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 In this paper, an optimal artificial neural network (ANN) controller for load 

frequency control (LFC) of a four-area interconnected power system with 

non-linearity is presented. A feed forward neural network with multi-layers 

and Bayesian regularization backpropagation (BRB) training function is 

used. This controller is designed on the basis of optimal control theory to 

overcome the problem of load frequency control as load changes in the 

power system. The system comprised of transfer function models of two 

thermal units, one nuclear unit and one hydro unit. The controller model is 

developed by considering generation rate constraint (GRC) of different units 

as a non-linearity. The typical system parameters obtained from IEEE press 

power engineering series and EPRI books. The robustness, effectiveness, 

and performance of the proposed optimal ANN controller for a step load 

change and random load change in the system is simulated through using 

MATLAB-Simulink. The time response characteristics are compared with 

that obtained from the proportional, integral and derivative (PID) controller 

and non-linear autoregressive-moving average (NARMA-L2) controller. The 

results show that the algorithm developed for proposed controller has a 

superiority in accuracy as compared to other two controllers. 
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1. INTRODUCTION 

Automatic load frequency control is the main area of concern in the operation of an interconnected 

power system. As load on the system changes, the frequency changes. In order to balance the megawatt 

(MW) generation with load demand, it is necessary to control the synchronous generators power output and 

frequency. This control is automatic, as it maintains the frequency at base value and power flows via tie-lines 

within scheduled values for a perturbation in the load [1]–[3]. The load frequency control monitors the area 

control error (ACE), which is the net real power interchange between the control areas plus the frequency 

deviation multiplied with a frequency bias. To reduce ACE, closer to zero, change the position of speed 

changer of the generator governors within the control area by means of load frequency control (LFC).  

In the design of load frequency controllers, conventional control techniques have been developed, 

which gives slower responses. The developments in advanced technology, artificial intelligent (AI) based 

techniques such as neural networks, fuzzy logic, genetic algorithm (GA) and particle swarm optimization 

(PSO) have been using and these techniques overcome the disadvantages of conventional controllers and 

increase the speed of response. When the load changes suddenly, the primary automatic load frequency 

control can be obtained by the action of speed governor in the prime movers. A supplementary or secondary 
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automatic load frequency control action is used in the proposed system to bring the change in frequency and 

change in tie-line power to zero with the help of advanced controllers. The past studies in the literature 

explain the LFC problem with proportional-integral-derivative (PID) and fuzzy logic controllers, but less 

with optimal artificial neural network (ANN) controller and nonlinearity.  

Prasad and Ansari [4], employed a three-layer ANN observer-based control strategy used in a two 

similar area interconnected power system with generation rate constraint (GRC) and governor dead band 

(GDB). This system is simulated for random unmatched disturbance estimation and its rejection. Qian and 

Fan [5], implemented a three-layer radial basis function (RBF) neural network for load frequency control of a 

two-area power system with GRC and wind turbine model. The control scheme is designed on the basis of 

terminal sliding mode control. Bhatia et al. [6] proposed a three-layer neural network-based NARMA-L2 

controller for a three similar area power system with GRC. Only frequency deviation is discussed. Chettibi  

et al. [7] proposed and implemented a technique for forecast of grid voltage frequency in short time based on 

ANN models and deep recurrent neural networks. This can be used in an advanced control scheme and 

monitoring distributed generators for frequency and voltage variations. The performance of these networks 

was assessed in terms of root mean square error (RMSE) that was lies between 0.002 Hz and 0.01 Hz for 

sapling interval of 0.1 s and 1 s respectively. 

Alzaareer et al. [8] proposed an ANN based NARMA-L2 controller model for a three-area 

interconnected system without GRC. This controller is compared with PI and PID controller for load 

frequency control in the system. Prakash and Sinha [9], proposed a hybrid neuro fuzzy (HNF) controller in a 

four–area power system without GRC. This controller performance is compared with fuzzy logic, three-layer 

ANN and PID controllers for 1% change in load. Peak overshoot and settling time values of -0.055 pu  

(-2.75 Hz) and 40 s respectively, obtained with ANN controller. Kumari et al. [10], proposed an ANN-PID 

control technique for a two area non-reheat thermal plant power system without GRC. The controller 

performance is tested with 10% step load perturbation and different error values are measured. Prakash and 

Sinha [11], proposed an ANN and adaptive neuro fuzzy inference system (ANFIS) for a six-area power 

system composed of hydro, thermal, gas, diesel, and nuclear plants without GRC. The controller performance 

is tested with 1% step load perturbation. Mucka et al. [12], employed a three-layer neural network-based 

NARMA-L2 controller for a four-area power system without GRC. The system is simulated with 2% change 

in load at frequency 50 Hz and its response has more settling time and undershoot. 

