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Abstract: Metabolic syndrome (MetSyn) is a major health problem affecting approximately 25% of the
worldwide population. Since the gut microbiota is highly connected to the host metabolism, several
recent studies have emerged to characterize the role of the microbiome in MetSyn development and
progression. To this end, our study aimed to identify the microbiome patterns which distinguish
MetSyn from type 2 diabetes mellitus (T2DM). We performed 16S rRNA amplicon sequencing on a
cohort of 70 individuals among which 40 were MetSyn patients. The microbiome of MetSyn patients
was characterised by reduced diversity, loss of butyrate producers (Subdoligranulum, Butyricicoccus,
Faecalibacterium prausnitzii) and enrichment in the relative abundance of fungal populations. We also
show a link between the gut microbiome and lipid metabolism in MetSyn. Specifically, low-density
lipoproteins (LDL) and high-density lipoproteins (HDL) display a positive effect on gut microbial
diversity. When interrogating the signature of gut microbiota in a subgroup of patients harbouring
both MetSyn and T2DM conditions, we observed a significant increase in taxa such as Bacteroides,
Clostridiales, and Erysipelotrichaceae. This preliminary study shows for the first time that T2DM brings
unique signatures of gut microbiota in MetSyn patients. We also highlight the impact of metformin
treatment on the gut microbiota. Metformin administration was linked to changes in Prevotellaceae,
Rickenellaceae, and Clostridiales. Further research focusing on the microbiome-metabolome patterns is
needed to clarify the exact association of various gut microbial communities with the progression of
T2DM and the occurrence of various complications in MetSyn patients.

Keywords: metabolic syndrome; diabetes; microbiome; dysbiosis; metformin

1. Introduction

The widespread changes in lifestyle and dietary patterns brought by Westernisation
have led to an increased prevalence of metabolic syndrome (MetSyn) [1]. Being the result of
a cluster of risk factors such as obesity, dyslipidemia, hyperglycemia, hyperuricemia, and
hypertension, MetSyn often progresses to increased cardiovascular risk and ailments such
as non-alcoholic fatty liver (NAFLD) and type 2 diabetes mellitus (T2DM) [2]. MetSyn is
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the result of a wide array of triggers including chronic inflammation, insulin resistance, and
oxidative stress, all of them being also associated with gut dysbiosis [3,4]. Thus, microbiota
changes induced by unhealthy diets activate inflammatory cascades [5]. The microbiota of
obese people was suggested to harvest more energy from the diet, a fact which leads to
higher body mass index and insulin resistance [6].

In this complicated equation, recent studies have emerged to attribute a potential
role for the gut microbiome in MetSyn. A recent multi-ethnic population study reported
that MetSyn patients were enriched in Enterobacteriaceae and low in Turicibacter and Pep-
tostreptococcaceae [7]. Qin et al. (2021) reported that microbiome changes in MetSyn pa-
tients (decreased abundance of Alistipes onderdonkii, Clostridium asparagiforme, C. citroniae,
C. scindens, Roseburia intestinalis, and Bacteroides thetaiotaomicron) may increase inflamma-
tion and play a part in MetSyn pathogenesis by inhibiting short-chain fatty acids (SCFAs)
production [8]. Perhaps the most compelling evidence regarding the role of the microbiome
in MetSyn comes from faecal microbiota transplant (FMT) studies. Indeed, the transfer of
microbiota from lean donors to obese individuals with MetSyn resulted in an increased
abundance of butyrate-producing microbes as well as an increase in insulin sensitivity
within six weeks [9].

Here, we profile the gut microbiome composition and diversity in Metsyn patients via
high-throughput sequencing of the V3–V4 region of 16S ribosomal DNA (rDNA) coupled
with Real-Time PCR. We report changes in taxa associated with SCFAs production as well as
disturbances in the mycobiota associated with MetSyn. Finally, we perform a comparative
analysis of the intestinal microbiome in MetSyn patients with and without T2DM as well
as between patients receiving different types of medication (statins and metformin).

2. Results
2.1. Clinical Characteristics of the Enrolled Subjects

We enrolled a total of 56 women and 14 men in this study and among them, 40 subjects
were diagnosed with MetSyn. The healthy control group harboured 30 healthy individuals
who had fewer than two MetSyn-associated markers. The two groups were similar in terms
of age or gender composition. Body mass index (BMI), glycated haemoglobin (HbAc), and
tryglyceride levels (TG) were significantly higher in the case of MetSyn patients compared
to the control group (Table 1).

Table 1. Patient characteristics.

Healthy Control (n = 30) MetSyn (n = 40) p Value

Gender 18 females, 12 males 34 females, 6 males

Age 46 ± 13.98 52 ± 12.62 0.0645

BMI 24.7 ± 1.363448 32.4 ± 4.947618 p < 0.0001

HbAc (%) 5.4 ± 0.404021 6.6 ± 1.402163 p < 0.0001

TG
mg/dL 89 ± 22.63105 124 ± 55.69321 0.0018

HDL
mg/dL 64 ± 3.58 48.5 ± 8.290765 p < 0.0001

LDL
mg/dL 98 ± 21.62 113.5 ± 36.78805 0.0438

2.2. Diversity Patterns in MetSyn Patients

The faecal microbiota of the 70 subjects enrolled in the study (40 patients with MetSyn
and 30 control individuals) was evaluated by Illumina MiSeq amplicon sequencing. First,
several alpha diversity indices were calculated to analyse the microbiome differences in
the MetSyn patient samples compared to the healthy controls. Richness, Shannon, Pielou’s
evenness, Fisher alpha, and Simpson were calculated for all samples to establish the alpha
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diversity patterns in healthy individuals and patients with MetSyn (Figure 1A). No statisti-
cally significant differences were found when using Richness, Shannon, Pielou’s evenness, and
Fisher alpha to assess the microbial richness between healthy and MetSyn individuals. Simp-
son diversity which considers the number of species, as well as their relative abundance,
was lower in the case of MetSyn patients (p < 0.05). This is in line with previous reports
whereby patients with metabolic disorders harbour decreased microbial diversity [8].
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Figure 1. Microbial diversity and community structure for MetSyn vs. healthy controls. (A) Alpha 
diversity measurements between MetSyn patients and healthy controls; (B) Beta diversity using 
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In parallel, to test if there was any difference in microbiome community structure 
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HDL levels. Although no statistical significance was detected when using UniFrac dis-
tance, when using weighted UniFrac, 38.7% value of the variability in community struc-
ture was explained by the HDL levels (Table S1).  

