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 Transient stability affected by renewable energy sources integration due to 

reductions of system inertia and uncertainties associated with the expected 

generation. The ability to manage relation between the available big data and 

transient stability assessment (TSA) enables fast and accurate monitoring of 

TSA to prepare the required actions for secure operation. This work aims to 

build a predictive model using Gaussian process regression for online TSA 

utilizing selected features. The critical fault clearing time (CCT) is used as 

TSA index. The selected features map the system dynamics to reduce the 

burden of data collection and the computation time. The required data were 

collected offline from power flow calculations at different operating 

conditions. Therefore, CCT was calculated using electromagnetic transient 

simulation at each operating point by applying self-clearance three phase 

short circuit at prespecified locations. The features selection was 

implemented using the neighborhood component analysis, the Minimum 

Redundancy Maximum Relevance algorithm, and K-means clustering 

algorithm. The vulnerability of selected features tends to result great 

variation on the best features from the three methods. Hybrid collection of 

the best common features was used to enhance the TSA by refining the final 

selected features. The proposed model was investigated over 66-bus system. 
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1. INTRODUCTION  

Fast transient stability assessment (TSA) enables the system operator to initiate the necessary 

remedial action for enhancing system security during abnormal operating conditions. The load variations and 

system topology changes as well as uncertain of generation levels of different renewable energy sources 

(RES) may impulse the system towards the stability boundary following large disturbances [1], [2]. TSA of 

large-scale power system depends on the synchronization among generators. However, it is necessary to 

continuously evaluate TSA during online operation to prevent serious electromagnetic oscillations. The 

computation burden of online TSA is a great challenge [3], [4]. Accurate TSA requires step by step time 

domain simulation (TDS) of large number of nonlinear equations at pre-fault and post-fault trajectories. TSA 

can be evaluated by monitoring the deviation between the rotor angles of synchronous generators which 

required handling with collected big data. The generators are considered out of step when the rotor angle 

deviations exceed the pre-specified limits following faults [5]. Therefore, the critical fault clearing time 

(CCT) is considered as accurate indicator of the system transient stability [6], [7].  

https://creativecommons.org/licenses/by-sa/4.0/
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Artificial intelligent and statistical analysis methods were applied to reduce the TSA computation 

time using phasor measurement units (PMUs) [8]. The collected information from PMUs was utilized to 

evaluate the deviation among rotor angles to design the out-of-step protection system avoiding system 

collapse [9]. In research of Gomez et al. [10], support vector machines were used to predict TSA using 

voltage magnitude measurements following faulty condition at balanced or unbalanced fault conditions. The 

decision tree (DT) along with artificial neural network (ANN) were implemented to specify the required 

counter-measurement to assess and enhance the power system transient stability. TDS was used to calculate 

the CCT and the power flow information where DT was used to estimate the CCT based on selected 

predictors to map the system dynamics. ANN was used to estimate the generating levels for economic 

dispatch considering the system stability or initiate a prespecified correction actions based on the historical or 

excremental information [11]. ANN was implemented for TSA by monitoring the rotor angle oscillations 

among generators. The inputs were the phase angle differences and their rate of variations [12]. The success 

of these schemes encourages the researchers to develop more systematic approaches for TSA tools to account 

the continuous variation of operating conditions, uncertainties associated with the RES generating levels and 

reduction in system inertia due to RES replacing traditional generating units [13]–[15].  

In this paper, hybrid analytical method for TSA using predictive model based Gaussian process 

regression (GPR). Therefore, the random variation of generation and loads were considered. The method 

depends on the offline collected data from applying optimal power flow (OPF) for variety of operating 

conditions where feature selection algorithms were used to reduce the data dimension. The GPR predictive 

model is a nonparametric algorithm that depends on the calculation of the probability distribution over the 

assumptive possible functions to fit the input and output data. GPR has the capability of cub complex 

relationships by approximating the target function. GPR is being employed in many engineering applications. 

 

 

2. PROPOSED METHOD AND CONTRIBUTION 

The main steps of the proposed method for online TSA evaluation by using selected features based 

on GPR predictive model can be summarized as follow: 

− Step 1: The description of the photovoltaic (PV) systems and wind system dynamic models within the 

DigSilent simulation software which was used to evaluate OPF calculations and the corresponding CCT 

according to set of contingencies. Therefore, large number of datasets were collected during offline. 

