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Jean-François Duhé · Stéphane Victor · Pierre Melchior · Youssef

Abdelmounen · François Roubertie

Received: date / Accepted: date

Abstract Thermal modeling of systems allows heat
and temperature simulations for many applications, such

as refrigeration design, heat dissipation in power elec-
tronics, melting processes and bio-heat transfers. Suffi-
ciently accurate models are especially needed in open-

heart surgery where lung thermal modeling will prevent

pulmonary cell dying. For simplicity purposes, simple

RC circuits are often used but such models are too sim-

ple and lack of precision in dynamical terms. A more

complete description of conductive heat transfer can
be obtained from the heat equation by means of a two-
port network. The analytical expressions obtained from

such circuit models are complex and nonlinear in the

frequency ω. This complexity in Laplace domain is dif-

ficult to handle when it comes to control applications

and more specifically during surgery, as heat transfer

and temperature control of a tissue may help in re-

ducing necrosis and preserving a greater amount of a

given organ. Therefore, a frequency domain analysis of

the series and shunt impedances will be presented and

different techniques of approximations will be explored

in order to obtain simple but sufficiently precise linear

fractional transfer function models. Several approxima-
tions are proposed to model heat transfers of a human
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middle bronchus and will be quantified by the absolute

errors.
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1 Introduction

Thermal modeling of systems is of particular interest in

applications where temperature might be critical. This

includes air conditioning, industrial refrigeration, elec-

tronic device cooling, biological tissue heat losses etc.

The complexity of heat transfer usually implies the use

of finite element methods to solve the heat equation in
a chosen region of space. However, finite element mod-
els tend to be complex to calculate and in many cases

a simpler model that only takes into account temper-

atures around particular points of interest are precise

enough for specific applications.

A typical simple model to take into account heat

dissipation and its dynamics is the RC circuit. It is

usually used in the domain of power electronics [16],

building simulation [26,8] and even to model human

heat losses [14,13]. RC circuit models are also present in

other similar applications, such as the measurement of

bio-impedances [5] or lithium-ion battery models [32].

In most of these applications, the system input is as-

sumed a low frequency signal. In order to widen the

frequency range and especially in high frequency, the

thermal two-port network was introduced in [19] and

such a model is directly derived from the heat equa-

tion.
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The thermal two-port network models heat conduc-

tion in a single direction as a T circuit (see figure 2)
with two series impedances Z1(s) and Z2(s) and a shunt

impedance Z3(s). These impedance expressions are com-

plex and nonlinear in ω which do not allow obtaining

rational transfer functions, the latter being more suited
models for control design. It can be shown in high fre-

quency that the thermal impedance of a plane wall is
given by a half-order integrator [2,21]:

lim
ω→∞

Zthermal(jω) = lim
ω→∞

T (jω)

φ(jω)
=

K√
jω

. (1)

Such an expression shows that the heat transfer in
high frequency may be modelled by using constant-

phase elements (CPE) (see [15,25,30]). Constant-phase

elements have particularly been used in biological and

medical applications such as modeling intestine tissue

[12], porous films [9], cardiac tissue [18] or even lung

mechanics [6], thus showing the growing importance of

fractional calculus in modeling applications.

During surgery, heat transfer and temperature con-
trol of a tissue may help in reducing necrosis and pre-

serving a greater amount of a given organ. Patients can
suffer from lung injuries during cardiopulmonary by-
pass, such as ischemia [3]. Perfusion techniques involv-
ing some type of indirect temperature control exist [20].

Some lung injuries may be treated by applying mild hy-

pothermia [29]. The precision required to keep a fairly

precise temperature in the tissue justifies our interest

in enhancing the knowledge regarding the dynamics of
thermal models for physiological scenarios.

The contributions of this paper lies on at giving dif-

ferent approximation models for both the series and

shunt impedances. The series impedances will be ap-

proximated by means of an asymptotic model (tak-

ing into account only low and high-frequency behav-

ior), pole-zero cells and the use of a fractional Butter-

worth impedance model. On the other hand, the shunt

impedance will be approximated by a capacitance (its

most basic model) and by filtered capacitance models:

fractional slope filter and multiple pole filters. The poles

for the last filter will be analyzed with and without a

recursive factor imposed between the parameters. All

these model approximations for the series and shunt

impedances will be tested on a biological system: the

heat transfer in a human bronchus.

This paper is organized as follows. The presenta-

tion of the thermal two-port network and its frequency-

domain analysis will be presented in section 2. The ap-

proximation propositions will be explored in section 3

by providing simulation results. A biological application

by modeling the human bronchus will be presented in

section 4. Finally, section 5 presents conclusions, final

remarks and research perspectives.