Table 2. PERMANOVA analysis to investigate the influence of different parameters on microbial 
community structure. Here, using beta diversity (Bray-Curtis) distance metrics, 29.9% (R2 in the table 
given below) of the microbiome structure is explained. *, p < 0.05;. 

 Df Sums of Sqs MeanSqs F.Model R2 Pr (>F)  
TG 1 0.2346 0.23461 0.68000 0.01065  0.854  

LDL 1 0.3009 0.30090 0.87214 0.01366  0.626  
HDL 1 0.6592 0.65924 1.91078 0.02994  0.012 * 

Total cholest. 1 0.4702 0.47015 1.36272 0.02135  0.140  
BMI 1 0.3451 0.34508 1.00019 0.01567  0.434  

Figure 1. Microbial diversity and community structure for MetSyn vs. healthy controls. (A) Alpha
diversity measurements between MetSyn patients and healthy controls; (B) Beta diversity using
Bray-Curtis (left) and weighed UniFrac (right).

The β diversity differences between bacterial communities found in MetSyn patients
were calculated using the Bray-Curtis metric (which considers the species abundance count)
and Weighted UniFrac metric (the phylogenetic distance between the branch lengths of
OTUs observed in different individuals based on the abundances of OTUs) and visualised
by principal coordinate analysis (Figure 1B). No statistical differences were observed
between healthy controls and MetSyn patients.

To further analyse the data, we performed LCBD which shows how significantly
different microbial population structures are from the average (with LCBD values differ-
ing from the mean LCBD values representing outliers). LCBD analysis was performed
by using: the Hellinger distance (abundances) (Supplementary Figure S1A); unweighted
UniFrac (phylogenetic distance) (Supplementary Figure S1B); and weighted UniFrac (phy-
logenetic distance weighted by abundance) dissimilarities (Supplementary Figure S1C).
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No differences were observed between MetSyn and control patients for Hellinger distance
and unweighted UniFrac. However, when considering weighted UniFrac (phylogeny and
abundance), the data shows the healthy control data being furthest away from the average.

To assess the factors triggering microbial community diversity, the values of NRT
(Nearest Relative Index) and NTI (Nearest Taxon Index) were measured. While positive
NRI/NTI values show phylogenetic clustering due to the environment, reduced NRI/NTI is
indicative of phylogenetic overdispersion, with limited input from environmental filtering
(Supplementary Figure S1D). No statistical differences were observed between healthy
controls and MetSyn patients. In all samples tested, the core microbiome consisted of
genera Faecalibacterium and Bacteroides (Supplementary Figure S2A). Differences in terms of
types of genera were also presented in Supplementary Figure S2B.

In parallel, to test if there was any difference in microbiome community structure
between MetSyn and healthy controls, PERMANOVA was performed (Table 2). Here, with
Bray-Curtis distance, 29.9% of the variability in community structure is explained by HDL
levels. Although no statistical significance was detected when using UniFrac distance,
when using weighted UniFrac, 38.7% value of the variability in community structure was
explained by the HDL levels (Table S1).

Table 2. PERMANOVA analysis to investigate the influence of different parameters on microbial
community structure. Here, using beta diversity (Bray-Curtis) distance metrics, 29.9% (R2 in the table
given below) of the microbiome structure is explained. *, p < 0.05.

Df Sums of Sqs MeanSqs F.Model R2 Pr (>F)

TG 1 0.2346 0.23461 0.68000 0.01065 0.854

LDL 1 0.3009 0.30090 0.87214 0.01366 0.626

HDL 1 0.6592 0.65924 1.91078 0.02994 0.012 *

Total cholest. 1 0.4702 0.47015 1.36272 0.02135 0.140

BMI 1 0.3451 0.34508 1.00019 0.01567 0.434

Residuals 58 20.0107 0.34501 0.90872

Total 63 22.0207 1.00000

Subset analysis was performed to identify a subset of OTUs that describes approxi-
mately the similar beta diversity between samples as all the OTUs (Table 3). Here, we have
obtained a reduced feature set (OTUs) in the sample space that is deriving the change. Only
one group comparison is displayed (MetSyn versus healthy control), whereas the remaining
results are shown within the Supplementary files. Additionally, after imploding to the
subset of genera, PERMANOVA analysis was carried out to verify if this subset still has
discriminatory power (in terms of grouping). Here, we identified Clostridiales, Bacteroides,
Ruminococcaceae, Christensenellaceae, Bifidobacterium, Lachnospiraceae, and Proteobacteria as the
subset of OTUs which differentiate healthy controls vs. MetSyn patients.
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Table 3. Subset analysis for MetSyn vs. control patients displaying subsets of OTUs along with the
correlation of the beta diversity distances between these subsets and the full OTU table. The last
column shows PERMANOVA statistics for these subsets pointing out their discriminatory power. R2

represents the percentage variability of these subsets in terms of groups.