− Step 2: Different features selection algorithms (the neighborhood component analysis, the Minimum 

Redundancy Maximum Relevance algorithm, and K-means clustering algorithm) were applied for data 

mining to select the best features to map the system dynamics for constructing of TSA predictive model. 

The results were compared to improve the accuracy of TSA predictive model. 

− Step 3: GPR predictive model was built to estimate the CCT based on selected features. The GPR 

predictive model was trained offline based on the selected features to predict the CCT as indicator for 

TSA during online applications. The strong correlation between selected features and TSA indicator 

reflects the importance of system stability monitoring to move away from stability boundary. The GPR 

predictive model maps the relationship between the selected features and the CCT to predict the system 

state of stability based on new values of selected features. The process of evaluations can be summarized 

as follows: i) random variation of loads according to the expected loading levels and RES generation 

levels, ii) collect the Data by applying the OPF at each operating point to specify the generation 

rescheduling, iii) evaluate the minimum CCT as index for TSA each operating point following the 

expected set of contingencies (self-clearance three-phase short circuit at a preselected set of critical 

locations), iv) apply different feature selection algorithms (NCA, MRMR, and K-means algorithms) to 

select the best correlated features with TSA indicator, v) build GPR predictive models based on the 

selected features from three feature selection algorithms, and vi) evaluate the predictive models using 

performance indices to enhance the accuracy. 

 

2.1.  Transient stability assessment 

TSA is influenced by the initial operating states as well as the severity of applied disturbance. The 

most sever contingency is the self-cleared three-phase short circuit which is used in this study [16]. The 

dynamic response of generators depends on the fault duration and location. The synchronization among 

generators is governed by the swings between generator rotor angles where the angular deviation between 

generators should not exceed the predefined accepted limit to consider the system stable. The CCT represents 

the minimum fault duration where the system remains stable without loss of synchronization following the 

clearance of fault. The first generator starts to out of step is called critical generator. The CCT is specified by 

the system operator according to the settings of protection system and dynamic behavior of generators which 

usually 150 or 200 milliseconds [17]. The fault duration beyond this limit makes the system loss of the ability 

https://localhost:31515/static/help/stats/fscmrmr.html#mw_733b9b36-11f2-4aa2-85fc-0988c425cd95_head
https://localhost:31515/static/help/stats/fscmrmr.html#mw_733b9b36-11f2-4aa2-85fc-0988c425cd95_head
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to preserve the system stability. The CCT can be calculated using TDS by increasing the fault duration till 

one of the generators out of synchronization. TDS solves the power system differential and algebraic 

equations using step by step calculations during pre-fault, during fault, and post-fault to simulate the system 

dynamics. If the applied fault makes the rotor angle deviation reaching this limit, the duration of the applied 

fault is called CCT which depends on the net kinetic energy of all generators and the produced 

electromechanical oscillations [16]. Fast online TSA tool enable the system operator to activate the required 

countermeasures to force the system to stabile region. The application of fast TSA tools such as GPR 

predictive model is significantly reducing the required computation time as well as the burden of data 

collection. The minimum CCT was considered as 0.15 second in this study according to the commission 

regulation (EU) 2016/631 of 14 April 2016 which was established to specify the network code requirements 

for grid connection of generators [17]. Therefore, every generator should have CCT longer than the specified 

operating time limit of circuit breaker to avoid out of synchronism. DigSilent software is used to simulate the 

test system and perform the necessary calculations. 

 

2.2.  Data collection 

The analytical investigation of online TSA was conducted using 66-bus test system in Figure 1. The 

system consists of 16-machine, 54-transmission line and 42 constant impedance loads [17]. The system is 

divided into three areas (A, B and C) connected through three double circuit tie lines. The system was 

developed to investigate several stability problems based on the relevant characteristic parameters of 

European power system. The test system was modifying by adding four RES stations at the tie lines 

connecting different areas. The original test system was designed to supply 16.516 gigavolt-ampere (GVA) 

total demand with power exchange of 1000 MVA from area A to each of area B and area C. RES stations 

were installed with 200 MVA wind system and 50 MVA PV system at the terminals of the tie lines 

connecting different areas. 

