we benchmark 
its performances compared with reference methods SCM 
and COSSAC in real-world examples (section 2).

while keeping the same performances. We also show that it is possible to perform 
correlation and error model selection in nonlinear mixed-effects models.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
This method will allow the practitioner to very quickly find a set of very good 
models in terms of data fitting and parsimony, even when the number of param-
eters or the number of covariates available is large.
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METHODS

Model description

Let yi =
(
yij, 1 ≤ j ≤ ni

)
 be the vector of observations for 

subject i, where 1 ≤ i ≤ N. The model that describes the 
observations yi is assumed to be a parametric probabilistic 
model that depends on a vector of L (individual) param-
eters � i =

(
� i1,…,�Li

)
. In a population framework, the 

vector of parameters � i is assumed to be drawn from a 
population distribution p(� i). Then, defining a model ℳ 
consists in defining a joint probability distribution for the 
observations y = (y1,⋯, yN ) and for the individual param-
eters � = (�1,⋯,�N ). For the sake of notation simplic-
ity, we focus on models for continuous longitudinal data. 
However, extension to models for discrete data and time 
to event data is straightforward.

Let yij, the observation obtained from subject i at time 
tij be described as:

The structural model f is a fundamental component of 
the model because it defines the individual predictions of 
the observed kinetics for a given set of parameters. The re-
sidual errors (�ij) are assumed to be standardized Gaussian 
random variables (mean zero and variance 1). The resid-
ual error model is represented by function g in model (1) 
and may depends on some additional parameter �. Finally, 
one can use the function u to transform the observations, 
assuming for instance that they are log-normally distrib-
uted. In the following, we will assume u to be the identity.

We assume a linear model for the individual parame-
ters (up to some transformation h):

where �i ∼�(0,Ω) is a vector of random effects and 
where ci is a vector of individual covariates used to explain 
part of the variability of the � i's. The �pop and � are fixed 
effects. The joint model of y and � then depends on a set 
of parameters � = (�pop, �,Ω, �).

Selecting a model described by Equations 1 and 2 con-
sists for the modeler in selecting: (i) the structural model 
f , (ii) the transformation of the individual parameters h , 
(iii) the residual error model g, (iv) the list of covariates 
that have an impact on individual parameters, and (v) the 
structure of the variance-covariance matrix of the random 
effects in the linear model Ω. The selection of the two 
first items is problem-specific, and their selection is out 
of the scope of this paper. We will therefore assume, in 
this paper, that f  and h are given. The SAMBA procedure 

proposes solutions to address the selection of the three 
other components of the model.

The SAMBA procedure

Automatic model building is a difficult task because it is 
generally not possible to fit and compare all possible mod-
els. Moreover, it is necessary to define what is the “best 
model” among all the possible models. A classical ap-
proach consists in searching for the model ℳ∗, that mini-
mizes a criterion, such as the penalized likelihood12,13:

The objective of this approach is to find a model that 
best fits the data (by minimizing − 2LL) while being as 
simple as possible (it is the role of pen(ℳ) to favor models 
with few parameters). When the space of possible models 
is large, an exhaustive search is clearly impossible, and an 
efficient minimization strategy must be implemented. It is 
precisely for this purpose that SAMBA was developed: to 
obtain very quickly the “best” model ℳ∗, or a model with 
an objective criterion value very close to that of ℳ∗.

SAMBA is an iterative procedure alternating three 
steps. Assume that model ℳk was obtained at iteration 
k of the algorithm. We first compute �(k), the maximum 
likelihood estimate of � for model ℳk. We then generate 
a set of individual parameters � (k) from the conditional 
distribution of individual parameters pℳk

(�| y; �(k)). The 
selection step finally consists in building a new model 
ℳk+1 using the complete data(y;� (k)) and minimizing the 
complete penalized criterion:

As already mentioned, the statistical model to be 
built consists of a covariate model, a correlation model, 
and a residual error model. Then, the selection of model 
ℳk+1 is composed of three model selection procedures: 
the selection of the covariate model ℳCOV

k+1
, the selec-

tion of the correlation model ℳCORR
k+1

, and the selection 
of the error model ℳERR

k+1
. Note that not all these com-

ponents are necessarily selected: some may have been 
set arbitrarily because of existing knowledge. By notic-
ing that ℒℳ

(
�; y,� (k)

)
=ℒℳ(�|y, � (k))ℒℳ

(
y,� (k)

)
, it 

appears that the problem of selecting the error model 
is independent from the problem of selecting the co-
variate and correlation models. Figure  1 provides a 
flowchart of the complete procedure. Let us now take 
a closer look at what each step of the model selection 
process consists of.