Group Comparison Subset No Subset Correlation of Subset
with Full Table (R)

PERMANOVA
Subsets (Groups)

MetSyn, Healthy

S1

Clostridiales + Bacteroides +
Ruminococcaceae +

Christensenellaceae +
Bifidobacterium +
Lachnospiraceae +

Proteobacteria

0.00952 R2 = 0.822 (p > 0.05)

S2

Clostridiales + Bacteroides +
Ruminococcaceae +

Christensenellaceae +
Bifidobacterium +
Lachnospiraceae +

Proteobacteria

0.00965 R2 = 0.854 (p > 0.05)

S3

Clostridiales + Bacteroides +
Ruminococcaceae +

Christensenellaceae +
Bifidobacterium +
Lachnospiraceae +

Proteobacteria

0.00909 R2 = 0.874 (p > 0.05)

To measure the influence of extrinsic parameters on microbial community structure,
whereas PERMANOVA analysis displays the degree of impact on the microbiome popu-
lation structure in terms of variability, to achieve directionality as to whether an increase
or decrease in these parameters can lead to variation in the properties of microbiome
metrics, subset regressions on one-dimensionality realisation of the microbiome (alpha
diversity—Richness, Simpson, Pielou’s evenness index, Shannon, Fisher alpha; LCBD beta
diversity—Bray-Curtis, unweighted UniFrac, weighted UniFrac) were performed. Subset
regression against different sources of variation (“TG”, “LDL”, “HDL”, “Total cholesterol”,
“HbA1c”, “Blood sugar”, “BMI”) was carried out by testing all the combination of all
these variations and then selecting the best model according to statistical criteria (adjusted
R2, etc.) (Figure 2). Red and blue signify whether the predictors harbour a positive or
a negative influence, respectively within the regression model. LDL and HDL display a
positive effect on microbial diversity. Total cholesterol, HbA1c, and blood sugar display a
negative effect on microbial diversity. Total cholesterol (Bray-Curtis) and HbA1c (UniFrac)
displayed a positive impact on the microbial community structure away from the average.
HDL also had a positive impact when considering microbial numbers (Bray-Curtis), but a
negative one when considered in conjunction with the type of OTUs (weighted UniFrac)
(Figure 2).

Genera and families identified at varying levels of abundance for healthy controls
and MetSyn groups include Faecalibacterium, Bacteroides, Prevotella 9, Ruminococcaceae, Eu-
bacterium, Clostridium, Alistipes, Succinivibrio, Anaerotruncus, Barnesiella, Sutterella, Sub-
doligranulum and Akkermansia (Supplementary Figure S2B). Genera that were differentially
expressed between healthy control and MetSyn patients were identified (Supplementary
Figure S2C). Taxa differential analysis showed that three OTUs were distinct between
healthy controls and MetSyn patients (Supplementary Figure S2C). MetSyn patients were
enriched in Ruminococcaceae UCG-005 (adjusted p-value = 0.0054285) and Clostridiales (adjusted
p-value = 0.033447) and lower in Bacteroidaceae DJF_B220 (adjusted p-value = 0.00038163).
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ure S2B), another member of the microbiome which produces butyrate [11]. In addition, 
we analysed via qRT-PCR the abundance of other taxa important for gut health, metabo-
lism, and SCFA production such as Akkermansia muciniphila, Faecalibacterium prausnitzii, 
and Butyricicoccus spp. Importantly, we found that MetSyn patients were significantly de-
pleted in all three of the aforementioned taxa (Figure 3B–D). The Gram-negative bacte-
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and propionate producer [12]. Our data also shows that the microbiota of individuals with 
MetSyn is significantly lower in A. muciniphila. Butyrate not only fuels the cells in the gut 
lining and exhibits anti-inflammatory traits, but it also harbours antifungal properties 
[13]. Hence, we hypothesised that the imbalance in SCFAs identified in MetSyn subjects 
may trigger gut dysbiosis and subsequent changes in the gut mycobiome. Therefore, we 
investigated the relative abundance of several fungal taxa including Candida spp., Asper-
gillus spp., Saccharomyces spp., and Debaryomyces spp. using qRT-PCR. Generally, MetSyn 
was linked with a higher abundance for all four analysed fungal taxa. Candida spp. had a 
relatively high abundance in the case of MetSyn subjects but this was not statistically sig-
nificant (Figure 3E). Particularly, only Saccharomyces and Debaryomyces were significantly 
increased in patients with metabolic disorders (Figure 3G,H). In addition, Aspergillus spp. 

Figure 2. Subset regression where red and blue represent the significant positive and negative beta
coefficients that were consistently selected in different regression models. As an example, Blood
sugar is having a negative influence on increasing microbial diversity (for 2/5 diversity metrics).
Likewise, Total cholesterol is having a positive influence on LCBD (Bray-Curtis), shifting the microbial
community structure away from the average; *, p < 0.05; **, p < 0.01.

Since Clostridiales are important producers of SCFAs, especially butyrate [10], we next
investigated the levels of faecal butyrate in our patient cohort. However, we found that
MetSyn patients had significantly decreased levels of butyrate (Figure 3A). The difference
observed in the case of butyrate levels prompted us to further investigate the relative
abundance of other microbes producing butyrate in the gut. Compared to the healthy
controls, MetSyn patients were also low in Subdoligranulum (Supplementary Figure S2B),
another member of the microbiome which produces butyrate [11]. In addition, we anal-
ysed via qRT-PCR the abundance of other taxa important for gut health, metabolism, and
SCFA production such as Akkermansia muciniphila, Faecalibacterium prausnitzii, and Butyri-
cicoccus spp. Importantly, we found that MetSyn patients were significantly depleted in
all three of the aforementioned taxa (Figure 3B–D). The Gram-negative bacterium Akker-
mansia muciniphila has been described as a beneficial taxon in the gut, protecting against
metabolic diseases and colitis, even though it is not butyrate, but an acetate and propionate
producer [12]. Our data also shows that the microbiota of individuals with MetSyn is
significantly lower in A. muciniphila. Butyrate not only fuels the cells in the gut lining and
exhibits anti-inflammatory traits, but it also harbours antifungal properties [13]. Hence,
we hypothesised that the imbalance in SCFAs identified in MetSyn subjects may trigger
gut dysbiosis and subsequent changes in the gut mycobiome. Therefore, we investigated
the relative abundance of several fungal taxa including Candida spp., Aspergillus spp., Sac-
charomyces spp., and Debaryomyces spp. using qRT-PCR. Generally, MetSyn was linked
with a higher abundance for all four analysed fungal taxa. Candida spp. had a relatively
high abundance in the case of MetSyn subjects but this was not statistically significant
(Figure 3E). Particularly, only Saccharomyces and Debaryomyces were significantly increased
in patients with metabolic disorders (Figure 3G,H). In addition, Aspergillus spp. tended to
be in higher abundance in faecal samples of MetSyn patients but this difference was not
statistically significant (Figure 3F).
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Figure 3. Microbiome changes in MetSyn patients (n = 40) versus healthy controls (n = 30). (A) Bu-
tyrate quantification in faecal samples; The relative abundance of A. muciniphila (B), F. praunsitzii (C),
Butiricicoccus spp. (D), Candida spp. (E), Aspergillu spp. (F), Saccharomyces sp. (G), and Debaryomyces
spp. (H) in faecal samples collected from healthy individuals and MetSyn patients; *** p < 0.0001,
Mann–Whitney test.