Variety of operating points were collected by random varying of loads and applying of OPF within 

acceptable limits [17]. At each operating point, CCT was calculated using the electromechanical transient’s 

evaluation. Table 1 presents the offline collected variables using OPF. Figure 2 shows the classification of 

system states with fault duration less than 0.5 second. Accordingly, if fault duration less than 150 millisecond 

leads to loss of synchronism, the system was considered as transiently unstable. The collected data was 

divided randomly into training set of 600 operating points and testing set of 150 operating points. 

 

 

 
 

Figure 1. Single line diagram of 66-bus test system 

 

 

2.3.  PV system modelling 

The PV array consists of many modules which are connected in series and parallel according to the 

desired power. The PV module consists of solar cells, the capacitor at direct current (DC) bus for voltage 

control, power electronic devices, integrated controller, and energy storage system. Figure 3 presents the 

block diagram of the PV composite model as described in DigSilent software [18]. 
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Table 1. Offline collected variables using OPF 
Variable Name No. Variable Name No. 

PQ-Area Area active and reactive power 6 Tap-T Transformer tap changer setting 28 

PQ-G Generator active and reactive power 32 PQ-Load Load active and reactive power 84 

PQ-Line Lines active and reactive power 108 PQ-RES Active and reactive power of RES 6 

V-Buss Bus voltage 132 Total number of variables 396 

 

 

 
 

Figure 2. Classification of operating points stability using CCT 

 

 

 

 

Figure 3. Composed model for PV system in DigSILENT 

 

 

Solar cell is represented by an ideal single-diode module. The output current is defined as in (1): 

 

𝐼 = 𝐼pv − 𝐼o [𝑒𝑥𝑝(
𝑞(𝑉+𝐼𝑅s)

𝑘 𝑇 𝑎
) − 1] −

𝑉+𝐼𝑅s

𝑅p
 (1) 

 

where 𝐼pv and 𝐼o are photogenerated and saturation currents, V is terminal voltage, 𝑅P and 𝑅s are parallel and 

series resistances, 𝑞 is electron charge, 𝑇 is temperature, and 𝑎 is the diode’s ideality factor.  

The output voltage is connected across DC-bus capacitance. the capacitor protects for the PV array 

during abnormal conditions providing isolation between the PV array and the grid. The charging and 

discharging process enables the capacitor to operate as energy storage device. This improves the ability of 

maximum power point tracking (MPPT) and active power control to inject the schedule output power from 

the PV system to the grid. The approximating linear prediction algorithm is used to evaluate the DC- link 

voltage for achieving MPPT operation [19]. The accomplished variation in dc-link voltage and control signal 

of frequency stability are used to control the d-component of reference current through PI-controller. The PI-

controller is used to regulate the DC voltage across the capacitor terminals by comparing to the PV array 

reference voltage and the voltage across the capacitor terminals. The output of the PI controller is evaluated 

based on deviation of the array output voltage from the required DC voltage across the capacitor. Additional 

input signal can be added to compensate the fluctuation of grid frequency from the reference value. The 

output power injected to the grid through static generator which simulates the inverter behavior generating 

the AC signal based its input d-q components of reference current controlled signals (id,ref, iq,ref). The static 

generator represents a current source model with output current (Ig) as in (2) at the grid voltage (Vg=Vr+jVi) 

and frequency. They are synchronized with grid using the d-q reference angle. 