2 The analytical thermal two-port network

φin φout

Tin(x = 0) Tout(x = L)k, ρ, c

x
Sw

Fig. 1 1D thermal system

Let us consider the heat conduction on a simple

plane wall in its longitudinal direction x, as shown in

figure 1where k, ρ and c respectively stand for the medium

thermal conductivity, density and heat capacity. The
total length is L and the cross section is Sw. The heat

equation is expressed as:

ρc
∂T

∂t
= k∇2T, (2)

and as conduction only goes in x direction, it can be

written as:

ρc
∂T

∂t
= k

∂2T

∂x2
. (3)

The Laplace transform of equation (3), with null

initial conditions, leads to:

sT (x, s) =
k

ρc

∂2T (x, s)

∂x2
, (4)

where s denotes the Laplace variable.

By considering a heat flux input at x = 0 and a heat

flux output at x = L, it then comes:

Q̇in(s) = −kSw
∂T (x,s)

∂x

∣

∣

∣

x=0

Q̇out(s) = −kSw
∂T (x,s)

∂x

∣

∣

∣

x=L
,

(5)

or even, put under a matrix form:

[

Tin(s)

Q̇in(s)

]

= M

[

Tout(s)

Q̇out(s)

]

(6)

where

M =

[

cosh(δL) 1
kSwδ

sinh(δL)

kSw sinh(δL) cosh(δL)

]

(7)

with δ =
√

s
a
and a = ρc

k
.



Modeling thermal systems with fractional models: human bronchus application 3

Tin

Z1(s)

Q̇in

Z3(s)

Z2(s)

Q̇out

Tout

Fig. 2 Thermal two-port network

Note that δ involves the presence of a fractional

(non-integer) operator, as its time-domain representa-

tion is a half-order derivative. This matrix equation (6)

can be represented by a T circuit model, such as repre-

sented in figure 2.

The series impedances can then be expressed by:

Z1(s) = Z2(s) =
1

kSwδ
[coth(δL)− csch(δL)] (8)

and the shunt impedance by:

Z3(s) =
1

kSwδ
csch(δL) (9)

where coth and csch respectively are the hyperbolic
cotangent and cosecant functions.

2.1 Low-frequency behavior

Processes in thermal applications are usually assumed
to be quasi-static, which means that the impedance be-
havior is only considered in low frequency, thus leading
to:

lim
ω→0

Z1(jω) =
L

2kSw

= R (10)

lim
ω→0

Z3(jω) =
1

ρcLSwjω
=

1

jωCt

(11)

where Ct = ρcLSw.

As it can be seen, low-frequency heat transfers lead

to a network consisting only of thermal resistances for

the series impedances (which represent energy dissipa-

tion) and a capacitance for the shunt impedance (which

models energy storage in the medium). This is coher-

ent with the classic RC circuit model used to charac-

terize heat transfer dynamics. However, it should be

noted that, depending on the thermal properties of the

medium, it is possible to have situations in which the

transfer occurs at higher frequencies, which limits the

validity of the RC model.

2.2 High-frequency behavior

Now, by considering the limits in high frequency, the
impedance analysis of the thermal quadrupole, by de-
coupling them into gain and argument, gives:

lim
ω→∞

|Z1(jω)| = 0, lim
ω→∞

arg |Z1(jω)| = −45◦ (12)

and

lim
ω→∞

|Z3(jω)| = 0, lim
ω→∞

arg |Z3(jω)| = −∞. (13)

The impedance Z1 clearly exhibits a low-pass fil-

ter in high frequency, as shown by its zero gain in
high frequency. This suggests a capacitive behavior,
but the argument has to be analyzed with more care.

As can be observed, the high frequency argument of

this impedance is not −90◦, but its half. This allows us

to deduce that the high frequency behavior of the se-

ries impedance Z1 is a constant phase element of phase

−45◦ or in other words:

Z1−HF (s) =
1

Css0.5
. (14)

At first, the shunt impedance Z3 seems coherent

with the capacitance model in low frequency, as it is

normal for a capacitance to exhibit zero gain in high

frequency. The argument, on the other hand, suggests

that there is an additional filtering that appears in high

frequency, which explains why this argument is not the
expected −90◦. The high frequency model of Z3 can be

a combination of a capacitance and a filter, such as:

Z3−HF (s) =
1

Cts
Hfilter(s). (15)

Remark : Adding a correction filter will provide a

wider validity domain for the approximation of Z3, but

it is actually impossible to design a filter that will allow

an infinite frequency-range: theoretically, such a filter

would have an infinite number of poles in order to ob-

tain the argument shown in equation (13).

3 Impedance approximations

It is impossible to well approximate the quadrupole by
a model valid for any frequency just by using transfer

function models, unless having an infinite number of pa-
rameters. However, a truncated transfer function model
may be a fairly useful approximation with a wider va-

lidity compared to RC circuits. Consequently, a model

going from low frequency (or even a static case) to a

high but finite upper frequency will be developed. An

academic example will be first used to illustrate the

main ideas of section 3 and a more complex example



4 Jean-François Duhé et al.

Table 1 Academic example simulation parameters

Parameter Value

a 1 m2 · s−1

k 1 W ·m−1 ·K−1

L 1 m

Sw 1 m2

will be described in section 4. The academic model pa-

rameters are presented in table 8.