(1)
u
(
yij
)
= u

(
f
(
tij,� i

))
+ g

(
tij,� i, �

)
�ij, 1 ≤ i ≤ N , 1 ≤ j ≤ ni.

(2)h(� i)=h(�pop)+� ci+�i , 1≤ i≤N ,

(3)ℳ∗ = argminℳ
{
min�( − 2log(ℒℳ(�; y))) + pen(ℳ)

}
.

(4)
ℳk+1 = argminℳ

{
min�

(
− 2log

(
ℒℳ

(
�; y,� (k)

)))
+ pen (ℳ)

}
.



164  |      PRAGUE and LAVIELLE

The covariate model selection �COV

k+1

The sample � (k) has been generated conditionally to the 
data y and the model ℳk. For the �-th parameter, we build 
a linear model between � (k)

�
 and covariates c, such as in 

Equation 2:

with h� the transformation associated to the �-th param-
eter and where �(k)

i�
 is supposed normally distributed with 

mean zero and variance �2
�
. We define �� =

(
�pop,� , �� ,�

2
�

)
.  	

Best covariate model for parameter �, denoted 	
ℳ

COV𝓁

k+1
, is selected as being the one minimizing a penal-

ized criterion:

We denote n� the number of non-null elements in �� 
for model ℳ. The penalization depends on the criterion 
selected for optimization: if AIC then penCOV (ℳ) = 2n�, 
if BIC or BICc then penCOV (ℳ) = log (N)n�. Equation 5 
tells us that the covariate selection problem has become 
here a classical problem of variable selection in a lin-
ear model.14 This problem is much more easily tractable 
than the original one. The overall best covariate model 
combines the best model for each parameter such that 
ℳ

COV
k+1

=
{
ℳ

COV1
k+1

,…ℳ
COVL
k+1

}
.

In the implemented version of package Rsmlx (R 
speaks Monolix), two different strategies are imple-
mented depending on the dimension of the selection 
problem. If the number d of available covariates is 
less than 11, an exhaustive search is performed over 
all the 2d possible covariate models for each parameter. 
Otherwise, the stepwise variable selection procedure 
implemented in the function stepAIC from package 
MASS is used. It consists of iteratively adding and re-
moving covariates in stepwise manner to lower the ob-
jective criterion.

The correlation model selection �CORR

k+1

Using the selected covariate model ℳCOV
k+1

 and the 
sample of individual parameters �

(k)
i

, it is possi-
ble to extract the vector of individual random effects 
�
(k)
i

=
(
�
(k)
i�
,� = 1, … ,L

)
 from Equation 5. Assuming that  	

�
(k)
i

∼� (0,Ω) where Ω is a block diagonal matrix, the 
problem of correlation model selection consists in select-
ing the block structure of Ω. We then select the correla-
tion model denoted ℳCORR

k+1
 by minimizing a penalized 

criterion:

We denote nΩ the number of non-zero elements in the 
upper triangular part of the matrix Ω. The penalization 

(5)
h�

(
�

(k)
i�

)
= h�

(
�pop,�

)
+ ��ci + �

(k)
i�
, 1 ≤ i ≤ N , 1 ≤ � ≤ L,

ℳ
COV𝓁
k+1

= argmin

{
min�𝓁

(
− 2log

(
ℒℳ

(
�𝓁 ;�

(k)
𝓁

)))
+ penCOV(ℳ)

}
.

ℳ
CORR
k+1

= argminℳ

{
minΩ

(
− 2log

(
ℒℳ

(
Ω;�(k)

i

)))
+ penCORR (ℳ)

}
.

F I G U R E  1   Scheme of the Stochastic Approximation for Model Building Algorithm (SAMBA)
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depends on the criterion selected for global optimiza-
tion: if AIC then penCORR (ℳ) = 2nΩ, if BIC or BICc then 
penCORR (ℳ) = log (N)nΩ.