The above research work [4]–[7], employs ANN based controller for two-area and three-area 

interconnected power system with GRC. Only two input variables and first order governor-turbine transfer 

function models are considered and the work [8]–[12], even though propose ANN based controllers with 

Levenberg-Marquardt learning function but does not provide information on the number of neurons in the 

hidden layer(s) and considered only first order non-reheat turbines without GRC. Hence, the present work 

proposes an optimal ANN controller with BRB training function and is designed based on state space model 

for load frequency control in a four-area power system comprises reheat tandem compound turbines with 

GRC and IEEE standard parameters are chosen within the operating constraints of system components.  

 

 

2. MODELLING OF THE SYSTEM 

The main components of each area are governor, turbine, generator, and load. The dynamic models 

of governors, tandem compound steam turbines and hydro turbines were presented in [13], [14]. For thermal, 

nuclear, and hydro power plants, the transfer function models of a governor or hydraulic valve actuator are 

obtained from the basic Watt’s governor operation. The thermal plant governor and turbine block diagram 

with fraction of power generated by high pressure (HP), intermediate pressure (IP), and low pressure (LP) 

sections is shown in Figure 1. Figure 2 shows the block diagram of nuclear plant governor and turbine with 

fraction of power generated by very high pressure (VHP), high pressure (HP), and low pressure (LP) 

sections. Figure 3 shows the block diagram of hydro plant governor and turbine. 

The generation rate constraint is the limitation on the rate of change in the real power generation due 

to physical limitations of turbine. The existence of GRC [5], [7], [15] has an adverse effect on system 

stability. It should be considered for LFC problem as a non-linear model shown in Figure 4. The GRC values 

are taken into account by adding limiters to the turbines. The GRC values for thermal and nuclear plants are 

±0.005 𝑝𝑢. 𝑀𝑊. 𝑠−1 and that for hydro plant is +0.045 𝑝𝑢. 𝑀𝑊. 𝑠−1 and −0.06 𝑝𝑢. 𝑀𝑊. 𝑠−1. The transfer 

function model of synchronous generator and load is obtained by rotor dynamics, swing equation and overall 

frequency dependent characteristic of a composite load. Synchronous generator-load transfer function model 

[1], [2] in standard first order form is obtained as (1). 

 

𝐺𝑆𝐿(𝑠) =
1

2 𝑠 𝐻𝑖+𝐷𝑖
=

𝐾𝑝𝑠,1

1+𝑠 𝑇𝑝𝑠,1
  𝑓𝑜𝑟 𝑖 = 1,2,3,4 (1)  
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Figure 1. Thermal plant governor and turbine model 

 

 

 
 

Figure 2. Nuclear plant governor and turbine model 

 

 

 
 

Figure 3. Hydro plant governor and turbine model 

 

 

 
 

Figure 4. Generation rate constraint model 

 

 

The output of generator-load model is the change in frequency or the frequency deviation ∆𝑓𝑖(𝑠) 

due to change in load ∆𝑃𝐿𝑖(𝑠). In normal operation, the change in tie-line power is obtained from 

synchronizing torque coefficient (T) using (2). ACE [9] is the input signal to controller for each power 

system area and is calculated using (3).  

 

∆𝑃𝑖𝑗(𝑠) =
2𝜋𝑇

𝑠
(∆𝑓𝑖(𝑠) − ∆𝑓𝑗(𝑠))   𝑓𝑜𝑟 𝑖 = 1,2,3,4 (2) 

 

𝐴𝐶𝐸𝑖 = ∆𝑃𝑖𝑗 + 𝐵𝑖∆𝑓𝑖 (3) 

 

The objective function (OF) determines the system dynamics and satisfy criterion such as fast response with 

minimized undershoot and steady state error. Thus, integral of time weighted absolute error (ITAE) is used as 

OF [15] and is calculated as (4). 

 

𝐼𝑇𝐴𝐸𝑖 = ∫ 𝑡|∆𝑃𝑖𝑗 + 𝐵𝑖∆𝑓𝑖|
𝑡𝑚𝑎𝑥

0
𝑑𝑡 (4) 

 

By connecting the block diagrams of governor, turbine, generation rate constraint, generator and load models 

of respective areas and interconnecting these areas via tie-line model gives the complete block diagram of a 

four-area interconnected power system as shown in Figure 5. 
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Figure 5. Four area interconnected power system 

 

 

3. PID AND NARMA-L2 CONTROLLERS 

3.1. PID controller 

The PID controllers are conventional controllers used when the system requires improvement under 

steady-state and transient conditions. These controllers design is simple and inexpensive. The Ziegler-

Nichols method proposed in [16], [17], is employed to determine the tuned gain values of proportional (𝐾𝑝), 

integral (𝐾𝑖) and derivative (𝐾𝑑). 