Since MetSyn is a cluster of conditions that have been linked to various ailments
(i.e., T2DM and heart disease) we next aimed to see whether there are any specific mi-
crobiome signatures associated with diabetes. MetSyn patients who also had diabetes
exhibited a significant increase in HbAc (** p-value = 0.0016) and in blood glucose levels
(*** p < 0.0001) (Supplementary Table S2)., MetSyn patients with T2DM (MetSyn-T2DM)
exhibited a decrease in microbiome alpha diversity (Figure 4A) as revealed by Pielou’s even-
ness metric. No significant changes were observed in terms of beta diversity regardless of
the matrices used (Figure 4B and Supplementary Figure S3) or for subset analysis (Table S3).
However, when interrogating the abundance of different OTUs we observed that T2DM was
associated with significant changes in taxa such as Bacteroides, Clostridiales, Lachnospiraceae,
and Erysipelotrichaceae (Figure 5A–D). We also checked whether there was a difference in
butyrate levels (Supplementary Figure S4A), A. muciniphila (Supplementary Figure S4B),
F. prausnitzii (Supplementary Figure S4C), and Butyricicoccus spp. (Supplementary Figure
S4D) in case of MetSYN-T2DM patients (Supplementary Figure S4A–D). However, we did
not find significant differences when comparing the levels of butyrate or the aforemen-
tioned taxa. We next set to investigate the changes associated with a fungal population such
as Candida spp., Aspergillus spp., Saccharomyces spp., and Debaryomyces spp. (Supplementary
Figure S4E–H). Among the tested fungi, only Candida spp., was found to be significantly
increased in the MetSyn group (p-value = 0.0008) (Supplementary Figure S4E).
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Figure 4. Microbial diversity and community structure for MetSyn and MetSyn-T2DM patients.
(A) alpha diversity measurements; (B) Beta diversity analysis-weighed UniFrac.

Next, we aimed to elucidate the impact of medication taken by the analysed patients
on the gut microbiome. For instance, statins can significantly decrease the risk of cardio-
vascular disease in MetSyn patients by inducing alterations in lipid levels and possibly
by decreasing inflammation. In our cohort, 26 patients were taking statins at the time of
sample analysis. No significant differences were found in terms of microbial diversity,
subset analysis of OTUs and differential taxa analysis for the patients taking statins com-
pared to the treatment naive MetSyn patients (Supplementary Figure S5, Supplementary
Table S4). However, metformin treatment did impact the structure of the microbiome in
MetSyn patients. We observed changes in terms of alpha diversity measured by Fisher
alpha and Richness index in the case of MetSyn patients taking metformin (Figure S6A) but
not in case of Shannon, Pielou’s evenness, or Simpson metrics (Supplementary Figure S6).
OTU differential analysis showed that metformin treatment was positively associated with
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taxa such as Rikenellaceae RC9 gut group (padj = 0.004221) and negatively correlated with
Prevotella 9 (padj = 0.00422), Bacteroides (padj = 0.004724), Prevotellaceae (padj = 0.005852)
and Clostridiales (padj = 0.011694) (Table 4). Beta diversity analysis of the microbiome mea-
sured by Bray-Curtis, UniFrac, and weighted UniFrac (Supplementary Figure S6) and subset
analysis revealed no significant changes in the case of metformin treatment (Table S5).

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 9 of 21 
 

 

 
Figure 5. Microbiome signatures in T2DM compared to MetSyn. A. Number of reads for Bacteroides 
(A), Clostridiales (B), Lachnospiraceae (C), and Erysipelotrichaceae (D). *, p < 0.05; **, p < 0.01;   

Next, we aimed to elucidate the impact of medication taken by the analysed patients 
on the gut microbiome. For instance, statins can significantly decrease the risk of cardio-
vascular disease in MetSyn patients by inducing alterations in lipid levels and possibly by 
decreasing inflammation. In our cohort, 26 patients were taking statins at the time of sam-
ple analysis. No significant differences were found in terms of microbial diversity, subset 
analysis of OTUs and differential taxa analysis for the patients taking statins compared to 
the treatment naive MetSyn patients (Supplementary Figure S5, Supplementary Table S4). 
However, metformin treatment did impact the structure of the microbiome in MetSyn 
patients. We observed changes in terms of alpha diversity measured by Fisher alpha and 
Richness index in the case of MetSyn patients taking metformin (Figure S6A) but not in 
case of Shannon, Pielou’s evenness, or Simpson metrics (Supplementary Figure S6). OTU dif-
ferential analysis showed that metformin treatment was positively associated with taxa 
such as Rikenellaceae RC9 gut group (padj = 0.004221) and negatively correlated with 
Prevotella 9 (padj = 0.00422), Bacteroides (padj = 0.004724), Prevotellaceae (padj = 0.005852) 

Figure 5. Microbiome signatures in T2DM compared to MetSyn. A. Number of reads for Bacteroides
(A), Clostridiales (B), Lachnospiraceae (C), and Erysipelotrichaceae (D). *, p < 0.05; **, p < 0.01.