In the implemented version of package Rsmlx, we limit 
the size of the block-structure that can be considered at 
each iteration. For ℳ1, no correlation can be added and 
a diagonal matrix is used for Ω; for ℳ2 only blocks of size 
two are considered. At iteration k for selection of model 
ℳ

CORR
k+1

, block size cannot be larger than k + 1, leading to 
no more than (k − 1)k∕2 non-zero covariance terms in Ω.

The error model selection �ERR

k+1

For a given set of simulated individual parameters 
(� (k)

i
, 1 ≤ i ≤ N), the residual errors can easily be 

computed:

We then fit several error models with standard devia-
tion of the form g

(
tij,�

(k)
i
, �
)

 for e(k)
ij

 and select the one 
minimizing a penalized criterion:

We denote n� the length of � (i.e., the number of pa-
rameters in model ℳ). The penalization depends on the 
criterion selected for global optimization: if AIC then 
penERR (ℳ) = 2n�, if BIC then penERR (ℳ) = log (N)n�, 
and if BICc then pen (ℳ) = log

(
ntot

)
n� where ntot is the 

total number of observations, including below the limit of 
quantification data.

In the implemented version of package Rsmlx, five 
error models (provided by function gin Equation  1) 
are tested by default: constant (gx

(
tij,�

(k)
i
, �
)

= �),  	
proportional (gx

(
tij,�

(k)
i
, �
)

= �f
(
tij,� i

)
), com-

bined1 (gx
(
tij,�

(k)
i
, �
)

= �1 + �2f
(
tij,� i

)
), combined2

 	
	
(gx

(
tij,�

(k)
i
, �
)

=
√

�21 + �22f
(
tij,� i

)
), or exponential in 

which a constant error model is fitted to the log(y) using 
the transformation u = log in Equation 1. Note that it is 
currently not possible to perform the selection on a re-
stricted number of error models, but such a feature could 
be easily implemented.

Stopping rule procedure

At each iteration k of the algorithm, we combine ℳCOV
k+1

, 	
ℳ

CORR
k+1

, and ℳERR
k+1

 to get the new selected model ℳk+1,  	

which is passed forward on to the next estimation-
simulation run. It is important to select the covariate 
model before the correlation model. On the other hand, 
the error model can be updated before or after the other 
two components of the model. The algorithm stops when 
ℳk is strictly identical to ℳk+1 for all components and the 
last model is the selected one.

Remark

In the above, � (k)
i

 represents a single realization of the con-
ditional distribution pℳk

(� i|y, �(k)) for each i = 1,…N. 
Instead of considering only one realization of this distribu-
tion, we could use a sample of size R(�

(k)

i�,r
, 1 ≤ r ≤ R). If so, 

the linear covariate model described in Equation 5 rewrites:

where:

Procedures for covariate model selection and correla-
tion model selection remains the same, but using now (
�

(k)
i�

)
 and 

(
�
(k)
i�

)
 at iteration k. On the other hand, the  	

R series of residual errors 
(
e(k)
ij,r

)
 are used for selecting the 

residual error model.

RESULTS

Step-by-step example of the SAMBA 
procedure

To illustrate how SAMBA works in practice, we will de-
scribe step-by-step the complete procedure on the example 
of remifentanil.15 We use here the SAMBA implementa-
tion in function buildmlx of the R package Rsmlx, using 
the default settings.

The remifentanil data

The dataset is composed of 65 healthy adults who have 
received remifentanil i.v. infusion at a constant infusion 
rate between 1 and 8 μg−1 kg−1 min−1 for 4 to 20 minutes. 
Time and rate of infusion are known for each individual. 
The pharmacokinetic (PK) data consists in the plasma 
concentration of remifentanil, which is measured during 
and after infusion for a total of 19 to 53 observations by 
patients, totaling 2057 observations. A total of six 

e(k)
ij

= yij − f
(
tij,�

(k)
i

)
, 1 ≤ i ≤ N , 1 ≤ j ≤ ni.