 

3.2. NARMA-L2 controller 

The non-linear autoregressive moving average controller is the most effective in the non-linear 

control systems. It is referred to as NARMA-L2 control when the plant model can be approximated by a 

particular form [18]–[21]. The dynamic responses of the area frequency and tie-line power flows are obtained 

using this controller in the power systems [22]. Its main function is to transform non-linear system dynamics 

into linear dynamics by cancelling the non-linearities.  

 

 

4. RESEARCH METHOD-OPTIMAL ANN CONTROLLER 

In the design of load frequency optimal controller, an artificial neural network (ANN) is to be 

trained. The flow chart of neural network training process is shown in Figure 6. The training process is 

divided into three main sections, which are pre-training steps, training the network, and post-training 

analysis. 
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Figure 6. Flow chart of neural network training process 

 

 

4.1. Data collection and preprocessing 

The optimal controller is designed for the power system using state space model [23] with 32 state 

variables and 4 control output variables. The aim of this controller is to obtain a control law 𝑢(𝑥, 𝑡) for 

minimizing the performance index. Formulation of the state space model is achieved by writing differential 

equations [13], [24] describing each individual block of four area power system in terms of state variables. 

These variables are output of various blocks represent the change in mechanical power, electrical 

power and frequency and are defined as: 

- State variables: 

 

𝑥1 = ∆𝑓1, 𝑥2 = ∆𝑃𝑚1, 𝑥3 = ∆𝑃𝐶𝑂1, 𝑥4 = ∆𝑃𝑅𝐻1, 𝑥5 = ∆𝐶𝐻1, 𝑥6 = ∆𝑃𝑉1, 𝑥7 = ∆𝑓2, 𝑥8 = ∆𝑃𝑚2 , 
 

𝑥9 = ∆𝑃𝐶𝑂2, 𝑥10 = ∆𝑃𝑅2, 𝑥11 = ∆𝑃𝑅1, 𝑥12 = ∆𝑃𝐶𝐻2, 𝑥13 = ∆𝑃𝑣2, 𝑥14 = ∆𝑓3, 𝑥15 = ∆𝑃𝑚3, 
 

𝑥16 = ∆𝑃𝐶𝑂3, 𝑥17 = ∆𝑃𝑅𝐻3, 𝑥18 = ∆𝑃𝐶𝐻3, 𝑥19 = ∆𝑃𝑉3, 𝑥20 = ∆𝑓4, 𝑥21 = ∆𝑃𝑚4, 𝑥22 = ∆𝑃𝐻𝑇 ,  
 

𝑥23 = ∆𝑃𝐻𝑅 , 𝑥24 = ∆𝑃𝐻𝐺 , 𝑥25 = ∆𝑃12 + ∆𝑃13 + ∆𝑃14, 𝑥26 = ∆𝑃22 + ∆𝑃23 + ∆𝑃24, 
 

𝑥27 = ∆𝑃31 + ∆𝑃32 + ∆𝑃34, 𝑥28 = ∆𝑃41 + ∆𝑃42 + ∆𝑃43, 𝑥29 = ∫ 𝐴𝐶𝐸1 𝑑𝑡, 𝑥30 = ∫ 𝐴𝐶𝐸2 𝑑𝑡 

 

𝑥31 = ∫ 𝐴𝐶𝐸3 𝑑𝑡, 𝑥32 = ∫ 𝐴𝐶𝐸4 𝑑𝑡 

 

Control inputs: 𝑢1, 𝑢2, 𝑢3 and 𝑢4, disturbance inputs: 𝑑1 = ∆𝑃𝐿1, 𝑑2 = ∆𝑃𝐿2, 𝑑3 = ∆𝑃𝐿3 and 𝑑4 = ∆𝑃𝐿4
 
 

- State equations: 

 

For block 1: �̇�1 = −
1

𝑇𝑝𝑠1
𝑥1 +

𝐾𝑝𝑠1

𝑇𝑝𝑠1
𝑥2 −

𝐾𝑝𝑠1

𝑇𝑝𝑠1
𝑥25 −

𝐾𝑝𝑠1

𝑇𝑝𝑠1
𝑑1 (5) 

 

For block 2: �̇�2 = 𝑥3 (6) 

 

For block 3: �̇�3 = −
1

𝑇𝑡𝑐
𝑥3 + (

𝐾𝑡𝑙

𝑇𝑡𝑐
+

𝐾𝑡𝑖

𝑇𝑡𝑐
−

𝐾𝑡𝑖

𝑇𝑡𝑟
) 𝑥4 + (

𝐾𝑡ℎ

𝑇𝑡𝑐
+

𝐾𝑡𝑖

𝑇𝑡𝑟
−

𝐾𝑡ℎ

𝑇𝑡𝑡
) 𝑥5 +

𝐾𝑡ℎ

𝑇𝑡𝑡
𝑥6 

      �̇�4 = −
1

𝑇𝑡𝑟
𝑥4 +

1

𝑇𝑡𝑟
𝑥5   and  �̇�5 = −

1

𝑇𝑡𝑡
𝑥5 +

1

𝑇𝑡𝑡
𝑥6          (7) 

