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The introduction of artificial intelligence (AI) has resulted in numerous technological ad-

vancements in the medical profession and a radical transformation of the old medical model. 

Artificial intelligence in medicine consists mostly of machine learning, deep learning, expert 

systems, intelligent robotics, the internet of medical things, and other prevalent and new AI 

technology. The primary applications of AI in the medical industry are intelligent screening, 

intelligent diagnosis, risk prediction, and supplemental treatment. Presently, medical AI has 

achieved significant advances, and big data quality management, new technology empower-

ment innovation, multi-domain knowledge integration, and personalized medical deci-

sion-making will exhibit greater growth potential in the clinical arena. 
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OHN MCCARTHY initially proposed artificial intelligence 

(AI) in 1956 (1), and Haenlein and Kaplan (2) defined AI 

as the capacity to systematically analyze and learn external 

facts to accomplish certain goals and activities. AI refers to 

computer programs that can replicate human intellect, and their 

success is a result of the exponential growth in processing power 

and data availability. AI applications based on machine learning 

(ML) algorithms have achieved significant advancements in 

disciplines such as computer vision over the past decade (com-

puter version, CV). AI research focuses primarily on machine 

learning, neural networks, intelligent robots, natural language 

understanding, semantic recognition, and image processing (3); 

examples include machine learning, neural networks, intelligent 

robots, natural language understanding, semantic recognition, 

and image processing. 

Since the 1970s, AI technologies have been used to the 

medical industry to increase the efficacy of disease detection 

and treatment, leading to the emergence of artificial intelligence 

in medicine (AIM) (4). After the 1980s, a number of ML tech-

niques, including decision trees, random forests, and support 

vector machines, were introduced, paving the way for the crea-

tion of AIM. Classical machine learning algorithms fall into 

three categories: supervised learning, unsupervised learning, and 

reinforcement learning. ML is currently the most used AI tech-

nique, and its mathematical models are based on enormous 

training datasets. The rise of deep learning (DL) in the 21st cen-

tury has ushered AIM into a new era of evolution. DL is cur-

rently the most common research technique in the field of AI. 

Currently, the medical profession uses AI technology to 

automate research on various clinical practice processes in order 

to support clinical decision-making. The implementation of AI 

algorithms in numerous medical sectors improves the accuracy 

of diagnosis and decreases the amount of time and effort re-

quired. Intelligent screening, intelligent diagnosis, risk predic-
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tion, and supplementary treatment are examples of applications 

undergoing radical transformations as a result of the current AI 

developments. 

We are closer than ever before to the therapeutic applica-

tion of AI, and the era of AI-based tailored telemedicine is ap-

proaching. In order to assist the medical community in acquiring 

AI-related background knowledge, including AI research pro-

gress and future prospects, clinical professionals must have a 

foundational understanding of AI technology. This will result in 

higher quality research and stimulate new research directions. 

 
Typical Approaches of AIM 
The evolution of AI is primarily characterized by two historical 

trends: symbolism and connectionism. The expert system, which 

became famous in the 1980s, is a typical example of symbolism; 

since the 1990s, connectionist-based learning approaches have 

gradually arisen, providing accuracy guarantees based on data 

rather than human experts (5). 

 
Machine Learning 
The notion of machine learning (ML) was introduced by Arthur 

Samuel in 1959 and can be defined as the capacity of data to 

endow computers with the capacity to learn without explicit 

programming (6). Quinlan introduced a decision tree (DT) algo-

rithm that can classify data based on predetermined principles 

(7). Vladimir introduced support vector machines (SVM), a 

popular supervised ML algorithm that is frequently applied to 

classification and regression issues (8). Then a random forest 

(RF) algorithm capable of completing feature extraction effi-

ciently was introduced (9). 

In recent years, ML has been widely utilized with the 

medical field to aid in sickness and prognosis prediction. The 

advancement of machine learning has reached significant mile-

stones, with accuracy rates comparable to or exceeding those of 

human specialists. Typical supervised tasks include regression 

and classification, while unsupervised tasks include dimension-

ality reduction, clustering, and outlier detection, etc. 

Semi-supervised learning is a hybrid framework between super-

vised and unsupervised learning, with examples including the 

use of partial label data to segment or classify images, etc. 

There is still significant space for development and ad-

vancement in ML technology. Clinicians desire an understand-

ing of the scientific foundation upon which clinical decisions are 

founded so that they may independently evaluate effectiveness 

and ensure that it applies to a broad variety of patients. However, 

physicians cannot intuitively grasp the underlying mechanics 

from ML approaches in order to comprehend how to provide 

precise suggestions for specific clinical scenarios. This is com-

monly referred to as the “black box” dilemma. Physicians tend 

to lack confidence in AI approaches, particularly when their 

experience disagrees with their suggestions, and future ad-

vancements in “explainable AI” may help to overcome this is-

sue. 

 
Deep Learning 
ML algorithms have continued to expand and improve since the 

1990s, giving rise to the now-popular deep learning technique 

(DL). In the early 2000s, Aizenberg et al. used the term DL to 

describe a subset of ML algorithms that are hierarchically ar-

ranged on numerous layers and can be automatically extracted 

from huge data (10). Extract meaningful features. Text recogni-

tion, digital image recognition, and target recognition are the 

three phases of image recognition development. In recent years, 

image processing based on DL technology has been increasingly 

suggested and encouraged, and a number of studies have fo-

cused on the automatic detection, classification, and segmenta-

tion of medical images. 

At present, convolutional neural network (CNN) is widely 

used in medical image processing, and the architecture has two 

paths to extract features at different scales; since then, a 

tree-structured multi-task fully convolutional network (FCN) 

with an efficient end-to-end network structure is proposed (11). 

Ronneberger et al. introduced a U-shaped convolutional network 

(U-Net) that performed well in a variety of medical picture 

segmentation tasks and has since become the benchmark net-

work for medical image segmentation (12). 

There have been significant advancements in the applica-

tion of DL to medical pictures, although there are still certain 

application limits. First, medical data sets are uneven and fre-

quently consist of single-center and small-sample data, whereas 

DL is highly dependent on high-quality big data, which may 

incur a significant economic cost. Second, the DL model has a 

significant number of learning parameters, and there is a risk of 

overfitting, which undermines application stability and repeata-

bility. Like ML technology, DL also has a “black box” problem 

that hampers the acceptability of both TCM and clinical applica-

tions by patients and physicians. Therefore, DL technology 

should be implemented in a suitable medical field to enhance the 

precision of supplementary diagnosis and therapy. 