Int. J. Mol. Sci. 2022, 23, 7509 10 of 21

Table 4. Taxa differential of OTUs statistically modified when comparing Metformin treated MetSyn
patients vs. naive patients. These are log 2-fold different and statistically significant.

OTU baseMean log2FoldChange p-Value padj Upregulated

OTU_110
(Rikenellaceae

RC9 gut group)
3.17082871 −2.35288 5.82 × 10−5 0.004222 Metformin

OTU_10
(Prevotella 9) 6.73972305 2.597327 3.64 × 10−5 0.004222 Control

OTU_43
(Bacteroides) 4.23676835 2.348046 0.0001 0.004725 Control

OTU_19
(Bacteroides) 3.34116511 −2.4488 0.00013 0.004725 Metformin

OTU_5
(Prevotellaceae) 6.38379068 2.389298 0.000202 0.005853 Control

OTU_11
(Clostridiales) 5.08918313 2.407934 0.000484 0.011694 Control

3. Discussion

Even though the definition of a healthy microbiome is still missing, diverse medical
conditions have been linked to certain microbiota patterns [14]. An altered microbiota
generally characterised by loss of diversity and an enrichment of opportunistic pathogens
has been reported for obesity, T2DM, and MetSyn [15]. In the case of MetSyn, detailed
analyses of the microbiome variance depending on the type of comorbidities, and treatment
regimens are still needed to improve patient outcomes. Complementary to existing phar-
maceutical options, interventions targeting the patient microbiota may ameliorate disease
or decrease the morbidity associated with MetSyn. Indeed, the use of probiotics has been re-
ported to modulate the microbiome and to subsequently enhance insulin sensitivity, hence
improving metabolic health [6]. The diversity of gut bacteria regarding microbial numbers
and their comparative abundance evenness is a potent indicator of host health [16,17].
Hence, lower alpha diversity (also known as intra-individual diversity) is an indicator of
dysbiosis. Importantly, dysbiosis has been linked to several features of MetSyn [18].

Within this study, we show a link between the gut microbiome and lipid metabolism
in MetSyn. Specifically, LDL and HDL display a positive effect on gut microbial diver-
sity. Interestingly, when considering LCBD, HDL levels have a positive impact when
only considering microbial numbers (Bray-Curtis), but a negative one when considered in
conjunction with the type of OTUs (weighted UniFrac). Importantly, low HDL values are
associated with an increased risk of cardiovascular disease [19]. Other studies have also
shown a link between HDL and the gut microbiota [20–22]. Hence, manipulation of gut
the microbiota may serve as an ideal therapeutic approach for improving HDL function as
well as cardiovascular risk.

Based on metagenomics and qPCR data, we highlight here several aspects related to
the gut microbiome in MetSyn, particularly in MetSyn coupled with T2DM. To sum up, we
show here that MetSyn patients have lower microbial diversity when compared to healthy
controls and that in terms of taxa abundance, they are low in the gut beneficial microorgan-
isms such as F. praunsnitzii, A. muciniphila, and Subdoligranulum. Subdoligranulum is a strictly
anaerobic, non-spore-forming Gram-negative microorganism which produces the SCFA
butyrate, a metabolite with multiple health benefits [10,23]. Several diseases, including
T2DM or inflammatory bowel diseases, were associated with decreased abundance of
butyrate producers like Subdoligranulum [24]. Importantly, Subdoligranulum has been shown
to be positively correlated with HDL cholesterol and negatively correlated with glycated
haemoglobin (HbA1c) [10].

MetSyn patients were characterised by a decrease in three markers of gut health—
butyrate levels and abundance of F. prausnitzii and A. muciniphila. F. prausnitzii strains
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are considered major butyrate producers in the human intestine [25] and require acetate
for the production of butyrate through the butyryl CoA: acetate CoA-transferase path-
way [26]. Importantly, the mucin degrading A. muciniphila bacterium increases the acetate
and propionate pool stimulating the syntrophic growth of F. prausnitzii, subsequently stim-
ulating butyrate production [27,28]. MetSyn subjects were found to be low in butyrate, F.
prausnitzii, and A. muciniphila and these findings are in accordance with other published
studies [8,29–34]. Indeed, metagenomics studies performed on in independent human
cohorts consistently revealed a decrease in butyrate-producing bacteria in individuals
with metabolic diseases [8,34]. Hence, restoration of butyrate-producing bacteria and
butyrate levels might provide new treatment options for MetSyn and T2DM. Indeed, a low
abundance of A. muciniphila has been correlated with obesity, hypertension, and treatment
naive T2DM [35,36]. Moreover, a recent randomised crossover clinical study (double-blind,
placebo-controlled) using daily oral A. muciniphila supplementation resulted in significantly
improved insulinemia, insulin sensitivity, and plasma total cholesterol [37].

We show here that MetSyn is associated with a low abundance of these beneficial taxa
and increased levels of Debaryomyces, a fungus recently reported to inhabit inflamed intesti-
nal tissue and can lead to impaired mucosal healing [38]. Moreover, we report here that
three OTUs distinguish the microbiome of MetSyn patients from that of healthy individuals
and these are Clostridiales, Ruminococcaceae UCG-005, and Bacteroidaceae DJF_B220.

The increase of Clostridiales in MetSyn and T2DM was also reported by other re-
search groups. Indeed, compared with nondiabetic individuals, patients with T2DM
have an increased percentage of Clostridiales spp., Lactobacillus spp., Streptococcus mutans,
and Betaproteobacteria class and a decreased proportion of F. prausnitzii and Roseburia
intestinalis [39]. An increased presence of Ruminococcaceae UCG 005 was reported in acute
coronary syndrome compared to the healthy control group, as well as increased serum
trimethylamine N-oxide (TMAO) concentration [40]. It was suggested that Ruminococcaceae
UCG 005 may be predictive biomarkers for cardiovascular events development [40]. Never-
theless, the results of a recent study by Tomizawa et al. (2021) showed that Ruminococcaceae
UCG 005 may also be affected by age, gender, and genetics, and therefore further research
concerning these factors needs to be considered [41].