 

For block 4: �̇�6 = −
1

𝑅1 𝑇𝑡𝑔
𝑥1 −

1

𝑇𝑡𝑔
𝑥6 +

1

𝑇𝑡𝑔
𝑢1   (8) 

 

For block 5: �̇�7 = −
1

𝑇𝑝𝑠2
𝑥7 +

𝐾𝑝𝑠2

𝑇𝑝𝑠2
𝑥8 −

𝐾𝑝𝑠2

𝑇𝑝𝑠2
𝑥26 −

𝐾𝑝𝑠2

𝑇𝑝𝑠2
𝑑2         (9) 

 

For block 6: �̇�8 = 𝑥9  (10) 
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For block 7: �̇�9 = −
1

𝑇𝑛𝑐
𝑥9 +

𝐾𝑛𝑙

𝑇𝑛𝑐
𝑥10 + (

𝐾𝑛ℎ

𝑇𝑛𝑐
−

𝐾𝑛ℎ

𝑇𝑛𝑟1
) 𝑥11 + (

𝐾𝑛𝑣

𝑇𝑛𝑐
−

𝐾𝑛𝑣

𝑇𝑛𝑡
+

𝐾𝑛ℎ

𝑇𝑛𝑟1
) 𝑥12 +

𝐾𝑛𝑣

𝑇𝑛𝑡
𝑥13 

�̇�10 = −
1

𝑇𝑛𝑟2
𝑥10 +

1

𝑇𝑛𝑟2
𝑥11, �̇�11 = −

1

𝑇𝑛𝑟1
𝑥11 +

1

𝑇𝑛𝑟1
𝑥12 and  

�̇�12 = −
1

𝑇𝑛𝑡
𝑥12 +

1

𝑇𝑛𝑡
𝑥13 (11) 

 

For block 8: �̇�13 = −
1

𝑅2 𝑇𝑛𝑔
𝑥7 −

1

𝑇𝑛𝑔
𝑥13 +

1

𝑇𝑛𝑔
𝑢2         (12) 

 

For block 9: �̇�14 = −
1

𝑇𝑝𝑠3
𝑥14 +

𝐾𝑝𝑠3

𝑇𝑝𝑠3
𝑥15 −

𝐾𝑝𝑠3

𝑇𝑝𝑠3
𝑥27 −

𝐾𝑝𝑠3

𝑇𝑝𝑠3
𝑑3         (13) 

 

For block 10: 𝑥15̇ = 𝑥16         (14) 

 

For block 11: �̇�16 = −
1

𝑇𝑡𝑐
𝑥16 + (

𝐾𝑡𝑙

𝑇𝑡𝑐
+

𝐾𝑡𝑖

𝑇𝑡𝑐
−

𝐾𝑡𝑖

𝑇𝑡𝑟
) 𝑥17 + (

𝐾𝑡ℎ

𝑇𝑡𝑐
+

𝐾𝑡𝑖

𝑇𝑡𝑟
−

𝐾𝑡ℎ

𝑇𝑡𝑡
) 𝑥18 +

𝐾𝑡ℎ

𝑇𝑡𝑡
𝑥6  

        �̇�17 = −
1

𝑇𝑡𝑟
𝑥17 +

1

𝑇𝑡𝑟
𝑥18  and �̇�18 = −

1

𝑇𝑡𝑡
𝑥18 +

1

𝑇𝑡𝑡
𝑥19         (15) 

 

For block 12: �̇�19 = −
1

𝑅3 𝑇𝑡𝑔
𝑥14 −

1

𝑇𝑡𝑔
𝑥19 +

1

𝑇𝑡𝑔
𝑢3         (16) 

 

For block 13: �̇�20 = −
1

𝑇𝑝𝑠4
𝑥20 +

𝐾𝑝𝑠4

𝑇𝑝𝑠4
𝑥21 −

𝐾𝑝𝑠4

𝑇𝑝𝑠4
𝑥28 −

𝐾𝑝𝑠4

𝑇𝑝𝑠4
𝑑4 (17) 

 

For block 14: 𝑥21̇ = 𝑥22 (18) 

 

For block 15: �̇�22 = − (
1

0.5 𝑅4 𝑇ℎ𝑔(1+ 
𝑅ℎ𝑡
𝑅ℎ

)
) 𝑥20 −

1

0.5 𝑇ℎ𝑤
𝑥22 + 

(
1

0.5 𝑇ℎ𝑤
+

1

0.5 𝑇ℎ𝑟(1+ 
𝑅ℎ𝑡
𝑅ℎ

)
) 𝑥23 − (

1− 
𝑇ℎ𝑟
𝑇ℎ𝑔

0.5 𝑇ℎ𝑟(1+ 
𝑅ℎ𝑡
𝑅ℎ

)
) 𝑥24 − (

1

0.5 𝑇ℎ𝑔(1+ 
𝑅ℎ𝑡
𝑅ℎ

)
) 𝑢4 (19) 