Expert System (ES) is a computer system that simulates 

the abilities of human experts to make decisions. It is able to 

utilize the existing knowledge system to reason and solve a 

number of complex problems. It is one of the earliest AI pro-

grams to achieve success. The evolution of ES can be loosely 

split into three stages: the enlightenment phase (1965-1971), the 

development period (1972-1977), and the mature period 

(1977-present). Presently, ES has demonstrated a good capacity 

for clinical decision-making and possesses significant ad-

vantages in disease screening and diagnosis. However, ES relies 

heavily on human specialists, who may make errors or have 

subjective tendencies. To increase the accuracy of the system in 

the subsequent application, it is still important to incorporate the 

clinical expertise of the physician and the medical history of the 

patient. In addition, the implementation of ES necessitates the 

constant upgrading of medical knowledge and discoveries in 

order to give physicians with cutting-edge diagnostic and treat-

ment planning. 

 
Intelligent Robots 
In 1979, the American Institute of Robotics introduced the no-

tion of intelligent robots (IR), which is defined as a reprogram-

mable multifunctional manipulator that utilizes numerous pro-

gramming materials, components, and tools to complete tasks 

(13). IR has been steadily utilized to surgery since the 1980s. 

Currently, the FDA has approved ZUES, Da Vinci, and auto-

mated endoscopic systems for robotic surgery. IR has been 
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widely utilized in numerous domains, including as orthopedics, 

gynecology, urology, and stomatology, because to its minimally 

invasive, exact, and intelligent characteristics. 

In the past, IRs were frequently separate robots with re-

stricted movement. In recent years, continuous robots with a 

“invertebrate” flexible construction have been proposed as a 

new type of bionic robot. It possesses bendable properties and 

excellent environmental adaptation. It is anticipated that it will 

gradually replace discrete robots and become the future surgical 

force. Nonetheless, IR has disadvantages such as a high price, a 

high volume, and a limited application scope. 

 
Internet of Medical Things (IoMT) 
The Internet of Things can be characterized as the pervasiveness 

of cyber-physical systems with communication and sensing 

capabilities, which have been widely implemented in the medi-

cal profession, and the Internet of Medical Things (IoMT) idea 

was formed (14). IoMT primarily employs mobile sensors to 

collect medically relevant human data, and then supports clinical 

diagnosis and treatment with good economy, usability, and ac-

cess (15). 

IoMT uses multiple sensors to monitor the patient’s health 

status in real time, obtaining vital signs such as body tempera-

ture, heart rate, pulse, and blood oxygenation. These medical 

gadgets monitor patients’ health, collect clinical data, and trans-

mit it to physicians through remote cloud data centers. 

IoMT-based wearable medical systems can provide continuous 

monitoring functions and collect a vast amount of medical data, 

thereby providing clinicians with a reliable basis for forecasting 

the future status of patients. 

 
Common AIM Applications 
Intelligent Screening 
Currently, AIM technology has been applied to the screening of 

various malignant tumors, allowing for the automatic screening 

of benign and malignant areas suspected of containing cancer-

ous alterations. 

 
Screening for Digestive Malignancies 
DL-based esophagogastroduodenoscopy (EGD) image pro-

cessing system was developed to aid in the diagnosis of esopha-

geal cancer. The blind area missed diagnosis rates for early 

screening of duodenal illnesses were lowered to 5.9% and 3.4%, 

respectively, much lower than those of traditional approaches 

without AI technology. Jiménez Pérez and Grande reviewed and 

found that a DL-based liver pathology image processing system 

for automatic screening of hepatocellular carcinoma and 

cholangiocarcinoma with an accuracy of 88.5% on the valida-

tion (16). In a meta-analysis, McGill et al. found that ML-based 

colonoscopy image analysis system, which was primarily uti-

lized to differentiate between adenomas requiring resection and 

non-neoplastic polyps not requiring resection, with sensitivity of 

93.8% and specificity of 83.3% (17). Wang et al. developed a 

DL-based image processing system for colonoscopy (18). The 

results demonstrated that the adenoma detection rate of the AI 

group was much higher than that of the conventional group, and 

that AI could successfully enhance polyps and colonoscopy. 

 

Screening for Other Cancers 
A DL-based slice pathological image analysis system was pro-

posed that enables automatic diagnosis and categorization of 

breast cancer, with an overall accuracy rate of 83.1% using 

pathological results as the gold standard. Moreover, a DL-based 

chest CT processing system was developed that obtained 91.0% 

sensitivity for metastasis diagnosis and enabled automatic 

screening for metastatic breast cancer. Lotter et al. introduced an 

annotation-efficient DL approach that achieves state-of-the-art 

performance in mammography classification, etc., with an in-

crease of 14% in the average sensitivity of AI methods relative 

to mammography specialists (19). A DL-based ultrasound image 

analysis method was presented that improved the screening 

sensitivity of thyroid cancer from 84% to 92% and enabled au-

tomatic detection of benign and malignant thyroid nodules. A 

lung CT image processing system based on IoMT, and DL was 

developed that predicted the malignant stage of pulmonary nod-

ules with an 84.6% classification accuracy. 

 
Detection of Eye Disorders 
The DL approach was employed to analyze retinal pictures in 

order to achieve automatic diabetic retinopathy screening and 

severity rating (20, 21). The AI method’s sensitivity and speci-

ficity for diagnosing serious lesions were 100% and 88.4%, 

respectively. The sensitivities and specificities of lesions were 

85.2% and 92.0%, respectively. The area under the ROC curve 

(AUC) of cataract categorization reached 99.3%, so enabling 

automatic cataract screening and screening. The study of Wu et 

al. on the diagnosis of fungal keratitis demonstrated that the 

sensitivity of automatic hyphae detection technology was 89.3%, 

the specificity was 95.7%, and the AUC value was 94.6%, 

which could provide timely, accurate, objective, and quantitative 

evaluation criteria for fungal keratitis (22). 