Bacteroidaceae were reported to be increased in high-fat diet-fed mice [42] and decreased
in obese individuals [43]. Here, we report that MetSyn is associated with an enrichment
in the abundance of the Bacteroidaceae bacterium DJF_B220, a taxon which remains poorly
understood in terms of its relation to human disease. So far, an increased abundance of
Bacteroidaceae DJF_B220 was reported in patients with nephrolithiasis [44].

Findings from our study indicate that the MetSyn microbiome differs from that of
healthy people, while the addition of the T2DM condition brings additional signatures.
Hence, patients with MetSyn and T2DM have a gut microbiota enriched in Bacteroides,
Clostridiales, Erysipelotrichaceae, and low in Lachnospiraceae. Lachnospiraceae belong to and
are part of the gut microbiota core being among the main SCFAs producers [45]. Although
members of this bacterial family have been shown to generate beneficial metabolites
for the host, their abundance was also reported to be increased in various diseases. A
metagenome-wide association study of gut microbiota in T2DM patients carried out by Qin
et al. (2012) reported a high abundance of Lachnospiraceae in diabetics [46]. Nevertheless, this
study was performed on a Chinese cohort and it is well-known that geographic location
and diet hold an impact on microbiome composition. Specifically, Blautia (a member
of the Lachnospiraceae family) has gained attention due to its contribution to alleviating
inflammatory and metabolic diseases [47,48]. Nevertheless, the intestinal abundance of
Blautia species is influenced by geography, age, genotype, diet, and other diseases [49–51].

Blooming of the Erysipelotrichaceae family has been reported enriched in ileal Crohn’s
disease [52], colorectal cancer [53] as well as in diet-induced obese animals [54] and in
obese individuals [55]. We report here a significant enrichment of Erysipelotrichaceae and
Bacteroides in the case of MetSyn patients with associated T2DM. MetSyn-T2DM patients
from the cohort described were enriched in Bacteroides abundance. However, the role of
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Bacteroides in diabetes is a controversial one. While several studies reported that Bacteroides
is inversely proportional to diabetes risk [56–59], other studies found a positive correlation
for different species [60–62]. In diabetic mice, administration of Bacteroides acidifaciens and
B. uniformis prevented obesity and improved insulin sensitivity suggesting that Bacteroides
may have beneficial effects [63,64]. These conflicting findings may be caused by the use of
different animal models and the analysis of the microbiome at various stages of the disease.

Due to its efficacy, safety, tolerability, and low cost, metformin is the most frequently
administered medication to treat patients with T2DM [65] and it was recently reported to
affect the gut microbiome. An example of metformin’s effects on the gut microbiota is the
increased abundance of the mucin-degrading A. muciniphila, a protective ally against the
development of metabolic diseases [66]. Moreover, metformin intake was associated with
an increase in SCFAs production [67]. Metformin administration was reported to increase
E. coli levels and decrease Intestinibacter bartlettii [68,69]. However, in our study, we did not
find any correlation between metformin intake and Enterobacteriaceae and Intestinibacter
abundance probably due to the small sample size and the demographic characteristics of
the cohort analysed. In healthy mice, metformin targets the gut microbiome by increasing
the abundances of Verrucomicrobiaceae, Akkermansia spp., Clostridium spp., Ruminococcaceae,
Alistipes spp., and Rikenellaceae [70].

In the work presented here, we show that metformin is associated with an increase in
the Rickenellaceae RC9 gut group. Rikenellaceae RC9 gut group, belonging to the Rikenellaceae
family, plays an important role in the digestion of crude fiber and can produce propionate,
acetate, and/or succinate as fermentation end-products [71]. In rats, this taxonomic group
was shown to be associated with a beneficial phenotype after treatment with polyphenols
to alleviate doxorubicin cardiotoxicity [72]. Members of the Rikenellaceae RC9 gut group
were reported to protect against oxidative stress, thereby lowering inflammation. [73]. Nev-
ertheless, in a rat model of isoproterenol induced ischemia, Rickenellaceae RC9 group was
correlated to a higher risk of acute myocardial ischemia and it was suggested to be involved
in lipid metabolism [74]. These contradictory findings suggest that the Rickenellaceae RC9
gut group still needs to be analysed in terms of its connection to human health and the gut
barrier function and permeability.

So far, the role of members of the Prevotellaceae family within the gut microbiota and
their effects on the host is not fully understood. While some studies report Prevotella as
beneficial microbes enriched in people consuming a vegetarian diet [75,76], others have
linked them with insulin resistance, diabetes, and gut inflammation [77,78]. Prevotellaceae
were shown to be increased in the gut microbiota of T2DM patients [79] and recently,
Díaz-Perdigones et al. [80] (2022) reported that metformin treatment lowers the abundance
of this taxon [80]. In our cohort, metformin treatment led to a significant reduction of
Prevotellaceae and Prevotella 9.

This initial exploratory research performed on a cohort of 70 individuals points out the
existence of dysbiosis in MetSyn patients and of specific signatures in MetSyn patients with
T2DM. One limitation of the study was the relatively small sample used but we plan to
extend our research to bigger cohorts. Importantly, we excluded from our analysis patients
who had a history of COVID-19, considering that SARS-CoV-2 infection significantly alters
the gut microbiome [81]. Given the heterogeneity in the overall microbial composition
observed in the participants, further recruitment would enable the detection of additional
correlations between gut microbiota and MetSyn and T2DM pathogenesis.

For the first time, this preliminary study reports the existence of specific microbiota
compositional alterations in MetSyn patients with associated T2DM compared to individ-
uals with MetSyn alone. More investigations focusing on the microbiome-metabolome
patterns are needed to clarify the exact association of various gut microbial communities
with the progression of T2DM.
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4. Materials and Methods
4.1. Patients

A total of 70 subjects were enrolled in this study. Among them, 40 were MetSyn
patients from the National Institute of Endocrinology “C.I. Parhon”, Bucharest, Romania,
and 30 were healthy volunteers. All participants received and signed an informed consent,
and the Ethical Committee approved the study (CEC reg. no 235/9.10.2019).