The proposed approximations will require the deter-
mination of different parameters in order to be as close

as possible to the true impedance behavior. A common

quadratic error criterion will be used by taking the error

of the gain in dB defined as:

J(θ) =

∑N
i=1 λ

2(N−i)[|Z(jωi)|dB − |Zapp(jωi, θ)|dB ]2∆i

logωN − logω1
,

(16)

where ω = [ω1, . . . , ωN ] is a frequency vector where
ωi ∈ [0.1, 100 rad/s] for i = 1, . . . , N and λ is a weight-

ing coefficient (0 < λ < 1) that provides a weight for

low or high frequencies. If λ = 1, all frequencies have

the same weight. Unless indicated, it will be taken as

unity. This criterion (16) measures the error in the gain

curve given in dB.

The series impedance approximations will be opti-
mized by using the Flower Pollination Algorithm (FPA)

(see [31] for the complete description), which is a novel

meta-heuristic optimization method. The parameters to

be tuned in order to apply FPA are pretty low, which

makes it faster to tune and test when compared to

other algorithms. The main parameters to be tuned are

the population size n (normally between 10-25) and a
switching probability p which states the possibility of

doing one of the two principal operations of the algo-

rithm in an iteration: global pollination or local pol-

lination. The most critical parameter is the switching

probability, but applications found in literature tend

to use a value of 0.8 [31]. A mathematical study [17]

stated that, even though the value of p does not de-
grade the results when it comes to unimodal functions,

a range between 0.5 and 0.8 is preferred. For this study,

all optimizations were performed by using n = 10 and

p = 0.8. The main steps for classic FPA are shown in

Algorithm 1.

Remark : The choice of FPA as an optimization tool

was mainly due to its simple structure and low param-

eters to be tuned. However, it should be noted that any

other optimization algorithm could also be used to ap-

proximate the parameters, such as genetic algorithm or

particle swarm optimization.

Algorithm 1: Flower Pollination Algo-

rithm
Objective function f(x), x = (x1, x2, ..., xd);
Initialize a population of n flowers with random
solutions

Find the best solution gbest in the initial population
Define a switch probability p

while t < MaxIterations do

for i = 1 : n do

if rand < p then

Calculate L (Levy flight distribution);

x
t+1

i = xt
i + L(xt

i − gbest);

else

x
t+1

i = xt
i + ǫ(xt

j − xt
k);

end

end

end

3.1 Approximation of the series impedances Z1 and Z2

3.1.1 Asymptotic approximation

As it was seen in the previous section, the series impedance

Z1 and Z2 are equal and behave like a resistance for low

frequencies and like a constant phase element at high

frequencies. For simplicity sake, only Z1 is used. A sim-
ple approximation of Z1 can be defined as the parallel

combination of a resistance and a fractance, such as:

Z1−asymp(s) =
R

1 +RCs

√
s
, (17)

with R = L
2kSw

= 0.5W · K−1 and Cs = kSw√
a

= 1 J ·
K−1.

This first proposition will be called “asymptotic ap-

proximation”, as it is obtained by only considering both

extremes of the frequency domain. The cut-off frequency

obtained at −3 dB under the static gain corresponds to
(see appendix C):

ωb ≈
0.2679

(RCs)2
. (18)

Figures 3 and 4 respectively show the gain and phase

for the approximation Z1−asymp compared with the ex-

act expression of Z1 over a frequency range [0.1−100 rad/s].

As expected, both curves get closer towards the limits in

low and high frequencies, however, high gain and phase

errors occurs in the middle range frequencies. Another

important error by using the approximation Z1−asymp,

is the cut-off frequency. The true −3 dB frequency un-

der the static gain is almost one decade greater than

the one obtained with the asymptotic approximation,

which means this approximation leads to a slower dy-

namic.
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Fig. 3 Z1 gain diagram and its asymptotic approximation
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Fig. 4 Z1 phase diagram and its asymptotic approximation

3.1.2 Pole-zero approximation

In order to improve the approximation Z1−asymp, a cor-

rection term may be added to the asymptotic approxi-

mation. This correction term will adjust the impedance

for a mid-band frequency range, as the asymptotic term

can properly handle both low and high-frequency lim-

its. This means that the additional term should not

contribute to the gain or to the phase in the low or the

high-frequency range. A first proposition for the cor-

rected impedance is to use pole-zero cells that will be

placed inside the frequency range of interest:

Z1−pz(s) =
R

1 +RC
√
s

Ncells
∏

i

1 +
s

zi

1 +
s

pi

. (19)

The parameter vector θ is given by:

θ = [p z] (20)

where p and z are vectors containing all the poles and

zeros, respectively.

The number of cells Ncells to be used for the correc-

tion will depend on each specific case. Each cell adds a
single pole and zero to the transfer function Z1. A large

number of cells may give pretty accurate approxima-

tions, but the thermal model may become too complex

and identifiability problems may occur (large number

of parameters in the transfer functions).

In order to determine an optimal number of cells to

add for the pole-zero approximation, the error criteria

J(θ) was optimized for Ncells going from 1 to 8 in order

to estimate an optimal number of poles and zeros to be

added. Figure 5 shows the different values for the error

criteria.