Currently, AI screening is widely utilized for the detection 

of malignancies and ocular illnesses. It should be highlighted, 

however, that the correctness of the model has a substantial im-

pact on physicians’ clinical decision-making. When a model’s 

prediction is wrong, the effect of its supplementary screening is 

frequently significantly diminished. In addition, for diseases 

with a low incidence and a small sample size, the existence of 

false positives cannot be overlooked, and it is recommended that 

manual review be used to confirm the results once more. Con-

sequently, there are still significant obstacles to implementing AI 

models in clinical settings, and the potential detrimental impacts 

of model-assisted screening should be taken into account while 

creating AI tools. 

 
Intelligent Diagnosis 
Identification of Infectious Diseases 
The outbreak of the novel coronavirus illness 2019 (COVID-19) 

in 2019 presented an ideal opportunity for the implementation of 

AIM technology. AIM technology has made significant strides 

in COVID-19 diagnosis, categorization, risk prediction, and 

adjuvant treatment. Shorfuzzaman et al. verified that the ML 

technique can be utilized for automatic severity assessment of 

COVID-19, which is useful for classifying and diagnosing 

COVID-19 patients with a 96% AUC value, an 84% sensitivity, 

and a 96% specificity. The priority of subsequent diagnosis and 
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therapy can then be chosen (23). 

 
Diagnostics of Medical Conditions 
With the advancement of medical imaging technology and the 

enhancement of clinical diagnosis precision, DL-based clinical 

diagnosis approaches have been intensively developed. A 

DL-based brain CT image processing system was introduced to 

achieve automatic identification of acute neurological events 

such as stroke (24, 25). Zhu et al. suggested an automatic diag-

nosis approach for ischemic stroke based on DL, with a sensitiv-

ity of 76.9%, a specificity of 84.0%, and an accuracy of 80.5%, 

which can offer doctors with acute ischemic stroke (26). Bibi et 

al. created a system based on DL and IoMT to accomplish 

speedy and safe identification and categorization of leukemia, 

with an average accuracy of 99.6% (27). Yuan et al. used AIM 

technology and artificial expert views with ES to study chronic 

renal disease (28). 

 
Diagnostics of Surgical Conditions 
DL-based image recognition technology has a significant impact 

on clinical diagnosis and can enhance surgical lesion prediction 

accuracy. Bien et al. developed a DL-based knee MRI pro-

cessing system in order to automatically detect knee ailments 

such as anterior cruciate ligament tear, meniscus tear, etc (29). 

Krogue et al. concentrated on the CT image analysis system to 

achieve automatic diagnosis and visual analysis of interfemoral 

fractures, as well as to determine the most likely fracture spot 

(30). 

Emerging AI technologies are currently employed exten-

sively in intelligent diagnosis of medical and surgical disorders, 

as well as infectious diseases, and play a significant role in clin-

ical decision-making. The size of the training set restricts the 

effectiveness of an AI model. A model trained on one type of 

data set may perform poorly when applied to another type of 

data set. To evaluate the generalizability of a model, care should 

be taken to include external test sets in a suitable manner during 

training. In addition, the majority of intelligent diagnostic pro-

cedures based on AI technology are restricted to assessing med-

ical imaging data, but clinically relevant research outcomes must 

be based on physicians’ comprehensive evaluation of patient 

signs. In order to improve the efficacy and generalizability of AI 

models, future research should therefore focus on the thorough 

use of diverse clinical data. 

 
Risk Prediction 
AIM is able to implement automatic risk assessment and early 

warning, as well as providing efficient clinical decision support. 

 
Prediction of Infection Risk 
Severe sepsis is associated with an increased risk of death; 

therefore, the ability to anticipate sepsis risk is crucial to im-

proving the efficacy of interventions. For sepsis risk prediction, 

Yang et al. suggested a ML-based electronic health records 

(EHR) data processing system (31). Giannini et al. evaluated 

EHR data using ML to provide early warning of severe sepsis 

and septic shock with low sensitivity but high specificity, with a 

specificity of 98.0% for this AI technique (32). Ginestra et al. 

studied the clinical adoption of the sepsis early warning system, 

and the results demonstrated that there is still considerable po-

tential for improvement (33). 

 
Risk Prediction for Chronic Diseases 
A 5G smart diabetes system was used to create comprehensive 

sensing and analysis for diabetic patients, which can provide 

patients with effective individualized diagnostic and treatment 

recommendations (34). Polu built an IoMT-based mobile 

healthcare application to assess the severity and risk of diabetes 

(35). Romero-Brufau et al. analyzed patient data using ML to 

give clinical decision assistance for blood sugar control, with a 

58.0% patient acceptance rate (36). Boutilier et al. used ML to 

predict the risk classification of diabetes and hypertension and 

increased the accuracy of diabetes prediction from 67.1% to 

91.0% and the accuracy of hypertension prediction from 69.8% 

to 79.8%, thereby significantly reducing the prevalence of dia-

betes and hypertension (37). 

 
Estimation of Treatment Danger 
Increased medical costs and death are closely linked to the prev-

alence of perioperative risk. Incorporating a data-driven strategy 

for risk prediction into an intelligent decision support platform 

can minimize the workload of physicians and enhance the accu-

racy of risk prediction. Wijnberge et al. developed an ML-based 

hemodynamic index analysis system to enable automatic early 

warning of hypotension risk during cardiac surgery (38); AI 

intervention can cut the median duration of hypotension from 

32.7 to 8.0 minutes (39). C-reactive protein (CRP), blood urea 

nitrogen (BUN), serum calcium, serum albumin, and lactate, 

among others, were found in the results of an ML-based mortal-

ity risk score system for COVID-19, and serum indicators are 

highly correlated with COVID-19 severity and mortality risk 

(40). 

Currently, AI-based early warning systems have been de-

veloped and deployed on a limited scale, with application areas 

including infection risk prediction, chronic illness risk predic-

tion, and treatment risk prediction. However, there are still di-

vergent opinions among clinicians regarding such tools. AI ap-

proaches represented by ML and DL are often opaque and un-

predictable, and there is a possibility of unstable prediction ef-

fect, which causes some physicians to be apprehensive about 

employing them. The tools created by AI approaches lack credi-

bility. In addition, earlier risk prediction was limited to studies 

conducted at a single center, and its generalization performance 

has not been completely established. To completely evaluate the 

security and generalizability of AI approaches, future research 

must focus on a larger number of organizations. AI is unlikely to 

replace clinicians in the near future, but it can provide useful 

recommendations based on medical big data and serve as an 

effective helper to clinicians. 