 

For block 16: �̇�23 = − (
1

𝑅4 𝑇ℎ𝑔(1+ 
𝑅ℎ𝑡
𝑅ℎ

)
) 𝑥20 − (

1

𝑇ℎ𝑟(1+ 
𝑅ℎ𝑡
𝑅ℎ

)
) 𝑥23 + 

(

1 − 
𝑇ℎ𝑟

𝑇ℎ𝑔

𝑇ℎ𝑟 (1 +
𝑅ℎ𝑡

𝑅ℎ
)

) 𝑥24 + (
1

𝑇ℎ𝑔 (1 +
𝑅ℎ𝑡

𝑅ℎ
)

) 𝑢4 

�̇�24 = −
1

𝑅4 𝑇ℎ𝑔
𝑥20 −

1

𝑇ℎ𝑔
𝑥24 +

1

𝑇ℎ𝑔
𝑢4 (20) 

 

For tie-lines: �̇�25 = 2𝜋 𝑇(3𝑥1 − 𝑥7 − 𝑥14 − 𝑥20),  �̇�26 = 2𝜋 𝑇(3𝑥7 − 𝑥1 − 𝑥14 − 𝑥20)   

�̇�27 = 2𝜋 𝑇(3𝑥14 − 𝑥1 − 𝑥7 − 𝑥20),  �̇�28 = 2𝜋 𝑇(3𝑥20 − 𝑥1 − 𝑥7 − 𝑥14)   (21) 

 

For controller inputs: �̇�29 = 𝐵1𝑥1 + 𝑥25,  �̇�30 = 𝐵2𝑥7 + 𝑥26,  �̇�31 = 𝐵3𝑥14 + 𝑥27,  

�̇�32 = 𝐵4𝑥20 + 𝑥28 (22) 

 

Then, the state equation in matrix form: 

 

�̇� = 𝐴𝑥 + 𝐵𝑢 + 𝐹𝑑 (23) 

 

Output equation: 

 

𝑦 = 𝐶𝑥 (24) 

 

where the matrix A (32×32) is a coefficient matrix of all the state variables, the matrix B (32x4) is a 

coefficient matrix of all the control variables, the matrix F (32x4) is a coefficient matrix of all the disturbance 

variables, the matrix C (1x32) is a coefficient matrix of output variables, 𝑥 = [𝑥1, 𝑥2, … , 𝑥32]𝑇= state vector, 

𝑢 = [𝑢1 … 𝑢4]𝑇= control vector and 𝑑 = [𝑑1 … 𝑑4]𝑇=disturbance vector. 
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The optimal control inputs vector, 𝑢 = −𝐾𝑥 is obtained by a linear combination of all states, where 

K is the feedback gain matrix. MATLAB code is used to obtain the matrix K by solving of the reduced matrix 

Riccati equation [6], [9], [20] given by (25): 

 

𝐴𝑇𝑆 + 𝑆𝐴 − 𝑆𝐵[𝑅−1𝐵𝑇𝑆] + 𝑄 = 0 (25) 

 

where 𝑅−1𝐵𝑇𝑆 = 𝐾
 
and matrix S is a real, positive definite and symmetric. The matrices Q and R are 

determined on the basis of three considerations: the excursions of 𝐴𝐶𝐸′𝑠, ∫ 𝐴𝐶𝐸 𝑠 𝑑𝑡 and control inputs 

𝑢1 … 𝑢4 
about steady values are minimized. These can be recognized as symmetric matrices to minimize 

performance index in quadratic form, given by (26) and (27). 

 

𝑃𝐼 =
1

2
∫ (𝑥𝑇𝑄 𝑥 + 𝑥𝑇𝑅 𝑢)

∞

0
𝑑𝑡 (26) 

 

𝑃𝐼 =
1

2
∫ [

(𝐵1𝑥1)2 + 2𝐵1𝑥1𝑥25 + (𝑥25)2 + (𝐵2𝑥7)2 + 2𝐵2𝑥7𝑥26 + (𝑥26)2 + (𝐵3𝑥14)2

+2𝐵3𝑥14𝑥27 + (𝑥27)2 + (𝐵4𝑥20)2 + 2𝐵4𝑥20𝑥28 + (𝑥28)2 + (𝑥29)2 +

(𝑥30)2 + (𝑥31)2 + (𝑥32)2 + (𝑢1)2 + (𝑢2)2 + (𝑢3)2 + (𝑢4)2

]
∞

0
𝑑𝑡 (27) 

 

The discretized system state equations and optimal control inputs vector are used to collect/generate 

the training data for different values of step load change. Since the time of study and sampling have been 

chosen as 90 s and 0.005 s respectively, a total of 9000 samples are collected for each variable for a step load 

change simultaneously in all the four areas. All such variables form one data set, comprises of 40 variables 
(𝑥1, 𝑥2, … , 𝑥32, 𝑑1 … 𝑑4, 𝑢1 … 𝑢4 ). Two data sets for each load disturbances have been collected. 