1 2 3 4 5 6 7 8

0

0.2

0.4

0.6

0.8

1

1.2

J
(d
B

2
)

Pole-zero units

Fig. 5 J criterion with varying Ncells for the series
impedance correction

As can be seen, no further improvement in the ap-
proximation is obtained for this case beyond 3 pole-

zero cells. Even though this technique might succeed in
recreating the exact frequency response, the dimension
of the parameter vector of the correction term should
be taken into account. In this case, dim(θ) = 6. If this

thermal impedance is only a section of a global thermal
model, it is possible that an approximation of this type
will lead to extremely complex expressions for global

transfer functions in thermal systems.

3.1.3 Fractional Butterworth approximation

By observing the gain plot in figure 3, another approx-
imation can be made for the thermal impedance Z1.

As it can be seen in the blue curve, the frequency re-

sponse is considerably flat before the cut-off frequency.

This suggests that this impedance behaves like a But-

terworth filter [4]. However, the high-frequency gain

slope is not an integer multiple of −20 dB/dec, but

−10 dB/dec. Therefore, inspired by [1], a fractional But-
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terworth filter can be used as an alternative approxima-

tion model:

Z1−BW (s) =
d

sα+β + asα + bsβ + c
. (21)

This new type of model is not a correction term mul-

tiplied by the asymptotic approximation, as it can in-

clude both the low and high frequency behaviors within
its expression:

lim
ω→0

Z1−BW (jω) ≈ d

c
= R (22)

and

lim
ω→∞

Z1−BW (jω) ≈ d

(jω)α+β
. (23)

After identification, it is then possible to deduce

that:

α+ β = 0.5 (24)

c =
1

RC
(25)

d =
1

C
. (26)

For this type of approximation, the parameter vec-

tor will always be limited to 3 parameters:

θ = [α a b]. (27)

The fractional Butterworth filter may be a simpler
solution with respect to the parameter vector dimen-

sion. However, the stability of a system with such a
transfer function should be discussed a priori. The BIBO

stability for fractional commensurate transfer functions
was established by Matignon [22]. An extended criteria

for incommensurate systems was later developed [27].

In [1], it is stated that parameters a and b need to be
equal or inferior to zero in order to guarantee the frac-

tional stability of the system. The parameters obtained

by using the fractional Butterworth filter are given in

table 3.1.3.

Table 2 Z1(s) approximation parameters for the fractional
Butterworth filter

a b α J(θ)(dB2)
0 -0.859 0.226 0.790

It is interesting to observe that parameter a is zero,

which simplifies even more the transfer function of the

impedance. For this particular case, the thermal impedance

obtained is of the form:

Z(s) =
d

s0.5 + bsβ + c
(28)

or even, its thermal admittance is:

Y (s) =
s0.5

d
+

bsβ

d
+

c

d
. (29)

From this last expression, impedance Z1(s) may ac-

tually be reinterpreted as being the parallel combina-

tion of a half-capacitance, a resistance and fractional-

order new element which can be expressed as:

Znew(s) =
G0

sα
with G0 < 0. (30)

Further studies are necessary in order to analyze and

give a possible physical meaning to this capacitance-like

expression, particularly its negative sign.

3.1.4 Comparison of the approximations of the series

impedance Z1

In order to compare the previous approximations, the

absolute error is defined as:

ǫ(jω) = ||Z1−exact(jω)|dB − |Z1−approx(jω)|dB | . (31)

Figure 6 illustrates the gains for the exact case and

the proposed approximations of Z1 whereas the error

signals are plotted in figure 7.

10
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10
1
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-22

-20
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-14
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-10

-8

-6

-4
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Z1−asymp

Z1−zp

Z1−BW

Frequency (rad/s)

G
ai

n
(d

B
)

Fig. 6 Gain diagrams of Z1 and its approximations

The minimum, maximum and mean values of the er-

ror obtained for the three approximations are provided

in table 3.1.4.
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Fig. 7 Absolute errors ǫ(jω) associated with the different
approximations of Z1

Table 3 Extreme and mean values of the absolute errors
obtained for the Z1 approximations

Approximation Max (dB) Mean (dB) Min (dB)

Asymptotic 4.99 2.84 0.96
Pole-zero 0.39 0.08 0.00

Butterworth 1.37 0.78 0.04

Moreover, the mean error for the asymptotic ap-

proximation is almost 3 dB and the lowest error is a-

round 1 dB, which translates an inaccurate approxi-
mation for all mid-range frequencies. When pole-zero

cells are added, the mean error is reduced by a fac-

tor of 35, and the error signal can get really close to

zero, as shown by its minimum error value (which is

not exactly zero, but around 10−4). The Butterworth

approximation offers intermediate results, as there is a
rough factor of 4 between the asymptotic and the But-
terworth mean error. Its peak is still acceptable, but

4 times higher than the one obtained with the pole-

zero approximation. If one needs an extremely precise

result, the complexity of the pole-zero cells might be ad-

equate but the simpler Butterworth structure may offer

accurate enough results for many applications without

adding too much parameters.