ℳ
ERR
k+1

= argminℳ

{
min�

(
− 2log

(
ℒℳ

(
�;e(k)

ij

))
) + penERR(ℳ

)}
.

h�

(
�

(k)
�,i

)
= h�

(
��,pop

)
+ ��ci + �

(k)
�,i
, 1 ≤ i ≤ N , 1 ≤ � ≤ L,

h�

(
�
(k)
�,i

)
=
1

R

R∑

r=1

h�

(
�
(k)
i�,r

)



166  |      PRAGUE and LAVIELLE

covariates are available: one qualitative covariate, the sex 
(SEX) and five continuous covariates: the age (AGE), the 
height (HT), the weight (WT), the lean body mass (LBM), 
and the body surface area (BSA). All the latter are normal-
ized and log-transformed for the analysis. In the follow-
ing, we adopt the notation logAGE = log

(
AGE∕AGEpop

)
, 

where AGEpop is a typical value to normalize on (e.g., the 
mean value of age in the population).

The model

The PK model for i.v. infusion has a central compart-
ment (volume V1), two peripheral compartments (vol-
umes V2 and V3, and intercompartmental clearances 
Q2 and Q3), and a linear elimination (Cl). Log-normal 
distributions are used for the six individual parameters. 
The 26 = 64 possible covariate models will be considered 
for each of the six individual parameters. Note that if we 
had to test all possible models, we would have had to test 
646 combinations, which would have made the problem 
intractable.

SAMBA iterations

We start the SAMBA procedure with a model ℳ0 with-
out any covariate on all parameters, with no correlation 
between random effects and the so-called combined1 
error model. Figure 2 illustrates the selection steps on 
this specific example. One can notice that the BICc, 
which has been chosen as target criterion, decreases 
from 7186 for ℳ0 to 6985 for ℳ1, 6957 for ℳ2, and 6903 
for ℳ3, which is finally selected as the best model for 
this example.

•	 Run 0 (BICc = 7185.8) + Iteration 1: Model ℳ0 is fit-
ted to data and individual parameters are sampled con-
ditionally on the data and this model. Each of the 64 
possible linear covariate models is fitted to each individ-
ual parameters and the one with lowest BICc is selected. 
Let us take the example of Cl: the three best models in-
clude (1) an effect of logAGE and logWT (BICc = −55.0), 
(2) an effect of logAGE and logLBM (BICc = −56.1), and 
(3) an effect of logAGE and logBSA (BICc = −57.5). The 
latter is chosen as the best model for parameter Cl as it 
provides the lowest BICc (ℳCOV,Cl

1
). Altogether, for all 

parameters, the best covariate model (ℳCOV
1

) includes 
logAGE on all parameters, logBSA on Cl, and logLBM 
on V1 and V2. No correlation is added to the model be-
cause no correlation is allowed at first iteration. Then, 
ℳ

CORR
1

 is a diagonal variance-covariance matrix for 
the random effects. Among the tested error models, the 

three best ones are proportional (BICc = 5815.2), com-
bined1 (BICc = 5811.2), and combined2 (BICc = 5807.0), 
which is selected for ℳERR

1
. These covariate, correla-

tion, and error models are then passed on to run 1: 
ℳ1 = {{ℳ

COV,Cl
1

,ℳCOV,Q2
1

,ℳCOV,Q3
1

,ℳCOV,V1
1

,ℳCOV,V2
1

,ℳCOV,V3
1

},ℳCORR
1

,ℳERR
1

}}.
•	 Run 1 (BICc = 6984.9) + Iteration 2: Model ℳ1 is fit-

ted to the data and individual parameters are sampled. 
Again, the three best model for each covariate are pro-
vided. The best covariate model includes logAGE on all 
parameters except V1, logBSA on Cl, logLBM on V1, and 
SEX on V2 (ℳCOV

2
). Block-structured correlation with 

blocks up to size 2 are compared (i.e., up to one correla-
tion term). The best three models are with a correlation 
between parameters Cl and V2 (BICc  =  1082.9), be-
tween parameters Cl and Q2 (BICc = 1093.8), and be-
tween parameters V2 and Q2 (BICc = 1072.0). The latter 
correlation model is selected for ℳCORR

2
. Residual error 

model combined2 remains the best one (ℳERR
2

). These 
covariate, correlation, and error models are then passed 
on to run 2.