 

4.2. Selecting the neural network architecture 

A multilayer feedforward neural network architecture [25] shown in Figure 7 is employed for LFC 

in a non-linear four-area interconnected power system. The input scalar vector p is represented by a vertical 

bar with R inputs. There are 36 input nodes (R=36) corresponding to two input parameters which are 32 input 

nodes, each corresponding to 32 state variables 𝑥1, 𝑥2, … , 𝑥32, and another 4 input nodes for load disturbances 

or perturbations (𝑑1 … 𝑑4) in the system. The two hidden layers with hyperbolic tangent sigmoid transfer 

function is used with S neurons to verify the dependency of state variables with the load perturbations and the 

repeatability of convergence. Hidden layer 1 has 𝑆1 = 20 neurons, hidden layer 2 has 𝑆2 = 10 neurons, and 

the output layer has 𝑆3 = 4 neurons with linear transfer function are used in the network. The outputs of 

hidden layers 1 and 2 are the inputs for hidden layer 2 and output layer respectively. The vectors 

𝑛1, 𝑛2 and 𝑎3 represent the net inputs, and 𝑎1, 𝑎2 𝑎𝑛𝑑 𝑎3represent the outputs of hidden layers 1, 2 and 

output layer, respectively. For hyperbolic tangent sigmoid transfer function, input/output relations are given 

by (28). 

 

𝑎1 =
𝑒𝑛1

−𝑒−𝑛1

𝑒𝑛1
+𝑒−𝑛1    𝑎𝑛𝑑   𝑎2 =

𝑒𝑛2
−𝑒−𝑛2

𝑒𝑛2
+𝑒−𝑛2 (28) 

 

 

 
 

Figure 7. Neural network architecture 

 
 

For linear transfer function, input/output relation is given by, 𝑎3 = 𝑛3 (29) 

 

The outputs of hidden layer 1: =𝑎1 = tan 𝑠𝑖𝑔(𝑊1𝑝𝑥𝑏1) (30) 

 

The outputs of hidden layer 2: 𝑎2 = tan 𝑠𝑖𝑔(𝑊2𝑎1𝑥𝑏2) (31) 
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The outputs of output layer: 𝑎3 = 𝑝𝑢𝑟𝑒𝑙𝑖𝑛(𝑊3 𝑎2𝑥𝑏3) (32) 

 

where, 𝑊1, 𝑊2 𝑎𝑛𝑑 𝑊3 represent the weight matrices and 𝑏1, 𝑏2 𝑎𝑛𝑑 𝑏3 represent bias vectors of hidden 

layers 1, 2 and output layer respectively. The output of network 𝑎3is a (4×1) vector represents the 

target/control signals (𝑢1 … 𝑢4) given to power system corresponding to disturbances (𝑑1 … 𝑑4). 

 

4.3. Neural network training  

The network training is based on the data collected from the optimal controller for different 

perturbations or step load changes. As the inputs are applied to the network, the outputs are compared to the 

target values, and the supervised learning rule is used. Before network training, initialize the weights and 

biases using the method of Widrow and Nguyen. In this method, set row i of 𝑊1, 𝑊1
𝑖 , to have a random 

direction and a magnitude of | 𝑊1
𝑖 |  = 0.7(𝑆1)

1
𝑅⁄  and set 𝑏𝑖 to a uniform random value between −| 𝑊1

𝑖 | 

and | 𝑊1
𝑖 |. Then, Bayesian regularization backpropagation is used to train the network for 100 epochs 

because it is very effective algorithm for training multilayer networks and generalized without the need for 

the validation data set. According to Levenberg-Marquardt optimization, weights and bias values are 

updated, as it minimizes a combination of squared errors and weights. The performance or mean squared 

error (MSE) goal is set to a very low value of 1 × 10−10. Marquardt adjustment parameter and minimum 

performance gradient are 0.005 and 1 × 10−7respectively. The training is carried out till the completion of 

100 epochs or MSE reaches the desired limit. The network was trained with different number of neurons in 

the hidden layers. The best MSE value (9.417 × 10−11) is obtained at epoch 45, as shown in the Figure 8. 

This algorithm computes the effective number of parameters (𝛾 = 220)
 
that are being used by the network. 

The values of MSE and 𝛾 indicate that the network with 𝑆1 = 20 and 𝑆2 = 10 is satisfactory. 