3.2 Approximation of the shunt impedance Z3

3.2.1 Capacitance approximation

The shunt impedance Z3 behaves like a pure capaci-
tance for low frequencies, but its high frequency beha-

vior is more complex than that of the series impedance,

namely:

Z3−cap(s) =
1

Cts
, (32)

with Ct = akLSw = 1.

The gain frequency response of Z3 and its capaci-
tance approximation are shown in figure 8.
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Fig. 8 Z3 gain diagram and its capacitance approximation

The −20 dB/dec slope, seen in low frequencies, con-

firms the capacitance behavior of Z3. However, the slope
of the gain curve increases as the frequencies increase.

Even though a capacitance tends to behave like a short-
circuit on high frequencies, the slope of the gain is not
increased and the error curve increases indefinitely in
high frequency (see figure 9).

10
-1

10
0

10
1

10
2

0

5

10

15

20

25

30

35

40

Frequency (rad/s)

G
ai

n
(d

B
)

Fig. 9 Absolute error ǫ(jω) associated with the capacitance
approximation of Z3

3.2.2 Fractional slope approximation

If the true thermal system is excited in the mid-range

frequencies, it is suggested to modify the classic capac-

itance model to include a slope increment.
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In this academic example, and by looking at the low

and high frequency slopes present in figure 8, one gets:

d|Z3(jω)|
dω

∣

∣

∣

ω=0.1
= −20.00 dB/dec (33)

and

d|Z3(jω)|
dω

∣

∣

∣

ω=100
= −78.28 dB/dec. (34)

The difference between the initial and the final slopes
is of almost −60 dB/dec. In order to correct this error,

a simple fractional filter is proposed as a multiplicative

term to the low-frequency capacitance:

Z3−frac(s) =
1

Cts

[

1

1 + (τs)φ

]

. (35)

This fractional correction term increases the high

frequency slope magnitude by the factor φ, namely 20φ dB/dec.

1/τ indicates the breaking point from where the added
correction term begins to influence. An initial estimate

for φ would be 2.90 in order to be close to the final
slope of −78.28 dB/dec around the higher frequency.

The parameter vector for this case is:

θfrac−slope = [τ φ]. (36)

The correction filter term in equation (35) has the

following form:

G(s) =
1

1 + (τs)φ
=

1

sα + b
, (37)

a filter that reminds a commensurate transfer function

with order α and Matignon’s stability theorem may be

applied [22], namely:

|arg(λi)| > α
π

2
, (38)

where, for λ = sα, λi are the roots of the characteristic

polynomial in λ.

For the general structure presented in equation (37),

we have:

λi = −b ⇒ | arg(−b)| = π. (39)

Therefore, for this type of filter, the stability condition
reads α < 2 for b > 0.

3.2.3 Multiple fractional slope approximation

According to Matignon stability theorem, the fractional
order α being limited to 2, it may not be possible to

go beyond this limit and to get a more suited high-
frequency slope. However, a multi fractional-slope filter
may also be proposed:

Z3−mult−frac(s) =
1

Cts

N
∏

i=1

1

1 + (τis)ν
. (40)

The number of cells to be added N depends on the

required additional slope. As each cell may add up to

−40 dB/dec, in this case N = 2.

3.2.4 Reduced pole approximation

Looking at the gain curve and its slope in high fre-

quency, an alternative correction term could be the ad-

dition of poles to take into account the slope increment.

The difference of slopes in the frequency band of
interest, namely:

Ñ =

⌊ |slopeinit − slopefinal|
20

⌉

, (41)

⌊·⌉ denoting the nearest integer function, provides the
number of poles to be added. A new approximation of

the shunt impedance can be expressed as:

Z3−rec−poles(s) =
1

Cts

Ñ
∏

i=1

1

1 + τis
(42)

with parameter vector:

θpoles = [τ ]. (43)

If the required number of poles is low enough, one

could simply use this approximation and take each pa-

rameter τi as an additional variable to approximate in
order to get the correction term. However, there may be

cases in which the number of additional poles might be
too high and its determination will be too complex in
terms of direct optimization (local minima convergence

problem). In this case, an arbitrary relation may be es-

tablished between poles as a way to reduce parameters:

τi+1 = τ iγ1 . (44)

where all the poles are related to the first pole τ1.
The main advantage of this correction is that the

parameter vector will always be limited to the following:

θred = [τ1 γ]. (45)

The parameter space will always be 2-D in this case.

On the other hand, the main drawback is the loss of

flexibility with respect to the general pole addition as

detailed in paragraph 3.2.3.
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3.2.5 Comparison of the approximations of the shunt

impedance Z3

The approximations obtained by using the fractional

slope, the multiple fractional poles and the reduced

poles are compared to the pure capacitance model.

Note that to help the convergence of the FPA algo-

rithm for a better fit in high frequency, the weighting

factor λ was fixed to 0.95 in the criterion (16) for the
fractional and multiple fractional slope models. .