•	 Run 2 (BICc  =  6956.9) + Iteration 3: Model ℳ2 
is fitted to data and individual parameters are sam-
pled. The best covariate model includes logAGE on 
all parameters except V1, logBSA on Cl, and logLBM 
on V1 and V2 (ℳCOV

3
). Block-structured correlation 

with blocks up to size 3 are compared (i.e., up to three 
correlation terms), a correlation block is selected be-
tween Cl, Q2, and V2 (ℳCORR

3
). Residual error model 

combined2 remains the best one (ℳERR
3

). These co-
variate, correlation, and error models are then passed 
on to run 3.

•	 Run 3 (BICc  =  6903.4) + Iteration 4: Model ℳ3 is 
fitted to data and individual parameters are sampled. 
Of note, regarding the correlation model selection, 
block-structured correlation with blocks up to size 4 are 
compared (i.e., up to six correlation terms). During this 
iteration, the same model as the one in the previous it-
eration is selected (ℳ4 =ℳ3) resulting in the stopping 
of the procedure. Model ℳ3 is therefore the final model 
selected with the SAMBA procedure.

Converging toward a global optimal model

Even if the selected criterion decreases at each iteration, 
there is no guarantee that SAMBA converges toward a 
global minimum of this criterion. The quality and the 
robustness of the convergence of SAMBA can then be 
assessed by running SAMBA several times from differ-
ent starting models. In particular, a good practice is to: 
(1) launch SAMBA from several initial models, (2) com-
pare the best models found (if there is not only one) in 
terms of objective criterion (e.g., BICc), and (3) make 
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a thorough analysis and interpretation of the nearby 
models in order to choose the most relevant one for a 
given application. Regarding the choice of the starting 
model, similarly to the Expectation Maximization and 
Stochastic Approximation Expectation Maximization al-
gorithms, there is no optimal choice.16,17 We recommend 
to test in priority the following three starting models: (1) 
an empty model, (2) (when possible) a complete model, 
and (3) a model (or models) that make sense for the bio-
logical application. Note that this robustness assessment 
is standard for all non-convex optimization algorithms 
and should also be performed for SCM and COSSAC in 
routine.

Performances on real examples,  
and comparison with the SCM and 
COSSAC procedures

To assess the performances of the SAMBA procedure 
compared to SCM and COSSAC procedures, we replicate 
the illustration provided in ref. 4. We applied the three 
routines to a collection of 10 representative datasets, in-
cluding PKs, pharmacodynamics, and disease models. Of 
note, the SCM method for variable selection used here is 
exactly the same as the one implemented in PsN (Pearl 
Speaks NONMEM), differences lie in the algorithms used 
to estimate the parameters of a model and to calculate the 
likelihood. We restricted the SAMBA procedure to the 
covariate model selection as correlation and error model 
selection are not implemented in COSSAC and SCM. The 
results can be found in Table 1.

Because the datasets are real data illustrations, there 
is no “true” model. It is only possible to compare them 
in terms of BIC. Of 10 examples, the same best model 
was proposed by the three procedures in four examples. 
In two examples, the best model selected by SAMBA 
was better in terms of BICc than with SCM and COSSAC 
(Theophylline Ext. Rel. and Warfarin PK/PD). In three 
other examples, the model with the lowest BICc was not 
selected by SAMBA. However, the difference in BICc was, 
respectively, smaller than six in comparison with the SCM 
procedure and 4.2 in comparison with the COSSAC proce-
dure. We insist on the fact that a difference in BICc does 
not necessarily have any biological meaning. This is an 
arbitrary criterion that allows to quantify the goodness of 
fit with respect to the sparsity of the model chosen. We 
thus argue that the three procedures lead to rather similar 
models, which all constitute very good starting points for 
the modeler to build a model based on biological hypoth-
esis. Finally, in only one example discussed below, the dif-
ference in BICc was larger than 10 points of BICc both 
compared with the SCM and COSSAC procedures.