 

 

 
 

Figure 8. Neural network training error curve 

 

 

5. RESULTS AND DISCUSSION 

The parameter values of system components are given in Table 1 at base frequency of 50 Hz. The 

PID controller is tuned by Z-N method and its parameters are shown in Table 2. MATLAB-Simulink is used 

to perform the simulation of a four-area interconnected power system with three types of controllers. Each of 

the parameters obtained from the range given in IEEE press power engineering series and EPRI books [26], 

[27] based on the design of the electrical components for best performance. 

 

 

Table 1. Power system parameter values 
Parameters 𝑃𝑟 𝑃𝐿 𝑃𝑡𝑖𝑒 𝑓0 𝑇𝑡𝑖𝑒 𝛿 R 

All Areas 2000 MW 1000 MW 200 MW 50 Hz 0.0866 30° 2.5 Hz/pu MW 

Thermal 

Plant 
𝑇𝑡𝑔 𝑇𝑡𝑡 𝑇𝑡𝑟 𝑇𝑡𝑐  𝐾𝑡ℎ 𝐾𝑡𝑙 𝐾𝑡𝑖 D B H 𝐾𝑝𝑠 𝑇𝑝𝑠 

0.2s 0.3 s 7 s 0.4s 0.3 0.4 0.3 0.01 0.41 5 100 20s 

Nuclear 

Plant 

𝑇𝑛𝑔 𝑇𝑛𝑡 𝑇𝑛𝑟1 𝑇𝑛𝑟2 𝑇𝑛𝑐 𝐾𝑛𝑣 𝐾𝑛𝑙 𝐾𝑛ℎ  - - - - 

0.2 s 0.3 s 7 s 7 s 0.4 s 0.22 0.56 0.22 0.01 0.41 5 100 20s 

Hydro 
Plant 

𝑇ℎ𝑔 𝑇ℎ𝑤 𝑇ℎ𝑟 𝑅𝑡ℎ 𝑅ℎ - - - - - - - 

10s 1s 5s 0.2875 0.05 - - 0.015 0.415 4 66.6667 10.6667s 
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Table 2. PID controller parameters 
Plant Kcr

 
Pcr

 
Kp Ki

 
Kd

 

Thermal 0.286 12.289 0.1716 0.0279 0.2636 
Nuclear 0.1814 19.137 0.1088 0.0114 0.2604 

Hydro 0.1119 16.885 0.0671 0.0080 0.1417 

 

 

MATLAB code is written to obtain optimal controller gain values, to train and test the proposed 

optimal ANN controller for load frequency control. A step change in load power ∆𝑃𝐿 (steps of 1% up to 5%) 

in each area is applied. The time domain characteristics-settling time (𝑡𝑠) and undershoot (𝑀𝑝), and errors of 

all four areas are measured and tabulated in Table 3. These specifications are measured using MATLAB 

function. Figure 9 shows the comparison of frequency deviations in area-1 and area-4 with different 

controllers under +2% step load change in each area. From Figures 9(a) and 9(b), the change in settling time 

and maximum undershoot values are measured and tabulated in Table 3. As the load on the system increases 

suddenly, its frequency decreases at that moment. The maximum undershoot decreases, oscillates, and settle 

to zero steady state value quickly due to optimal ANN controller action compared to other two controllers. 

This indicates that the system is stable even with +5% change in load. 

It is evident from the Table 3 that the proposed optimal ANN controller gives stable responses with 

a very minimum steady state error, lesser undershoot, lower settling time and the very smaller values of 

MSE. Figure 10 shows the frequency deviation with optimal ANN controller under equal and unequal load 

increase. Figure 10(a) shows for equal load (∆𝑃𝐿1 = ∆𝑃𝐿2 = ∆𝑃𝐿3 = ∆𝑃𝐿4 = 4%) in each area. Also, from 

the Table 3, settling time is 21.8343 s and undershoot is -0.2572 Hz with a MSE value of 1 × 10−10. These 

values are smaller compared to that with PID and NARMA-L2 controllers [19], [20] for the same change in 

load. Figure 10(b) shows the frequency deviation with optimal ANN controller under unequal load increase 
(∆𝑃𝐿1 = 1%, ∆𝑃𝐿2 = 2%, ∆𝑃𝐿3 = 3%, ∆𝑃𝐿4 = 4%) in each area. Under this condition, proposed optimal 

ANN controller gives good dynamic response with zero steady state error. 

The load and frequency deviations in Figure 11 shows the robustness of the proposed optimal ANN 

controller. Figure 11(a) shows a random load pattern and is more realistic in real power systems. All four 

areas are encounter this type of load variations [15]. Under this condition, frequency deviation in all areas is 

shown in Figure 11(b). It reveals that, optimal ANN controller successfully tracks the load pattern and balance 

generation with load effectively with constant frequency. Only frequency deviation occurs for the equal change 

in percentage of load in each area, whereas the algebraic sum of change in tie-line power flow is zero. 