Figure 10 illustrates the gains for the exact case and

the proposed approximations of Z3 whereas the error

signals are plotted in figure 11.

The minimum, maximum and mean values of the

error obtained for the four approximations are provided

in table 3.2.5.
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Fig. 10 Gain diagrams of Z3 and its approximations
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Fig. 11 Absolute errors ǫ(jω) associated with the different
approximations of Z3

Table 4 Extreme and mean values of the absolute errors
obtained for the Z3 approximations

Approximation Max (dB) Mean (dB) Min (dB)

Capacitance 35.40 5.69 0.0004
Frac slope 4.16 1.32 0.0100

Multi frac slope 1.76 0.39 0.0137
Red poles 1.48 0.18 0.0027

Even though there is an error that may go up to

almost 4.16 dB by using the fractional slope, its reduc-

tion when compared to the pure capacitance model is

evident. For this example, the fractional order was op-

timized to φ = 1.45, which is a rather surprising re-

sult. The optimization did not lead to a saturated con-
straint at φ = 2 even though a weight was included

for higher frequencies. The obtained value of 1/τ =

8.22 rad/s is coherent with the expected the frequency

band [1− 10] rad/s in which the error becomes impor-

tant (see Figure 11).

Concerning the multiple fractional slope model, the
optimization have led to better results. There is roughly
a factor of 3 between the mean errors of this model

and the simple fractional slope one. The commensurate

order was found to be ν = 1.13, which means a high-

frequency order of 2ν = 2.26. The additional flexibility

provided by the multiple cell fractional filter permits to

go beyond the limit of 2 such as imposed by Matignon’s

stability criterion in order to get a better fit.

The reduced pole approximation provides even more

accurate results and the dimension of the research space

for the optimization stays the same. There is a dra-

matic difference at the point in which the approxima-

tion starts to modify the curve, as the recursive pole
gave a first pole located at τ1 = 0.033 rad/s, which is

two decades below the optimal value obtained by the

fractional slope. This approximation may allow a more

predictive approach to error reduction than the frac-

tional slope and multiple-cell fractional filter.

3.2.6 Reduced pole approximation versus all pole

approximation

In view of the previous results, let us consider the lat-

ter approximation given in equation (46). Its optimized
model can be used as an initial starting point to per-
form a further optimization: instead of using reduced

poles (which indeed has the advantage to reduce the

number of parameters in the optimization procedure),

this constraint defined in equation (44)) can be released

so that all the parameters can be optimized indepen-

dently. Such an approximation of the shunt impedance
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can be expressed as:

Z3−all−poles(s) =
1

Cts

Ñ
∏

i=1

1

1 + τis
(46)

with the more general parameter vector:

θpoles = [τ ], (47)

where all τi are independent.

The FPA algorithm was performed with the reduced

and all poles by using a gradient descent. As expected,

both approximations give really good results. Figure
12 illustrates the comparison of the associated errors
for the reduced and the all pole appxoimation cases.
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Fig. 12 Absolute errors ǫ(jω) associated with the reduced
and all pole approximations of Z3

It is indeed difficult to distinguish a further im-

provement for this new case by allowing the poles to

be located at any position. Table 3.2.6 shows the pole

locations as well as the criterion J for both cases.

Table 5 Pole location and J criterion for Z3 approximations

Recursive Non-recursive

Poles
9.91
30.16
98.31

9.94
30.34
92.16

J(dB2) 0.033 0.0286

Even if there is a slight improvement regarding the

criterion J , the non-recursive approximation increased

the vector parameter size (three times more than in the

recursive case) and the criterion improvement proved to

be very slight. On the other hand, it can be seen that all

pole approximation locations are almost the same as the

ones with the reduced pole approximation. This means

that, for this case, the optimal pole location for the

approximation was really close to the results provided

by the reduced case. It may also justify the use of a

reduced pole model in more complex cases.

4 Application example: heat transfer in a lung

bronchus

A potential application for these approximations is to

model heat transfer in the human body. During surgery,

heat transfer and temperature control of a tissue may

help in reducing necrosis and preserving a greater a-
mount of a given organ.

Patients can suffer from lung injuries during car-

diopulmonary bypass, such as ischemia [3]. Perfusion

techniques involving some type of indirect temperature

control exist [20]. Some lung injuries may be treated by

applying mild hypothermia [29]. The precision required

to keep a fairly precise temperature in the tissue justi-
fies our interest in enhancing the knowledge regarding
dynamic of thermal models for physiological scenarios.

For the application, the heat transfer is considered

in the right middle bronchus. Under normal conditions,
the nasal cavity and larynx play a significant role re-
garding air heating and humidification (see [11] and

[10]) and procedures impairing this conditioning may
change thermal conditions inside the lungs. Human bron-
chi may be exposed to thermal stress in such condi-

tions. For this analysis, an intermediate length of L =

0.0236m was chosen as it is a mean value for right mid-

dle bronchus length [24] and radius r ≈ 1mm (see [23]).