Regarding the cholesterol dataset, we again ran the 
SAMBA procedure starting from a full model in which all 
covariates are supposed to have an effect on all parameters. 
The new model selected by SAMBA is the full model with 
an effect of logAGE on (Chol0, slope) and SEX on (Chol0, 
slope) is much closer in term of BICc than the one selected 
starting from an empty model (Δ BICc = −2). We can fi-
nally notice with this example that it is sometimes possible 
to improve the convergence of SAMBA by improving the 
convergence of SAEM. Indeed, using 10 Markov chains 
instead of only one, SAMBA also finds the model selected 
by SCM and COSSAC. Finding the optimal settings that 
minimizes computation time while maximizing the prob-
ability of finding the best model is an extremely difficult 
problem that remains open. We can claim that the default 
settings used in Rsmlx and Monolix give very good results 
in most cases, but not in all cases with absolute certainty.

In terms of computational effort, it is important to note 
that the SAMBA procedure completes the model-building 
process in much less runs, hence much less CPU time than 
SCM and COSSAC. In the considered problems, the num-
ber of runs and the CPU computation time are equivalent 
because the other computation times are negligible in the 
order of a few seconds. Actually, the computation times are 
six to 149 smaller than for SCM and two to 11 times smaller 
than for COSSAC. Note that the number of evaluations re-
quired by SAMBA is always lower or equal to the number 
of evaluations performed by COSSAC and SCM.

Simulation study

Data generation and analysis

We simulated data from a one-compartment PK model. 
The model has three population parameters kapop = 1, 
Vpop = 10 and Clpop = 2. All individual parameters are log-
normally distributed around the population parameters 
(�ka = 0.2, �V = 0.3 and �Cl = 0.3). We simulated five in-
dividual covariates 

(
C1,C2,C3,C4,C5

)
 from standard nor-

mal distributions. The covariate model is such that there 
only exists linear relationships between log (V ) and C1 
(�V ,1 = 0.2), log (Cl) and C1 (�Cl,1 = − 0.2), and log (Cl) and 
C2 (�Cl,2 = 0.3). The correlation model is such that there 
exists a linear correlation between �V  and �Cl (�V ,Cl = 0.6).  	
Finally, the error model is a combined2 model with a = 2 
and b = 0.1. A clinical trial could then be simulated by 
generating PK data from this model for 100 individu-
als and 11 timepoints (0.25, 0.5, 1, 2, 5, 8, 12, 16, 20, 24, 
and 30). In order to evaluate the properties of SAMBA by 
Monte-Carlo, we simulated 100 replicates of the same trial 
and built the model for each replicate using SAMBA as 
implemented in Rsmlx and Monolix for minimizing BICc. 
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The initial model did not include any covariate-parameter 
relationship and any correlation between random effect. 
The initial residual error model was a combined1 model. 
The R code used for this Monte-Carlo study is available as 
Supplementary Material.

Performances

Table  2 summarizes the results obtained for the covari-
ate model selection. On the one hand, we can see that, 
for this particular example, SAMBA finds the three ex-
isting covariate-parameter relationships in 100% of the 
cases. On the other hand, very few spurious relationships 
are detected (less than 2%). Importantly, in all cases for 
which the final covariate model included more covariates 
than the true model M∗, the BICc of the selected model 
was lower than that of M∗ (the differences ranging from 
3 to 14.7 with Rsmlx and from 2.4 to 14.6 for Monolix). In 
other words, SAMBA always finds a covariate model as 
good or better than M∗ in terms of BICc. Regarding the 
selection of the correlation model, the correct model was 
selected for all the replicates. Finally, the correct error 
model was selected in 86% of the times with Rsmlx and 
85% of the times with Monolix. Note that all the wrong 
selected error models were all combined1 model (instead 
of combined2) with a slightly larger BICc most of the time. 
Actually, these two models are quite similar and diffi-
cult to distinguish on the basis of a criterion like BICc. 
SAMBA then may get stuck in a local minimum in such 
a situation. Finally, and importantly, the final selected 
models obtained with Rsmlx and Monolix are different in 
only 6% of cases. These small differences are due to small D
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T A B L E  2   Performance of the SAMBA algorithm for the 
selection of the covariate model in a simulation study using a one-
compartment PK model

Covariates

Rsmlx Monolix

ka V Cl ka V Cl

C1 2 100 100 2 100 100

C2 0 1 100 0 1 100

C3 1 2 1 2 2 1

C4 0 3 4 0 3 4

C5 0 1 1 1 2 1

One hundred datasets of 100 individuals with 11 observations each have 
been generated. True model ℳ∗ includes an effect of C1 on V  and Cl and 
an effect of C2 on Cl. The percentages of times (over 100 replicates) each 
covariate-parameter relationship is selected in the final model are displayed. 
Implementation of SAMBA in Rsmlx and Monolix are compared.
Abbreviations: Cl, linear elimination; ka, absorption rate constant; PK, 
pharmacokinetic; SAMBA, Stochastic Approximation for Model Building 
Algorithm; V, volume.
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differences in the implementation of the algorithm (see 
the Discussion section for more details).

