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As a burgeoning technology, artificial intelligence has been utilized in numerous domains, in-

cluding stroke prevention, diagnosis, treatment, and rehabilitation, and has demonstrated 

considerable promise. The combination of artificial intelligence and big data can be utilized for 

accurate identification of stroke high-risk groups, automatic etiology classification, and assis-

tance in the formulation of acute stroke and secondary prevention strategies, thereby enhanc-

ing the rehabilitation treatment effect for stroke patients. This article discusses the accom-

plishments made in artificial intelligence research for stroke prevention, diagnosis, treatment, 

and rehabilitation. 
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TROKE is now the second leading cause of disability and 

death worldwide. According to the Global Burden of 

Disease 2016 (GBD2016) data, there are approximately 

5.5 million fatalities and 80.1 million cases of stroke globally, 

with disability-adjusted life-years (DALYs) reaching up to 116.4 

million instances (1). Approximately 80% of the stroke burden 

is concentrated in low- and middle-income countries (2-4).The 

rising prevalence of stroke and the relative scarcity of medical 

resources have posed significant difficulties for stroke manage-

ment. With the rapid development of artificial intelligence (AI) 

technology, its core technologies, such as speech recognition 

technology, computer vision technology, natural language pro-

cessing technology, machine learning (ML), intelligent robots, 

virtual reality (VR), and augmented reality (AR) are being ap-

plied to an increasing number of traditional fields. Current ap-

plications of AI in the medical industry include gene sequencing 

(5), diagnosis (6), medical robotics (7), medical imaging (8), 

drug discovery (9), and promoting the efficient and advanced 

growth of the medical system via big and data analysis (10, 11). 

The purpose of this article is to examine the scientific progress 

of artificial intelligence in stroke prevention, diagnosis, treat-

ment, and rehabilitation systematically. 

 

Artificial Intelligence and Primary Stroke Pre-
vention 
Modifiable risk factors, such as behavioral, metabolic, and en-

vironmental factors, account for more than 90% of the burden of 

stroke (12).Consequently, identifying and analyzing risk factors 

for stroke is essential for primary prevention. 

Incorporating AI into the management of stroke risk fac-

tors can rectify the current imbalance of medical resources and 

lower the prevalence of missed and incorrect diagnoses. (i) Hy-

pertension: Using big data, AI can accurately forecast hyperten-

sion and analyze blood pressure levels (13, 14), screen out pa-

tients with high blood pressure variability (15), and design ef-

fective antihypertensive treatments (16, 17). In addition, data 

analysis of smart watches can predict hypertension and its in-

fluencing factors, which is beneficial for the prevention and 
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treatment of hypertension (18). (ii) Diabetes: AI has been uti-

lized extensively in diabetes prediction, diet and exercise guid-

ance, insulin injection guidance, complication monitoring and 

self-management to reduce labor costs (19-21). (iii) Atrial fi-

brillation: AI identification of atrial fibrillation provides the 

benefits of speed, timeliness, and low cost (23). Asgari and 

coworkers automatically detected atrial fibrillation using sta-

tionary wavelet transform and support vector machine algo-

rithms (24), from which the area under the receiver operating 

characteristic curve was 0.995%, the sensitivity was 97%, and 

the specificity was 97%, of which greatly increased the atrial 

fibrillation detection rate. 

Therefore, the deployment of an AI platform enables re-

mote monitoring, offers clinical decision assistance and tailored 

counseling, and improves the management of stroke risk factors, 

thus enhancing the efficacy of primary prevention (25, 26). 

 

Artificial Intelligence and Secondary Stroke 
Prevention 
Ischemic Stroke 
Rapid identification, diagnosis, and treatment of acute ischemic 

stroke are essential for a favorable outcome (27-29), and neu-

roimaging provides a vital foundation for its early detection and 

treatment (30). Through natural language processing technology 

and computer vision technology, AI can rapidly analyze neu-

roimaging and electronic medical record data to realize the dif-

ferential diagnosis of ischemic stroke, determine the time of 

onset and the volume of the infarct, which is conducive to vas-

cular recanalization treatment and secondary prevention (31, 

32). 