In terms of frequency, even though human respira-

tion is not a naturally fast mechanism, it may have non-
negligible dynamics for heat transfers. Human breath-
ing can go up to 20 breaths per minute in normal condi-

tions, this breathing being around 12 breaths per minute

for an adult in average. Slow breathing is considered in

the range 0.07−0.16Hz (see [28]) and above 14 breaths

per minute (or 0.23Hz), such breathing can already

be considered for some as an abnormal value (see [7]).

Therefore, the optimization will be carried out in the

frequency range [0.01− 5] rad/s in order to go slightly

over a normal condition breathing.

For the series impedance Z1, the optimal number of

cells for the pole-zero correction was found to be 2, as

shown in figure 13. The gain diagrams of the different
approximations proposed in paragraph 3.1 (asymptotic,
pole-zero, and fractional Butterworth approximations)

and their associated errors are respectively shown in

figures 14 and 15. Table 4 summarizes a comparison

between the obtained errors.
As expected, the asymptotic approximation offers a

significant error for the whole frequency range, which
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Fig. 14 Z1 approximation gains for a human bronchus

Table 6 Extreme and mean values of the absolute errors
obtained for the Z1 approximations of a human bronchus

Approximation Max (dB) Mean (dB) Min (dB)

Asymptotic 4.99 3.05 1.0829
Pole-zero 0.26 0.05 0.0001

Butterworth 1.34 0.80 0.0151

may indicate that a human bronchus cannot be con-

sidered in the low-frequency limit as human breath-

ing cycles are in the mi-band frequency range. Once

again, it can be seen that the pole-zero approximation

offers the most accurate results. However, for this sce-

nario, the improvement obtained by using the Butter-

worth is more significant than in the academic case.

For this case, the pole-zero approximation has 6 pa-

rameters, which includes 3 additional parameters with

respect to the Butterworth case. However, the Butter-

worth impedance still provides an improved estimation

than the asymptotic one. It can be seen in Appendix
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Fig. 15 Absolute errors ǫ(jω) associated with the different
approximations of Z1 for a human bronchus

B that for this case, the Butterworth impedance was

once again reduced to the form shown in equation (28),

which offers further advantages in terms of parameter

space (2D).

The gain diagrams of the different approximations

proposed in paragraph 3.2 (capacitance, fractional slope,

multiple fractional slope and pole approximations) and

their associated errors are respectively shown in figures

16 and 17. Table 4 summarizes a comparison between

the obtained errors.
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Fig. 16 Gain diagrams of Z3 and its approximations for a
human bronchus

The pure capacitance model provides the worst ap-

proximation: the mean error is of 7.58 dB in the con-

sidered frequency range and it can go up to 42.05 dB as

we get closer to the higher frequency. For this particu-

lar geometry, three integer poles were required to pro-

vide a good approximation. It should be noted that for

a frequency of 1 rad/s (close to normal breathing), the
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Fig. 17 Absolute errors ǫ(jω) associated with the different
approximations of Z3 for a human bronchus

Table 7 Error signal peak and mean values for Z3(s) ap-
proximations in a human bronchus

Approximation Peak (dB) Mean (dB) Min (dB)

Capacitance 42.05 7.58 0.0031
Frac slope 8.66 1.57 0.0494

Multi frac slope 3.43 0.54 0.0177
Red poles 1.39 0.14 0.0000

slope of the Z3 gain curve is already −38 dB/dec, which

means that a normal breathing is already in its mid-

band frequency range. The best results are obtained

with the reduced poles approximation with a mean er-

ror of 0.14 dB.

5 Conclusion and final remarks

Different propositions for approximating thermal impe-

dances were proposed and compared in terms of accu-

racy in the frequency ban of interest. The series impe-

dance of a plane wall proved to have an interesting be-

havior in the frequency domain, as its usual simplifica-
tion as a simple resistance is inaccurate beyond the low-
frequency spectrum. The presence of a half-capacitance

indicates a possible additional thermal accumulation

that cannot be taken into account by a simple capac-

itance model. Even if the resistance-half capacitance

parallel model succeeds in approximating the frequency

limits, there is a significative error in the mid-band fre-

quency that can be reduced by using pole-zero cells or

a fractional Butterworth expression. The pole-zero ap-

proximation proved to be better in terms of accuracy,

but the impedance expression is complex and the num-

ber of parameters required for an optimal approxima-

tion may be too large. The pole-zero cells are an exclu-

sively mathematical construct and lack physical mean-

ing. The fractional Butterworth approximation may not

offer such accurate results, but it still greatly improves
the error when compared to the resistance-half capac-
itance parallel model. The parameter vector is limited

to a maximum dimension of 3 and it is suggested that

this type of expression may actually be reinterpreted

in a circuit model as the parallel addition of additional

elements to the resistance-half capacitance model. Ad-
ditional physical meaning may be obtained from this
model in future studies.