DISCUSSION

This paper presents a novel model-building procedure 
which offers covariate, correlation, and error model se-
lection. It is fast as it requires only a limited number of 
runs of population parameter estimation and simula-
tion compared to SCM and COSSAC. It allows to explore 
the space of models rapidly and provides to the modeler 
a very good model in term of the selection criterion. 
However, we insist on the fact that this procedure does 
not aim at replacing model-building based on biological 
knowledge, which is, in essence, the strength of mecha-
nistic modeling. Thus, it should not be blindly used and 
the best—potentially few best—models should be inter-
preted and compared.

SAMBA is an efficient algorithm for minimizing 
an objective function. In this paper, we do not aim at 
evaluating the quality of the criterion used for model 
selection.18 What is of interest here is the convergence 
of SAMBA. As it is also the case for SCM and COSSAC, 
SAMBA may not converge to the global minimum. This 
is particularly the case when the amount of data is too 
small compared to the complexity of the model to build. 
This phenomenon will be particularly critical when the 
number of covariates is high and/or when these are 
highly correlated. We then strongly encourage the user 
to build strategies to assess the robustness of the results. 
Extensions of the proposed algorithm are possible but 
are outside the scope of this paper and constitute a pos-
sible new research direction.

When there is a large number of available covariates, 
COSSAC and mainly SCM often fail in finding the best 
model in a reasonable time. In this case, SAMBA represents 
a particularly appealing approach because the covariate 
model selection is based on a stepwise variable selection 
procedure for linear models, which is known to handle 
high-dimension problems. Although stepwise AIC/BIC are 
designed to obtain a sparse estimator that works well on the 
training set, other methods, such as the lasso,19 where the 
penalty is chosen with cross validation, is designed to obtain 
the sparse linear model that minimize the prediction error. 
A lasso type approach20 can sometimes present better per-
formances than an approach based on an information cri-
terion, such as AIC or BIC, in particular when the number 
of covariates is very high. However, it should be noted that 
the choice of the penalty parameter by cross-validation can 
be complicated to implement and require a large number 
of runs. This type of method could be alternatively imple-
mented in the covariate selection procedure and compared 

in further works. Note finally that it would be interesting to 
study the behavior of SAMBA using the EBEs (corrected as 
proposed in ref. 8,9), rather than the individual simulated 
parameters, to build the covariate model.

The SAMBA procedure is implemented the R Package 
Rsmlx in the function buildmlx.21 Minimal required input 
is a Monolix project used as initial model. Additional argu-
ments can be used to enable specific features (all not listed): 
select the components of the model to optimize among the 
covariate, correlation, and error model, restrict the number 
of parameters or covariates to use, select a specific objec-
tive criterion, etc. Rsmlx is on CRAN and the R code can 
be modified to investigate any of the alternative implemen-
tations mentioned above for a specific problem. Note that 
the execution of Rsmlx requires the Monolix software, be-
cause it is only an algorithm combining tasks implemented 
in Monolix. The R codes allowing to replicate the analyses 
of this paper are available in the Supplementary Material. 
All the illustration datasets can be downloaded from the 
Supporting Information Appendix S2 of ref. 4.

Finally, the SAMBA procedure is also implemented 
in the Monolix-GUI software starting from version 2019. 
Implementation is similar to the one in Rsmlx with two 
noteworthy differences. First, for the selection of covari-
ates, a stepwise procedure is used even if the number of 
covariates d is small. Second, compiling differences exist 
between C++ and R. The full SAMBA procedure is avail-
able in the model-building perspective, under a task called 
automatic statistical model building method. A single it-
eration of the SAMBA procedure is also proposed in the 
section Proposal in the tab Results after running a single 
estimation and simulation step for a model in Monolix.22
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