 
Adjuvant Treatment 
In numerous instances, AIM technology has been deployed to 

adjuvant therapy with outstanding results. 

 
Support for Treatment Decisions 
Radiation therapy is an essential tool for treating various types 

of cancers. Intensive delineation of the organ at risk is required 



https://bonoi.org/index.php/si SI | June 30, 2022 | vol. 41 | no. 1 571 

during the treatment procedure in order to guide radiation ther-

apy and predict prognosis. With the proper validation studies 

and regulatory approval, these methods can enhance the preci-

sion and efficacy of radiation therapy. Yang et al. employed ML 

techniques to predict organ sensitivities, determined the thresh-

old of radiation dose absorbed by each organ, and examined the 

link between radiation dose and long-term quality of life indica-

tors (41). Nicolae and coworkers developed a machine learning 

(ML)-based prostate implant planning system that decreased 

treatment planning time to (2.38 ± 0.96) minutes and provided 

clinical treatment decision support for prostate cancer (42). 

Bamidele et al. suggested an IoMT-based intelligent health mon-

itoring system that can provide individualized therapy recom-

mendations and increase breast cancer patients’ survival time 

(43). 

 
Drug R&D Management 
Errors in prescribing might result in significant morbidity and 

healthcare burden. Existing prescribing mistake warning sys-

tems are ineffective and carry significant risks of false alarms. 

An ML-based antibacterial prescription decision-making system 

was developed by Rawson et al. to give clinical decision support 

for antibiotic management, and AI prescription recommenda-

tions have reached a level comparable to that of physicians (44). 

Segal et al. developed an ML-based prescription identification 

system to achieve automatic early warning and rectification of 

prescription errors in heart disease patients, with a clinical effi-

cacy rate of 85.0% (45). 

 
Robotic Surgical Procedures 
IR is being employed extensively in orthopedics, biliary system, 

throat, and liver surgery, amongst other specialties. IR technol-

ogy is used to spine surgery, which may successfully increase 

the precision of screw insertion, minimize the number of in-

traoperative fluoroscopies, and decrease the frequency of post-

operative problems. Xie et al. employed the da Vinci surgical 

system to treat biliary cysts in infants less than one year, and the 

results demonstrated that IR is safe and feasible (46). Garas and 

Tolley utilized transoral robotic surgery (TORS) to throat mass 

removal with excellent visualization and no severe adverse 

events (47). Yu et al used IR for liver surgery with benefits such 

as reduced blood loss and adhesions, which shortened hospital 

hospitalization and postoperative recovery time (48). 

Currently, a range of decision support systems based on 

AI methodologies have reached a level commensurate with the 

judgment of disease specialists, allowing them to effectively 

improve empirical treatment decisions, decrease treatment dura-

tion, and save costs. Nevertheless, the majority of current auxil-

iary tools are limited to certain conditions, and the application 

process is challenging. The lack of commonly acknowledged 

and validated data sets in the analytical data sets, particularly 

with regard to long-term follow-up outcomes, hinders the pre-

dictive ability of decision support systems. Increasing the varie-

ty of cases may enhance the effectiveness of decision support. 

Future expansion of data sets and development of a multi-center 

and multi-site planning system are required to better direct clin-

ical care. 

 

Prospects for AIM 
Quality Governance of Big Data 
Clinical data, imaging data, genetic data, and mobile health data 

are examples of the large and complex data sets generated by the 

medical process and referred to as “big data”. AIM’s progress 

hinges on the quality of large medical data, which possesses 

mass, precision, variability, diversity, and confidentiality. Im-

proving the sensitivity of AI systems often requires a large 

number of training data samples, and merging AI methods with 

big data can lead to improved prediction accuracy and broader 

future applications. Improving data quality and optimizing the 

data gathering and sorting process are the keys to the future 

development and promotion of AIM. Errors or biases in the 

training database typically manifest themselves directly in the 

model’s behavior and have a substantial effect on both model 

performance and clinical results. Consequently, data quality is a 

must for reaping the benefit of big medical data. 

Currently, the degree of automation of medical big data 

gathering is limited, and the data collection and aggregation 

process are time-consuming and expensive. And as a result of 

the existence of information islands in diverse medical systems, 

there are numerous concerns with the integrity, precision, thor-

oughness, and consistency of existing medical big data. In the 

same way that physicians must be aware with clinical standards, 

clinical teams must be familiar with the guiding principles for 

data collection and management in the era of artificial intelli-

gence. The most prevalent data curation principles in the AI 

sector are findability, accessibility, actionability, and reproduci-

bility, whereas clinical applications must take into account the 

specifics of the medical field. 

 
New Technologies Facilitate Ingenuity 
Artificial general intelligence (AGI) is an ambitious objective of 

future AI development that aims to enable AI to learn, apply, and 

solve problems independently in a variety of domains of 

knowledge, similar to the human brain. The objective of AGI is 

to create AI that is equivalent to humans, and its implementation 

methods, hazards, and problems are hot study topics in the entire 

field of artificial intelligence. Presently, new technologies in-

cluding as reinforcement learning, small sample learning, and 

meta-learning have been presented, which may provide a signif-

icant possibility for the realization of AGI and enable the future 

creation of AIM of the highest quality. 

Reinforcement learning (RL), also known as reinforce-

ment learning, is defined by learning through interaction, ad-

justing learning strategies based on information acquired from 

engagement, and achieving certain goals. In the medical field, 

RL and DL technology can be coupled to create deep reinforce-

ment learning (DRL). 

Few-shot learning (FSL) can learn object categories from 

a limited number of examples, stressing both rapid learning in a 

small number of samples and generalization performance for 

new tasks. In the future, FSL will be one of the most essential 

AIM development trends, as medical data frequently suffer from 

issues such as insufficient sample size, limited data labels, and 

unbalanced distribution. Semi-supervised, unsupervised, or 

self-supervised learning is advantageous for addressing the issue 

of low data labels; leveraging pre-trained models (transfer 
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learning) or merging models (ensemble learning) are other more 

successful joint solutions. 