 
Diagnosis and Differential Diagnosis 
AI can aid in the early differential diagnosis of genuine stroke 

and pseudo-stroke and quickly discern between ischemic stroke 

and hemorrhagic stroke, providing a crucial foundation for the 

development of treatment approaches (33). Abedi et al. em-

ployed the FABS scoring system to train artificial neural net-

works with a back-propagation-based learning algorithm and 

then performed 10-fold cross-validation to distinguish between 

acute ischemic stroke and pseudo-stroke within 4.5 hours of 

starting (34). This approach has a sensitivity of 80% for the 

diagnosis of acute ischemic stroke, a specificity of 86.2%, an 

accuracy of 85.2%, and an accuracy of 81.1% for the the pseu-

do-stroke. Guo and Abbosh investigated stroke classification 

based on microwave imaging technology, demonstrating that 

machine learning has high sensitivity and specificity in distin-

guishing ischemic stroke from hemorrhagic stroke within four 

hours of onset using k-means clustering and support vector ma-

chines (35). The algorithm was with 88.0% of the accuracy, 91.0% 

of the sensitivity, and 87.0% of the specificity. 

 
Therapy for Vascular Recanalization 
Intravenous thrombolysis is currently the most essential vascular 

recanalization therapy as it can effectively rescue the ischemic 

penumbra in patients with acute ischemic stroke within 3-4.5 

hours of onset. In the preceding two months, both the National 

Institutes of Health Stroke Scale (NIHSS) and the Modified 

Rankin Scale (MRS) scores declined (36). Machine learning can 

help estimating the onset time of patients that would benefit 

from intravenous thrombolysis, allowing for earlier screening. In 

the past, the DWI-FLAIR mismatch was mostly utilized to iden-

tify whether intravenous thrombolysis was indicated for indi-

viduals with acute ischemic stroke of unknown onset time (37). 

The sensitivity of this manual method to identify acute ischemic 

stroke within 4.5 hours of onset was only 48.5%. However, ma-

chine learning has a higher sensitivity: the random forest algo-

rithm has a sensitivity of 72.7%, and the logistic regression and 

support vector machine algorithms can reach 75.8%, and these 

three machine learning algorithms do not use the manual method, 

and its specificity has dropped (38). According to accumulating 

evidence, endovascular interventional therapy is a crucial ap-

proach for recanalization of acute major vessel blockage and 

improved clinical prognosis (39-42). AI is capable of autono-

mously identifying blocked arteries and infarct core volume, as 

well as providing imaging data required for endovascular inter-

ventional therapy (43). Czap et al. demonstrated that innovative 

convolutional neural network could automatically diagnose 

major artery occlusion by CTA with an area under receiv-

er-operator curve of 0.80 (44). Kim and colleagues discovered 

that the encoder-decoder convolutional neural network segmen-

tation DWI and apparent diffusion coefficient in external correc-

tion had higher intraclass correlation coefficients than manual 

segmentation results, and the mean difference was only 0.19 ml, 

which was highly consistent with the RAPID software results 

(45). 

 
Etiology Classification and Secondary Preven-
tion 
Classifying the etiology of an ischemic stroke can aid in deter-

mining prognosis, guiding medication treatment, and choosing 

secondary prevention strategies. This classification using AI is 

quite accurate. Garg and coworkers utilized natural language 

processing and machine learning algorithms on electronic health 

records in order to automate the TOAST categorization of is-

chemic stroke with a decent inter-rater agreement (46). The 

effect of different etiological classifications by machine learning 

is distinct, and its central origin embolism type and large ather-

osclerosis type are more compatible with manual TOAST classi-

fication, although the unexplained cause type is less accurate. 

Mainali et al. utilized a supervised machine learning model to 

assess gradient echo sequences, which can rapidly identify 

thrombus components, reliably predict cardioembolic stroke, 

and serve as a foundation for the selection of antithrombotic 

medicines (47). The etiological classification of ischemic stroke 

aids in the selection of antiplatelet or anticoagulant medications, 

consequently enhancing compliance with secondary preventive 

drugs and decreasing the recurrence rate and mortality of is-

chemic stroke (48). The combination of AI and voice follow-up 

can increase patients’ regular follow-up rate and medication 

adherence, as well as shorten the duration of medical treatment. 

Schweitzer and Hoerbst utilized an intelligent robotic assistance 

system to remind patients to take medication, evaluate drug 

interactions, record medication adherence, and assist patients 

throughout the full medication-taking process (49). However, 

the practical applicability of this approach requires further re-

search. 
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Hemorrhagic Stroke 
Classification 
Intracerebral hemorrhage, intraventricular hemorrhage, subdural 