With optimal ANN controller in the four-area interconnected system, -0.0713 Hz and 23 s are the 

maximum values of undershoot and settling time for +1% change in load, respectively. For +5% load change, 

the peak undershoot is -0.3566 Hz and settling time is 22.9970 s. It is seen from the responses with 2% 

increase in load causes a minimum undershoot of -0.1286 Hz and minimum settling time of 21.864 s. It is 

observed that, the settling time is constant as the step load increases from 1% to 5%. The magnitude of 

frequency deviation increases with load, but this increase is very small. On the other hand, as load decreases, 

the frequency deviation increases with the same settling time. The ITAE values measured with PID and 

NARMA-L2 controllers [20] are high compared to mean squared error values measured with optimal ANN 

controller. The time response specification values obtained are smaller compared to their values in literatures 

[28]–[32]. 

 

 

Table 3. Comparative study of settling time, maximum undershoot and error 
∆PL Controllers Settling time (s) and error 

in frequency deviation 
Maximum undershoot (Hz) and error in frequency 

deviation 

Area-1 Area-2 Area-3 Area-4 ITAE/MSE Area-1 Area-2 Area-3 Area-4 ITAE/MSE 

+ 1 % 
PID 37.5065 37.1265 37.5065 36.8291 0.1128 -0.0741 -0.0752 -0.0741 -0.0749 0.1128 

NARMA-L2 15.1145 15.0993 15.1078 26.6548 1e-3 -0.0670 -0.0681 -0.0670 -0.0705 1e-3 

ANN 21.8390 23.0015 21.8396 21.9799 1e-10 -0.0643 -0.0656 -0.0643 -0.0713 1e-10 

+ 2 % 
PID 31.5815 31.5713 31.5815 31.4318 0.3229 -0.2334 -0.2341 -0.2334 -0.2358 0.3229 

NARMA-L2 18.1999 18.4093 18.2013 18.9832 1e-3 -0.2297 -0.2297 -0.2297 -0.2336 1e-3 

ANN 21.8640 23.0100 21.8640 21.9904 1e-10 -0.1286 -0.1312 -0.1286 -0.1427 1e-10 

+ 3 % 
PID 25.8792 25.8051 25.8792 25.8254 0.8842 -0.4649 -0.4649 -0.4649 -0.4714 0.8842 

NARMA-L2 23.0941 23.1631 23.0240 22.8366 1e-3 -0.4582 -0.4582 -0.4582 -0.4657 1e-3 

ANN 21.8428 22.9973 21.8439 21.9854 1e-10 -0.1929 -0.1968 -0.1929 -0.2140 1e-10 

+ 4 % 
PID 48.4521 49.0057 48.4521 47.7849 1.9070 -0.7439 -0.7438 -0.7439 -0.7502 1.9070 

NARMA-L2 31.4917 31.7661 31.4906 32.1603 1e-3 -0.7284 -0.7284 -0.7284 -0.7319 1e-3 

ANN 21.8347 22.9910 21.8343 21.9830 1e-10 -0.2572 -0.2624 -0.2572 -0.2853 1e-10 

+ 5 %  
PID 53.3577 53.7863 53.3577 52.8282 3.5370 -1.0526 -1.0526 -1.0526 -1.0549 3.5370 

NARMA-L2 33.3008 33.5357 33.4160 33.9808 1e-3 -1.0146 -1.0146 -1.0146 -1.0222 1e-3 

ANN 21.8419 22.9970 21.8414 21.9850 1e-10 -0.3215 -0.3280 -0.3215 -0.3566 1e-10 
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(a) (b) 

 

Figure 9. Comparison of frequency deviations in (a) area-1 and (b) area-4 with 2% load increase 

 

 

  
(a) (b) 

 

Figure 10. Frequency deviation with optimal ANN controller under (a) +4% load change in each area and 

(b) unequal load increase in the areas 

 

 

  
(a) (b)   

 

Figure 11. Load and frequency deviations (a) random load pattern and (b) frequency deviation in areas with 

optimal ANN controller under random step load change 

 

 

6. CONCLUSION  

This study intended to evaluate the performance of optimal ANN controller in a robust LFC problem 

of a four-area interconnected power system. The system is composed with tandem compound steam turbines 

and generation rate constraints under different loading conditions. The Z-N rules are used to find the 

minimum values of ITAE in the design of controllers. The linear quadratic regulator is used to minimize the 
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performance index and hence the mean squared error. The simulation results for the equal change in 

percentage of load with proposed optimal ANN controller gives a significant improvement in terms of time 

response specifications. The settling time, maximum undershoot, and objective function values compared to 

tuned PID and NARMA-L2 controllers. The conventional controllers give higher values of error due to non-

linearity present in the system and loads. The robustness test of proposed optimal ANN controller is carried 

out with random load pattern. The proposed controller performs satisfactorily under random step load 

changes and thus desirable dynamic control of the system is achieved. 
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