The shunt impedance has a more complex frequency

behavior and only a low-frequency analysis was done.
In low-frequency, this impedance behaves like a capaci-
tance. However, the quick slope decreases (both in gain

and phase) in high frequency, a circuit element nor a
simple fractional model is sufficient. This is the reason
why the approximations presented for Z3 are limited to

a specific frequency range. The fractional slope helped

in reducing the errors and has little parameters to be

determined. However, the approximation with recur-

sive poles proved to be more accurate without adding

more parameters to the approximation. For the exam-
ple analyzed, the accuracy was not significantly im-
proved by allowing the poles to be independent. A sim-

ple recursive pole approximation gives accurate enough

results and provides a simple expression. However, it

should be noted that Z1 and Z3 are inseparable ele-
ments of a same system. Therefore, equivalent trans-

fer functions obtained from the T circuit will involve
fractional-order derivatives as it cannot be avoided for
the series impedances Z1 and Z2.

All the proposed approximations for modeling the

series and shunt impedance where applied in a sim-
ulation example of a human bronchus. As previously
stated, the simulation results well illustrates that the

pole-zero approximation well fits the series impedance

Z1 and Z2. For the shunt impedance Z3, it could be

fitted by using a single integer-order pole.

Research perspectives of this study include analyz-

ing different type of scenarios with the thermal two-

port networks and its transfer function properties when

applying the proposed approximation techniques. The
possibility of getting transfer function models with phys-
ically meaningful parameters may improve the analysis
of system identification for thermal systems.
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sion: J.F. Duhé has developed the results with S. Victor.

He also made the simulations. S. Victor, P. Melchior,

Y. Abdelmoumen and F. Roubertie have contributed

to the biological and physiological results.

Ethics approval (include appropriate approvals or waivers):

Not applicable
Consent to participate (include appropriate statements):
Not applicable

Consent for publication (include appropriate statements):

Not applicable

A Estimated transfer functions for the

academic example

Table 8 Estimated models for the academic example of sec-
tion 3

Z1−asymp

0.5

1 + 0.5
√
s

Z1−zp

0.5

1 + 0.5
√
s

1 + s
0.2647

1 + s
0.3787

1 + s
3.446

1 + s
5.73

1 + s
23.72

1 + s
11.21

Z1−BW

1

s0.5 − 0.859s0.274 + 2

Z3−cap

1

s

Z3−frac

1

s

1

1 + (0.1097s)1.55

Z3−mul−frac

1

s

1

1 + (0.1185s)1.15
1

1 + (0.0258s)1.15

Z3−red−poles

1

s

3
∏

i=1

1

1 + τis
with τ1 = 0.033,

τ2 = τ
γ
1 , τ3 = τ

2γ
1 and γ = 0.674

B Estimated transfer functions for human

bronchus

C Proof of fractional first-order system

bandwidth

The frequency response of the asymptotic approximation for
the series impedance:

Zasym(jω) =
R

1 +RCs

√
jω

(48)

Table 9 Estimated models for the bronchus applications of
section 4

Z1−asymp

150240

1 + 2.5158
√
s

Z1−zp

150240

1 + 2.5158
√
s

3
∏

1

1 + s
zi

1 + s
pi

z1 = 0.010, z2 = 0.112, z3 = 0.981

p1 = 0.014, p2 = 0.166, p3 = 0.528

Z1−BW

59720.2

s0.5 − 0.406s0.25 + 0.3975

Z3−cap

11869

s

Z3−frac

11869

s

1

1 + (3.3873s)1.36

Z3−mul−frac

11869

s

1

1 + (0.734s)1.12
1

1 + (2.954s)1.12

Z3−red−poles

11869

s

3
∏

i=1

1

1 + τis
with τ1 = 2.407,

τ2 = τ
γ
1 , τ3 = τ

2γ
1 and γ = −0.438

from which one gets the gain:

|Zasym(jω)| = R
√

(RCs)2ω +RCs

√
2ω + 1

(49)

it can be seen that the highest gain in dB for this system is:

|Zasym(jω)|dB−max = 20 log10(R) (50)

The −3 dB frequency is given by:

|Zasym(jωb)|−3dB = |Zasym(jω)|dB−max − 3 dB (51)

By replacing equation (49) in (51), one gets the following
polynomial:

(RCs)
2ωb +

√
2RCs

√
ωb + (1− 100.3) = 0 (52)

By taking the single positive and real-valued solution for ωb:

ωb ≈ 0.2679

(RCs)2
(53)

which is the expression for the bandwidth.
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Figures

Figure 1

1D thermal system

Figure 2

Thermal two-port network



Figure 3

Z1 gain diagram and its asymptotic approximation



Figure 4

Z1 phase diagram and its asymptotic approximation



Figure 5

J criterion with varying Ncells for the series impedance correction



Figure 6

Gain diagrams of Z1 and its approximations



Figure 7
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Figure 8

Z3 gain diagram and its capacitance approximation
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Figure 13

J criterion versus pole-zero units for a human bronchus



Figure 14

Z1 approximation gains for a human bronchus
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Figure 16

Gain diagrams of Z3 and its approximations for a human bronchus



Figure 17

please see the manuscript �le for the full caption