Inclusion criteria for participating in the study were: (1) diagnosis of MetSyn using
the International Federation Of Diabetes criteria 2006 [82], respectively waist > 94 cm
(men)/>80 cm (women) along with (2) the presence of two or more of the following: blood
glucose greater than 100 mg/dL or diagnosed diabetes, blood triglycerides > 150 mg/dL or
drug treatment for elevated triglycerides, HDL cholesterol < 40 mg/dL in men/<50 mg/dL
in women or drug treatment for low HDL-C, blood pressure > 130/85 mmHg or drug
treatment for hypertension, ages 25 to 75 years.

The exclusion criteria were: coexistence of other chronic inflammatory and systemic
autoimmune diseases; pregnancy, antibiotic treatment in the past month, steroid therapy
in the past 3 months; neoplastic disease not in complete remission, history of COVID-19,
and history of chronic infectious disease (i.e., tuberculosis, infections with HIV, HBV or
HCV). Age, gender, and ethnicity matched healthy controls were enrolled based on the
same exclusion criteria.

4.2. DNA Isolation

Stool samples were brought to the laboratory within 24 h after collection or, alterna-
tively, were kept at −20 ◦C in a freezer until the study participants’ visit to the hospital.
DNA was extracted from faecal samples using bead beating and the QIAamp DNA Stool
Mini Kit (Qiagen, Germany). DNA concentration and purity were measured with a Nan-
oDrop2000 and a Qubit 4 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA).

4.3. Culture-Independent Analysis of Stool Samples
4.3.1. 16S rRNA Amplification and Sequencing

16S metagenomic sequencing library generation was performed using Illumina guide-
lines (Illumina, San Diego, CA, USA). The 16S ribosomal primers V3 (TCGTCGGCAGCGTCA-
GATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG) and V4 (GTCTCGTGGGCTCGGA-
GATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC) were used [83]. Microbiome
sequencing was done using a v3 300 bp paired-end kit and the Illumina MiSeq platform.

4.3.2. Bioinformatics

Paired-end reads were pre-processed following the guidelines from D’Amore et al.
(2016) and Rognes et al. (2016) [83,84]. Sequencing reads were trimmed (average Phred
quality score of 20 based on a sliding window approach) and filtered using Sickle v1.33 [85].
Error-correction on paired-end reads was done using BayesHammer from the Spades v3.1.1
assembler [86]. Forward and reverse reads were assembled into a single sequence spanning
the V3–V4 16S rRNA region using PANDAseq (v2.11) [87].

Reads were further pooled, dereplicated, and arranged in order of declining abun-
dance. Reads with only a single match were removed. In order to produce the abundance
table by constructing OTUs, a representation of species, the VSEARCH v2.3.4 pipeline
was used as described in http://github.com/torognes/vsearch/wiki/VSEARCH-pipeline)
(accessed on 4 August 2021). Reads were clustered based on a 97% similarity. Clus-
ter removal was performed by employing chimeric models generated from more abun-
dant reads (the –uchime_denovo option in vsearch). The reference-based chimera filter-
ing step (–uchime_ref option in vsearch) was carried out with the Silva gold database
(https://www.mothur.org/w/images/f/f1/Silva.gold.bacteria.zip; accessed on 30 July
2021). The OTU table was generated after comparing the original barcoded reads to the
cleaned OTUs. After generating a tab-delimited version of the OTU table (otus.fa; contain-
ing all of the OTU sequences) an otu_table.txt (the OTU abundance table) was constructed.

http://github.com/torognes/vsearch/wiki/VSEARCH-pipeline
https://www.mothur.org/w/images/f/f1/Silva.gold.bacteria.zip
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The resulting sequence file was uploaded into the QIIME2 pipeline [88]. Next, OTU
taxonomy was assigned based on the SILVA SSU Ref NR database (v132) [89] and exported
to a TSV format. Within QIIME2, a phylogenetic tree was created using FastTree (v2.1.10)
and MAFFT (v7.310) [90,91]. The otu_table.txt and the taxonomy.tsv file were merged into
a BIOM file within2 QIIME for subsequent analysis in R and phyloseq [92].

4.3.3. Statistical Analysis of Sequencing Data

Statistical analyses were performed in R as previously described [93,94]. Output files
from VSEARCH were analysed using the R vegan package for diversity measures [95].
Microbiome diversity within samples (alpha diversity) and between samples (beta diversity)
was measured.

Alpha diversity was measured based on several indices: Shannon entropy, which
measures the balance of a community within a sample (the higher the Shannon index, the
more balanced the microbial community is); Richness—an estimation of species/features per
rarefied sample; Simpson measures the community evenness from 0 to 1; Pielou’s evenness
index- measures the evenness of a microbial community; Fisher alpha is an alternative
diversity index. All of these aforementioned indices are the result of different analytical
measurements and they depict various aspects of alpha diversity, whether emphasizing on
predominant or on rare microbiome species.

For beta diversity analysis, three alternative distance matrices were used: (i) un-
weighted UniFrac, a phylogenetic distance metric (calculated using the phyloseq package)
derived from the distances between samples by taking the fraction of the total of unshared
branch lengths in the total of all branch lengths of the phylogenetic tree for the OTUs
observed between samples (without taking into account their abundances); (ii) Bray-Curtis
which is based on OTUs abundances as a dissimilarity measure; and (iii) weighted UniFrac,
a phylogenetic distance metric that combined phylogenetic distance and relative abun-
dances, highlighting dominant OTUs or taxa.

In order to identify outliers in the beta diversity space, Local Contribution to Beta
Diversity (LCBD) analysis [96] was done employing the LCBD.comp() from the adespatial
package [97]. The unweighted UniFrac (phylogenetic distance), weighted UniFrac (phyloge-
netic distance weighted by abundance), and Hellinger distance (abundances) dissimilarities
were used.