hemorrhage, epidural hemorrhage, and subarachnoid hemor-

rhage are the five subtypes of hemorrhagic stroke. Imaging is an 

essential method for diagnosing cerebral hemorrhage, with head 

CT examination being the “gold standard” for diagnosing cere-

bral hemorrhage in its early stages (50, 51). Deep learning algo-

rithms can effectively identify CT image anomalies, shorten the 

time required for diagnosis, expedite treatment, and reduce 

mortality risk. Natural language processing methods were used 

to identify CT pictures of patients with various forms of cerebral 

bleeding, and discovered that the area under the curve for de-

tecting cerebral hemorrhage was 0.94 (52). Not only can deep 

learning algorithms reliably detect hemorrhagic stroke, but they 

can also immediately estimate the volume of cerebral bleeding 

and surrounding edema, thereby giving support for precise 

medication administration and surgical treatment (53). Ironside 

and colleagues created a fully automatic segmentation algorithm 

using a convolutional neural network, and found that the com-

pletely automated segmentation algorithm measured 

perihematomal edema volumes from computed CT scans of 

supratentorial intracerebral hemorrhage patients with more ac-

curacy and efficiency than human and semi-automated segmen-

tation methods (54). 

 
Treatment 
Hemorrhagic stroke is able to be treated with medication therapy 

and surgery. For critically ill patients or patients with secondary 

causes and surgical indications, surgery should be actively per-

formed to achieve rapid hematoma removal, intracranial hyper-

tension relief, and mechanical compression release (55). The 

surgical robot is a new type of human-machine surgical platform 

that is computer-assisted. It employs spatial navigation technol-

ogy, medical imaging technology, and robotic technology to 

precisely pinpoint lesions and aid surgeons in executing the 

related surgical procedures (56). French Medtech designed and 

developed the Robotic Stereotactic Assistance (ROSA®), which 

can perform minimally invasive drainage of intracranial hema-

toma quickly and accurately, significantly shorten the operation 

time and postoperative extubation time, and reduce the postop-

erative rebleeding rate (57). 

 
Artificial Intelligence and Stroke Therapy 
As a result of impairment, 70%-80% of newly diagnosed stroke 

patients are unable to live independently (58). Neurological 

function evaluation of stroke patients employs AI technology, 

which not only assists physicians in formulating rehabilitation 

plans and improves the efficacy of diagnosis and treatment, but 

also reduces the workload of physicians and therapists (59). 

Robot-assisted kinematic and kinetic measures accurately pre-

dict clinical scale scores. When combined with artificial neural 

networks, robot-assisted measurements can demonstrate greater 

sensitivity. The position sense matching task, the kinematic 

matching task, and the proprioceptive threshold test enable the 

upper limb robot to conduct a more objective, quantitative, and 

refined assessment of the upper limb’s proprioception (60). In 

addition, the use of artificial neural networks based on the modi-

fied Ashworth scale score, joint motion, and resistance quantifi-

cation parameters to evaluate the degree of spasticity has a 

strong correlation with the evaluations of rehabilitation physi-

cians and therapists (61). 

AI possesses a robust memory, precise execution, and 

rapid information processing and reasoning capabilities (62). It 

is integrated with human intelligence, enabling human-machine 

intelligence collaboration, the exploitation of complementing 

advantages, and the promotion of stroke patients’ rehabilitation. 

The development of brain-computer interaction is crucial to the 

advancement of human-computer hybrid intelligence. It obtains 

cognitive information by decoding neuronal activity signals and 

then controls external equipment to enable patients to interact 

with their surroundings (63). Multiple studies have demonstrat-

ed that frequent use of brain-computer interfaces can induce 

neural network remodeling, ultimately improving motor func-

tion in stroke patients (64). The therapeutic effect of the 

brain-computer interface is still extremely significant six months 

following treatment (65). 

Robot-assisted technology not only provides effective as-

sessment and treatment methods but also provides an additional 

method for the in-depth study of the laws of human movement 

and rehabilitation, as well as the control and influence relation-

ship between the brain and limbs, thereby enhancing the rela-

tively low treatment efficiency and training intensity (66). The 

differences in different study with controversial findings are 

likely attributable to the time of stroke onset, treatment intensity, 

and treatment methods. Combining robot-assisted rehabilitation 

therapy with other rehabilitation techniques may be an effective 

way to enhance stroke patients’ functional outcomes. 

The technology of virtual reality combines computer 

graphics, image processing, pattern recognition, intelligent 

technology, sensor technology, language processing, and sound 

technology to generate an interactive, three-dimensional, dy-

namic scene that can provide subjects with a variety of sensory 

simulations. Virtual reality technology combined with other 

rehabilitation therapy approaches can considerably boost the 

motor learning capacity of stroke patients, improve upper limb 

motor function (67), balance function and gait (68), and enhance 

activities of daily living (69). 

In conclusion, the significance of AI technologies in 

stroke prevention, diagnosis, treatment, and rehabilitation is 

growing. The application of AI to stroke management can help 

lessen the growing burden of stroke and has vast application 

potential.■ 
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