Meta learning, sometimes known as “learning to learn,” 

refers to the application of prior knowledge and experience to 

guide the learning of new tasks, which has the potential to be 

another significant breakthrough in AI development (49). The 

current characteristic of DL is that it can only be trained from 

scratch; therefore, the idea of meta-learning is advantageous for 

making better use of prior information and enhancing the effi-

ciency of processing new tasks. Combining meta-learning with 

different algorithms is advantageous for a variety of applications, 

such as RL or FSL implementation using meta-learning tech-

niques. Meta-learning techniques can also be used with other 

techniques to maximize their respective benefits. Small-sample 

meta-learning, for instance, has significant practical benefit. The 

long-term objective of meta-learning development is to give AI 

core autonomy, which is essential for the realization of AGI. 

 
Integration of Knowledge across Domains 
The development of AI methodologies from symbolism to con-

nectionism, shallow architecture to deep architecture, etc., has 

brought about disruptive changes in the medical industry. Only 

if the medical community gradually adopts AI technology and 

incorporates all domain-specific knowledge into cutting-edge AI 

methods will the next generation of AI methods for medical 

applications be developed. Currently, AI applications continue to 

confront obstacles such as difficulties in research design, effect 

prediction, and principle explanation. Integrating do-

main-specific information not only improves the performance of 

state-of-the-art AI models, but also enhances the interpretability 

of outcomes, so successfully overcoming the constraints of cur-

rent AI approaches. The resolution of the black box problem is 

conducive to enhancing the precision and processing capability 

of machine learning and, consequently, making greater contribu-

tions to the medical profession. 

Integration of multidisciplinary research domains, such as 

medical imaging, image fusion, natural language processing, etc., 

which can follow the full course of disease diagnosis and treat-

ment, is an essential development direction of AIM. In addition, 

the application of multi-omics data fusion approaches for illness 

diagnosis and therapy, such as genomics, proteomics, and 

radiomics, has been a research hotspot in recent years and merits 

in-depth study (50, 51). 

In the past few years, AI techniques have attained signifi-

cant milestones, with enormous potential for automating medi-

cal practice. The safe integration of these AI approaches into 

clinical workflows still requires a multidisciplinary effort from 

computer science, statistics, data science, and medicine to ena-

ble the next generation of powerful AI methods and assure the 

robustness and interpretability of AI-based solutions. 

 
Individualized Medical Choice-Making 
In the healthcare field, AI will confront bigger obstacles in the 

future. In the fields of data mining and machine learning, re-

searchers have developed fifth-generation wireless technology 

and IoMT-integrated continuous robots; in the field of image 

recognition, more effective training models are required to con-

tinuously expand data sets and provide clinicians with additional 

information. 

To ensure that each patient receives the most effective 

therapy possible, the notion of personalized telemedicine is be-

ing increasingly promoted. In order to accomplish this, it is re-

quired to employ big data training and update high-precision AI 

algorithms depending on user feedback. Patients can take basic 

tests at home and receive instant referral advice from AI pro-

grams thanks to the development of portable devices. Simulta-

neously, all data can be transmitted to the medical center, where 

physicians analyze and customize treatment plans depending on 

the patient’s unique characteristics. Thus, patients can consider-

ably shorten their office visits while still receiving the most 

individualized treatment suggestions. In the future, AI will allow 

patients to obtain quick and accurate individualized medical 

recommendations regarding their disorders. We have cause to 

believe that the era of personalized telemedicine powered by AI 

is on the horizon. 

 
Concluding Remarks 
This paper provides a summary and classification of the preva-

lent technologies and typical uses of artificial intelligence in the 

clinical area, as well as a prognosis of the future of these appli-

cations. Accordingly, ML, DL, ES, IR, and IoMT are the most 

widely used AI technologies, and their applications include in-

telligent screening, intelligent diagnosis, risk prediction, and 

adjuvant therapy. AI has radically transformed the traditional 

medical model, vastly enhanced the quality of medical services, 

and protected human health in every way. The future develop-

ment directions for medical AI include big data quality man-

agement, new technology empowering innovation, integration of 

multi-domain knowledge, and personalized medical deci-

sion-making.■ 

 

 

 

 

References 

1. McCarthy J, Minsky ML, Rochester N, Shannon CE. 
A proposal for the Dartmouth summer research pro-
ject on artificial intelligence. 1956. Artificial Intelli-
gence (AI) Coined at Dartmouth. Last access: June 
27, 2022. Available at: 

https://250.dartmouth.edu/highlights/artificial-intellige
nce-ai-coined-dartmouth  

2. Haenlein M, Kaplan A. A brief history of artificial intel-
ligence: On the past, present, and future of artificial 
intelligence. Calif Manag Rev 2019; 61(4):5-14. DOI: 

https://250.dartmouth.edu/highlights/artificial-intelligence-ai-coined-dartmouth
https://250.dartmouth.edu/highlights/artificial-intelligence-ai-coined-dartmouth


https://bonoi.org/index.php/si SI | June 30, 2022 | vol. 41 | no. 1 573 

https://doi.org/10.1177/0008125619864925  

3. Macpherson T, Churchland A, Sejnowski T, DiCarlo J, 
Kamitani Y, Takahashi H, Hikida T. Natural and artifi-
cial intelligence: A brief introduction to the interplay 
between AI and neuroscience research. Neur Netw 
2021; 144:603-613. DOI: 
https://doi.org/10.1016/j.neunet.2021.09.018  

4. Amisha, Malik P, Pathania M, Rathaur VK. Overview 
of artificial intelligence in medicine. J Family Med 
Prim Care 2019; 8(7):2328-2331. DOI: 
https://doi.org/10.4103/jfmpc.jfmpc_440_19  

5. Berghoff C, Neu M, von Twickel A. Vulnerabilities of 
connectionist ai applications: Evaluation and defense. 
Front Big Data 2020; 3:23. DOI: 
https://doi.org/10.3389/fdata.2020.00023  

6. Daley B. What is machine learning? 2017; Last ac-
cess: June 22, 2022. Available at: 
https://theconversation.com/what-is-machine-learnin
g-76759  