To distinguish if the structure of the microbial community was stochastic (overdisper-
sion in the phylogenetic tree and triggered by competition), or deterministic (phylogenetic
clustering and triggered by high environmental pressure), the distances in terms of phy-
logeny for every sample were determined via nearest taxa index (NTI) and net relatedness
index (NRI). The NTI was calculated using mntd() and ses.mntd(), and the mean phyloge-
netic diversity (MPD) whereas NRI was calculated using mpd() and ses.mpd() functions
from the picante package [98]. NTI and NRI are the negatives of the output from ses.mntd()
and ses.mpd() and they measure the number of standard deviations separating the observed
values from the mean of the null distribution.

The core microbiome was constructed using the R’s microbiome package and the
recommendations given in from Shetty et al. (2017) [99] to find OTUs that are consistently
prevalent in all samples with a reasonable abundance detection limit.

To obtain the minimal subset of species that can explain roughly the same beta diver-
sity as compared to utilizing all of the OTUs in the sample space, we used the “BVSTEP”
routine [100] to identify the highest correlation, in a Mantel test, by imploding the abun-
dance table at genera level to an absolute minimal set of genera that maintain the beta
diversity between samples. To run this algorithm, bvStep() (from the sinkr package) [101]
was used as described in the author’s recent paper [93].

To allow the identification of genera that are significantly different between patient
groups, DESeqDataSetFromMatrix() function from DESeq2 [102] package was utilised
using the adjusted p-value significance cut-off of 0.05 and log2 fold change cut-off of 2.
Bayesian shrinkage was further applied to acquire shrunken log fold changes subsequently
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employing the Wald test for acquiring adjusted p-values for multiple comparisons. DESeq2
identified changes on a local scale (in conjunction with beta diversity analysis) to highlight
the genera responsible for the shift in microbial communities.

We wanted to get the directionality out by focusing on microbiome characteristics and
the sources of variations that were identified for each sample. Subset regression of different
microbiome metrics was performed against a set of explanatory variables (“TG”, “LDL”,
“HDL”, “Total cholesterol”, “HbA1c”, “Blood sugar”, “BMI”), by selecting the best model (a
subset of these variables) based on some statistical criteria (fit of regression, etc), with recom-
mendations given in [103] and code available at http://www.sthda.com/english/articles/
37-model-selection-essentials-in-r/155-best-subsets-regression-essentials-in-r/ (accessed
on 3 June 2022). The R function regubsets() from leapspackage [104] was employed to
point out different best models of different sizes, by specifying the option nvmax, set to the
maximum number of predictors to incorporate the model. After acquiring the best possible
subsets, the k-fold cross-validation comprised of dividing the data into k subsets. Each
subset (10%) served successively as test data set and the remaining subset (90%) as training
data. The average cross-validation error was then computed as the model prediction error.
This was performed using a custom function based on the R’s train() function from the
caret package [105]. Finally R’s tab_model() function from sjPlot package [106] was used to
acquire the statistics for each model. In the majority of the figures containing boxplots, pair-
wise ANOVA was done comparing two categories at a time. When significant differences
were found (p ≤ 0.05), categories were joined together by a line and the significance levels
were plotted on top of the plots (*: 0.01 ≤ p < 0.05; **: 0.05 ≤ p < 0.001; ***: p ≤ 0.001).

4.3.4. qPCR

For qPCR, samples were diluted to an end concentration of 10 ng/µL. Primer se-
quences targeting the 16S rRNA gene [107] are presented in Table 5.

Table 5. Primer sequences targeting 16S rRNA gene.

Taxonomic Target Sequence

Butyricicoccus spp. ACCTGAAGAATAAGCTCC
GATAACGCTTGCTCCCTACGT

Akkermansia muciniphila GCG TAG GCT GTT TCG TAA GTC GTG TGT GAA AG
GAG TGT TCC CGA TAT CTA CGC ATT TCA

rRNA16S
ACT CCT ACG GGA GGC AGC AGT

ATT ACC GCG GCT GCT GGC

F. prausnitzii CCCTTCAGTGCCGCAGT
GTCGCAGGATGTCAAGAC

ARNr 18S
ATTGGAGGGCAAGTCTGGTG
CCGATCCCTAGTCGGCATAG

Saccharomyces spp. AGGAGTGCGGTTCTTTG
TACTTACCGAGGCAAGCTACA

Candida spp. TTTATCAACTTGTCACACCAGA
ATCCCGCCTTACCACTACCG

Debaryomyces spp. TAACGGGAACAATGGAGGGC
CAACACCCGATCCCTAGTCG

Aspergillus spp. GTGGAGTGATTTGTCTGCTTAATTG
TCTAAGGGCATCACAGACCTGTT

4.4. SCFAs Quantification

Sample preparation for metabolite analysis was performed as previously described [108].
Briefly, 0.2 g of feces were resuspended in 1 mL of phosphate saline buffer (pH 7.4) and
further incubated at room temperature (2 min). After manual homogenization, samples

http://www.sthda.com/english/articles/37-model-selection-essentials-in-r/155-best-subsets-regression-essentials-in-r/
http://www.sthda.com/english/articles/37-model-selection-essentials-in-r/155-best-subsets-regression-essentials-in-r/
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were centrifuged (4000 rpm, 1 h, 4 ◦C) and the supernatant was further collected and
centrifuged (6000 rpm, 30 min, 4 ◦C). Next, the supernatant was filtered using a minisart-
GF filter membrane (Sartorius, Göttingen, Germany) and a Whatman-25mmGD/X0 filter
(Millipore, Burlington, MA, USA). Butyrate levels were quantified using a commercial kit
(Abbexa Ltd., Cambridge, UK) following the manufacturer’s instructions.

Statistical Analysis

Our study data are presented as mean ± SEM and were graphed using the GraphPad
Prism 9.0 software. Sample size (n) denotes the biological replicates. The differences in
microbial relative abundance were calculated using a non-parametric Mann-Whitney test.
The * p < 0.05 was considered statistically significant. Statistical significance levels were
*, p < 0.05; **, p < 0.01; ***, and p < 0.001.
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