7. Quinlan JR. Introduction of decision tree. Mach Learn 
1986; 1:81-106. 

8. Stoean C, Stoean R. Support Vector Machines and 
Evolutionary Algorithms for Classification: Single or 
together. ISBN 978-3-319-06940-1. 2014. DOI: 
https://doi.org/https://doi.org/10.1007/978-3-319-069
41-8  

9. Jaiswal JK, Samikannu R. Application of random 
forest algorithm on feature subset selection and 
classification and regression. 2017 World Congress 
on Computing and Communication Technologies 
(WCCCT), 2017, pp. 65-68. DOI: 
https://doi.org/10.1109/WCCCT.2016.25  

10. Aizenberg IN, Aizenberg NN, Vandewalle J. Mul-
ti-Valued and Universal Binary Neurons: Theory, 
Learning and Applications. 2012; ISBN 
978-0-7923-7824-2. DOI: 
https://doi.org/10.1007/978-1-4757-3115-6  

11. Guo Z, Bai J, Lu Y, Wang X, Cao K, Song Q, Sonka M, 
Yin Y. Deep centerline: A multi-task fully convolutional 
network for centerline extraction. 2019. DOI: 
https://doi.org/10.1007/978-3-030-20351-1_34  

12. Ronneberger O, Fischer P, Brox T. U-Net: Convolu-
tional Networks for Biomedical Image Segmentation. 
Medical Image Computing and Computer-Assisted 
Intervention (MICCAI), Springer, LNCS, Vol.9351: 
234--241, 2015, available at arXiv:1505.04597. DOI: 
https://doi.org/10.48550/arXiv.1505.04597  

13. Javaid M, Haleem A, Singh RP, Suman R. Substantial 
capabilities of robotics in enhancing industry 4.0 im-
plementation. Cog Robot 2021; 1:58-75. DOI: 
https://doi.org/10.1016/j.cogr.2021.06.001  

14. Kelly JT, Campbell KL, Gong E, Scuffham P. The 
Internet of Things: Impact and implications for health 
care delivery. J Med Internet Res 2020; 
22(11):e20135. DOI: https://doi.org/10.2196/20135  

15. Dwivedi R, Mehrotra D, Chandra S. Potential of In-
ternet of Medical Things (IoMT) applications in build-
ing a smart healthcare system: A systematic review. J 
Oral Biol Craniofac Res 2022; 12(2):302-318. DOI: 
https://doi.org/10.1016/j.jobcr.2021.11.010  

16. Jiménez Pérez M, Grande RG. Application of artificial 

intelligence in the diagnosis and treatment of hepa-
tocellular carcinoma: A review. World J Gastroenterol 
2020; 26(37):5617-5628. DOI: 
https://doi.org/10.3748/wjg.v26.i37.5617  

17. McGill SK, Evangelou E, Ioannidis JP, Soetikno RM, 
Kaltenbach T. Narrow band imaging to differentiate 
neoplastic and non-neoplastic colorectal polyps in 
real time: A meta-analysis of diagnostic operating 
characteristics. Gut 2013; 62(12):1704-1713. DOI: 
https://doi.org/10.1136/gutjnl-2012-303965  

18. Wang W, Tian J, Zhang C, Luo Y, Wang X, Li J. An 
improved deep learning approach and its applications 
on colonic polyp images detection. BMC Med Imag-
ing 2020; 20:83. DOI: 
https://doi.org/10.1186/s12880-020-00482-3  

19. Lotter W, Diab AR, Haslam B, Kim JG, Grisot G, Wu 
E, Wu K, Onieva JO, Boyer Y, Boxerman JL, Wang M, 
Bandler M, Vijayaraghavan GR, Gregory Sorensen A. 
Robust breast cancer detection in mammography 
and digital breast tomosynthesis using an annota-
tion-efficient deep learning approach. Nat Med 2021; 
27(2):244-249. DOI: 
https://doi.org/10.1038/s41591-020-01174-9  

20. Kanclerz P, Tuuminen R, Khoramnia R. Imaging 
modalities employed in diabetic retinopathy screen-
ing: A review and meta-analysis. Diagnostics (Basel) 
2021; 11(10):1802. DOI: 
https://doi.org/10.3390/diagnostics11101802  

21. Noriega A, Meizner D, Camacho D, Enciso J, Qui-
roz-Mercado H, Morales-Canton V, Almaatouq A, 
Pentland A. Screening diabetic retinopathy using an 
automated retinal image analysis system in inde-
pendent and assistive use cases in Mexico: Ran-
domized controlled trial. JMIR Form Res 2021; 
5(8):e25290. DOI: https://doi.org/10.2196/25290  

22. Wu X, Qiu Q, Liu Z, Zhao Y, Zhang B, Zhang Y, Wu X, 
Ren J. Hyphae detection in fungal keratitis images 
with adaptive robust binary pattern. IEEE Acc 2018; 
6:13449-13460. DOI: 
https://doi.org/10.1109/access.2018.2808941  

23. Shorfuzzaman M, Masud M, Alhumyani H, Anand D, 
Singh A. Artificial neural network-based deep learning 
model for COVID-19 patient detection using X-ray 
chest images. J Healthc Eng 2021; 2021:5513679. 
DOI: https://doi.org/10.1155/2021/5513679  

24. Inamdar MA, Raghavendra U, Gudigar A, Chakole Y, 
Hegde A, Menon GR, Barua P, Palmer EE, Cheong 
KH, Chan WY, Ciaccio EJ, Acharya UR. A Review on 
Computer Aided Diagnosis of Acute Brain Stroke. 
Sensors (Basel) 2021; 21(24):8507. DOI: 
https://doi.org/10.3390/s21248507  

25. Lin E, Yuh EL. Computational Approaches for Acute 
Traumatic Brain Injury Image Recognition. Front 
Neurol 2022; 13:791816. DOI: 
https://doi.org/10.3389/fneur.2022.791816  

26. Zhu H, Jiang L, Zhang H, Luo L, Chen Y, Chen Y. An 
automatic machine learning approach for ischemic 
stroke onset time identification based on DWI and 
FLAIR imaging. Neuroimage Clin 2021; 31:102744. 
DOI: https://doi.org/10.1016/j.nicl.2021.102744  

27. Bibi N, Sikandar M, Ud Din I, Almogren A, Ali S. 
IoMT-based automated detection and classification of 

https://doi.org/10.1177/0008125619864925
https://doi.org/10.1016/j.neunet.2021.09.018
https://doi.org/10.4103/jfmpc.jfmpc_440_19
https://doi.org/10.3389/fdata.2020.00023
https://theconversation.com/what-is-machine-learning-76759
https://theconversation.com/what-is-machine-learning-76759
https://doi.org/https:/doi.org/10.1007/978-3-319-06941-8
https://doi.org/https:/doi.org/10.1007/978-3-319-06941-8
https://doi.org/10.1109/WCCCT.2016.25
https://doi.org/10.1007/978-1-4757-3115-6
https://doi.org/10.1007/978-3-030-20351-1_34
https://doi.org/10.48550/arXiv.1505.04597
https://doi.org/10.1016/j.cogr.2021.06.001
https://doi.org/10.2196/20135
https://doi.org/10.1016/j.jobcr.2021.11.010
https://doi.org/10.3748/wjg.v26.i37.5617
https://doi.org/10.1136/gutjnl-2012-303965
https://doi.org/10.1186/s12880-020-00482-3
https://doi.org/10.1038/s41591-020-01174-9
https://doi.org/10.3390/diagnostics11101802
https://doi.org/10.2196/25290
https://doi.org/10.1109/access.2018.2808941
https://doi.org/10.1155/2021/5513679
https://doi.org/10.3390/s21248507
https://doi.org/10.3389/fneur.2022.791816
https://doi.org/10.1016/j.nicl.2021.102744


https://bonoi.org/index.php/si SI | June 30, 2022 | vol. 41 | no. 1 574 

leukemia using deep learning. J Healthc Eng 2020; 
2020:6648574. DOI: 
https://doi.org/10.1155/2020/6648574  

28. Yuan Q, Zhang H, Deng T, Tang S, Yuan X, Tang W, 
Xie Y, Ge H, Wang X, Zhou Q, Xiao X. Role of artifi-
cial intelligence in kidney disease. Int J Med Sci 2020; 
17(7):970-984. DOI: 
https://doi.org/10.7150/ijms.42078  

29. Bien N, Rajpurkar P, Ball RL, Irvin J, Park A, Jones E, 
Bereket M, Patel BN, Yeom KW, Shpanskaya K, 
Halabi S, Zucker E, Fanton G, Amanatullah DF, 
Beaulieu CF, Riley GM, Stewart RJ, Blankenberg FG, 
Larson DB, Jones RH, Langlotz CP, Ng AY, Lungren 
MP. Deep-learning-assisted diagnosis for knee 
magnetic resonance imaging: Development and ret-
rospective validation of MRNet. PLoS Med 2018; 
15(11):e1002699. DOI: 
https://doi.org/10.1371/journal.pmed.1002699  

30. Krogue JD, Cheng KV, Hwang KM, Toogood P, 
Meinberg EG, Geiger EJ, Zaid M, McGill KC, Patel R, 
Sohn JH, Wright A, Darger BF, Padrez KA, Ozhinsky 
E, Majumdar S, Pedoia V. Automatic hip fracture 
identification and functional subclassification with 
deep learning. Radiol Artif Intell 2020; 2(2):e190023. 
DOI: https://doi.org/10.1148/ryai.2020190023  

31. Yang D, Kim J, Yoo J, Cha WC, Paik H. Identifying 
the risk of sepsis in patients with cancer using digital 
health care records: Machine learning-based ap-
proach. JMIR Med Inform 2022; 10(6):e37689. DOI: 
https://doi.org/10.2196/37689  

32. Giannini HM, Ginestra JC, Chivers C, Draugelis M, 
Hanish A, Schweickert WD, Fuchs BD, Meadows L, 
Lynch M, Donnelly PJ, Pavan K, Fishman NO, Han-
son CW 3rd, Umscheid CA. A machine learning algo-
rithm to predict severe sepsis and septic shock: De-
velopment, implementation, and impact on clinical 
practice. Crit Care Med 2019; 47(11):1485-1492. DOI: 
https://doi.org/10.1097/CCM.0000000000003891  

33. Ginestra JC, Giannini HM, Schweickert WD, Mead-
ows L, Lynch MJ, Pavan K, Chivers CJ, Draugelis M, 
Donnelly PJ, Fuchs BD, Umscheid CA. Clinician 
perception of a machine learning-based early warn-
ing system designed to predict severe sepsis and 
septic shock. Crit Care Med 2019; 47(11):1477-1484. 
DOI: 
https://doi.org/10.1097/CCM.0000000000003803  

34. Rghioui A, Lloret J, Sendra S, Oumnad A. A Smart 
Architecture for Diabetic Patient Monitoring Using 
Machine Learning Algorithms. Healthcare (Basel) 
2020; 8(3):348. DOI: 
https://doi.org/10.3390/healthcare8030348  

35. Polu SK. IoMT based smart health care monitoring 
system. Int J Innov Res Sci Technol 2019; 
5:11:58-64. 

36. Romero-Brufau S, Wyatt KD, Boyum P, Mickelson M, 
Moore M, Cognetta-Rieke C. A lesson in implementa-
tion: A pre-post study of providers’ experience with 
artificial intelligence-based clinical decision support. 
Int J Med Inform 2020; 137:104072. DOI: 
https://doi.org/10.1016/j.ijmedinf.2019.104072  

37. Boutilier JJ, Chan TCY, Ranjan M, Deo S. Risk strati-
fication for early detection of diabetes and hyperten-

sion in resource-limited settings: Machine learning 
analysis. J Med Internet Res 2021; 23(1):e20123. 
DOI: https://doi.org/10.2196/20123  

38. Wijnberge M, Geerts BF, Hol L, Lemmers N, Mulder 
MP, Berge P, Schenk J, Terwindt LE, Hollmann MW, 
Vlaar AP, Veelo DP. Effect of a machine learn-
ing-derived early warning system for intraoperative 
hypotension vs standard care on depth and duration 
of intraoperative hypotension during elective 
noncardiac surgery: The HYPE randomized clinical 
trial. JAMA 2020; 323(11):1052-1060. DOI: 
https://doi.org/10.1001/jama.2020.0592  

39. van der Ven WH, Veelo DP, Wijnberge M, van der 
Ster BJP, Vlaar APJ, Geerts BF. One of the first vali-
dations of an artificial intelligence algorithm for clini-
cal use: The impact on intraoperative hypotension 
prediction and clinical decision-making. Surgery 2021; 
169(6):1300-1303. DOI: 
https://doi.org/10.1016/j.surg.2020.09.041  

40. Alballa N, Al-Turaiki I. Machine learning approaches 
in COVID-19 diagnosis, mortality, and severity risk 
prediction: A review. Inform Med Unlocked. 2021; 
24:100564. DOI: 
https://doi.org/10.1016/j.imu.2021.100564  

41. Yang Z, Olszewski D, He C, Pintea G, Lian J, Chou T, 
Chen RC, Shtylla B. Machine learning and statistical 
prediction of patient quality-of-life after prostate radi-
ation therapy. Comput Biol Med 2021; 129:104127. 
DOI: 
https://doi.org/10.1016/j.compbiomed.2020.104127  

42. Nicolae A, Semple M, Lu L, Smith M, Chung H, Lo-
blaw A, Morton G, Mendez LC, Tseng CL, Davidson 
M, Ravi A. Conventional vs machine learning-based 
treatment planning in prostate brachytherapy: Re-
sults of a Phase I randomized controlled trial. 
Brachytherapy 2020; 19(4):470-476. DOI: 
https://doi.org/10.1016/j.brachy.2020.03.004  

43. Awotunde JB, Folorunso S., Ajagbe SA, Garg J, 
Ajamu GJ. AiIoMT: IoMT-based system-enabled arti-
ficial intelligence for enhanced smart healthcare 
systems. In: Al-Turjman, F., Nayyar, A. (eds) Machine 
Learning for Critical Internet of Medical Things. 
Springer, Cham. ISBN 978-3-030-80927-0. 2022. 
DOI: https://doi.org/10.1007/978-3-030-80928-7_10  

44. Rawson TM, Moore LSP, Hernandez B, Charani E, 
Castro-Sanchez E, Herrero P, Hayhoe B, Hope W, 
Georgiou P, Holmes AH. A systematic review of clin-
ical decision support systems for antimicrobial man-
agement: Are we failing to investigate these interven-
tions appropriately? Clin Microbiol Infect 2017; 
23(8):524-532. DOI: 
https://doi.org/10.1016/j.cmi.2017.02.028  

45. Segal G, Segev A, Brom A, Lifshitz Y, Wasserstrum Y, 
Zimlichman E. Reducing drug prescription errors and 
adverse drug events by application of a probabilistic, 
machine-learning based clinical decision support 
system in an inpatient setting. J Am Med Inform 
Assoc 2019; 26(12):1560-1565. DOI: 
https://doi.org/10.1093/jamia/ocz135  

46. Xie X, Wu Y, Li K, Ai C, Wang Q, Wang C, Chen J, 
Xiang B. Preliminary experiences with robot-assisted 
choledochal cyst excision using the da vinci surgical 
system in children below the age of one. Front 

https://doi.org/10.1155/2020/6648574
https://doi.org/10.7150/ijms.42078
https://doi.org/10.1371/journal.pmed.1002699
https://doi.org/10.1148/ryai.2020190023
https://doi.org/10.2196/37689
https://doi.org/10.1097/CCM.0000000000003891
https://doi.org/10.1097/CCM.0000000000003803
https://doi.org/10.3390/healthcare8030348
https://doi.org/10.1016/j.ijmedinf.2019.104072
https://doi.org/10.2196/20123
https://doi.org/10.1001/jama.2020.0592
https://doi.org/10.1016/j.surg.2020.09.041
https://doi.org/10.1016/j.imu.2021.100564
https://doi.org/10.1016/j.compbiomed.2020.104127
https://doi.org/10.1016/j.brachy.2020.03.004
https://doi.org/10.1007/978-3-030-80928-7_10
https://doi.org/10.1016/j.cmi.2017.02.028
https://doi.org/10.1093/jamia/ocz135


https://bonoi.org/index.php/si SI | June 30, 2022 | vol. 41 | no. 1 575 

Pediatr 2021; 9:741098. DOI: 
https://doi.org/10.3389/fped.2021.741098  

47. Garas G, Tolley N. Robotics in otorhinolaryngology - 
head and neck surgery. Ann R Coll Surg Engl 2018; 
100(Suppl 7):34-41. DOI: 
https://doi.org/10.1308/rcsann.supp2.34  

48. Yu S, Bo T, Hou B, Li J, Zhou X. Surgery strategy of 
13 cases to control bleeding from the liver on lapa-
roscopic repeat liver resection for recurrent hepato-
cellular carcinoma. J Minim Access Surg 2019; 
15(3):214-218. DOI: 
https://doi.org/10.4103/jmas.JMAS_214_17  

49. Vanschoren J. Meta-Learning. In: Hutter, F., Kotthoff, 
L., Vanschoren, J. (eds) Automated Machine Learn-

ing. The Springer Series on Challenges in Machine 
Learning. Springer, Cham. ISBN 978-3-030-05317-8. 
2019. DOI: 
https://doi.org/10.1007/978-3-030-05318-5_2  

50. Subramanian I, Verma S, Kumar S, Jere A, Anamika 
K. Multi-omics data integration, interpretation, and its 
application. Bioinform Biol Insights 2020; 
14:1177932219899051. DOI: 
https://doi.org/10.1177/1177932219899051  

51. Ye M, Lin Y, Pan S, Wang ZW, Zhu X. Applications of 
multi-omics approaches for exploring the molecular 
mechanism of ovarian carcinogenesis. Front Oncol 
2021; 11:745808. DOI: 
https://doi.org/10.3389/fonc.2021.745808  

 

Received: March 09, 2022   |   Revised: April 12, 2022   |   Accepted: April 25, 2022 

 

 

https://doi.org/10.3389/fped.2021.741098
https://doi.org/10.1308/rcsann.supp2.34
https://doi.org/10.4103/jmas.JMAS_214_17
https://doi.org/10.1007/978-3-030-05318-5_2
https://doi.org/10.1177/1177932219899051
https://doi.org/10.3389/fonc.2021.745808