 

𝐼g = (𝑣r ∗ 𝑖d,ref |𝑉g|⁄ − 𝑣i ∗ 𝑖q,ref |𝑉g|⁄ ) + 𝑗(𝑣i ∗ 𝑖d,ref |𝑉g|⁄ + 𝑣r ∗ 𝑖q,ref |𝑉g|⁄ )  (2)  
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2.4.  Wind system modelling 

The doubly-feed induction generator (DFIG) is implemented within the DigSilent as static 

generator. Figure 4 presents the main parts of 6 MVA, 0.69 kV wind system which can be explained as 

follows: i) DFIG generates the power based on the input mechanical power and the controlled rotor voltage; 

ii) the rotor model includes the aerodynamic model of turbine, shaft, and pitch angle control models. The 

output mechanical power to DFIG depends on the wind speed and the specified value of reference speed;  

iii) compensation block calculates the rotor voltage based on the calculated rotor input current signal from 

current controller and output active and reactive power from DFIG. The current controller controls the output 

power and limits of rotor current and frequency deviation; iv) PQ control model evaluates the active and 

reactive reference currents for rotor side converter (RSC) to control the variation on rotor voltage according 

to the target output active and reactive power. The inputs are the terminal voltage, reference speed,  

over-frequency control signals and under-frequency control signals; and v) rotor protection inserts crow-bar 

circuit during faults and under-frequency controller. Current, voltage and frequency measurement devices are 

used for transformation into stator voltage-oriented reference frame.  

 

 

 
 

Figure 4. Block diagram of 6 MW wind turbine model in DigSilent 

 

 

2.5.  TSA based GPR protective model 

The GPR predictive model was implemented to relate the selected features and the CCT for TSA. 

GPR is accurate prediction algorithm which was used for measuring the goodness of the selected features 

with the associated response in many applications [20]. GPR is used to predict the CCT using the selected 

features. GPR is a supervised learning algorithm which classifies the response using covariance relationship 

to represent the similarity of predictor. The fitrgp function is used to fit the GPR model in MATLAB 

software and is used in this study. Various standard kernel functions can be used to represent the effect of the 

response one point, 𝑥𝑖 by other one, 𝑥𝒋. The default one in the fitrgp function is the squared exponential 

kernel function. The selection of the best kernel function was obtained iteratively to improve the prediction 

accuracy based on the correlation between selected features and the CCT. The accuracy of correct system 

state of stability prediction was measured using the relation between the number of correct assessments of 

system stability to the total number of operating points. The correct assessment was considered when the 

absolute deviation between predicted and calculated CCT less than 5 milliseconds. The obtained best results 

were obtained using the rational quadratic kernel function in (3). The collected 750 data sets were divided 

into a training set 𝑇1 = {(𝑥i, 𝑦i)|𝑖 = 1,2, 3, ⋯ 𝑀1}, and testing set 𝑇2 = {(𝑥i, 𝑦𝑖)|𝑖 = 1,2, 3, ⋯ 𝑀2}.  

 

𝑘(𝑥i, 𝑥j ↓ 𝜃) = σf
2 (1 + (𝑥i − 𝑥j)

T
(𝑥i − 𝑥j) 2α𝜎l

2⁄ )
−α

 (3) 

 

Where, α is a positive scale-mixture parameter, 𝜎l is the characteristic length scale and 𝜎f.is standard 

deviation. 

Many methods used to reduce the number of variables by selecting the best correlated ones with 

TSA. Applying different method may determine different promising features from one algorithm to another 

as well as using the actual values rather than using normalized values [21], [22]. The performance evaluation 

of the GPR prediction model was performed in terms of indexes as presented in (4) to (6). The indexes 

include the accuracy of true classifying the system state into stable and unstable (Ntrue/N) with error less than 

5 milliseconds in CCT prediction, the mean absolute error (MAE), root mean square error (RMSE), and the 

goodness of the regression based on the ratio of variation (0<=R2<=1). The closest 𝑅2 to one is an indication 

to the healthy regression process. 
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𝑀𝐴𝐸 =
1

𝑁
∑ |

𝑦k̅̅ ̅̅ −𝑦k

𝑦k̅̅ ̅̅
|𝑁

𝑘=1  (4) 

 

𝑅𝑀𝑆𝐸 = √∑ (𝑦k̅̅ ̅ − 𝑦k)2𝑁
𝑘=1 𝑁⁄    (5) 

 

𝑅2 = 1 −
𝑅𝑀𝑆𝐸

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(�̅�)2 (6) 

 

where 𝑦k̅̅ ̅ is the predicted CCT value using GPR model and 𝑦𝑘  is the calculated value. 

 

 

3. RESULTS AND DISCUSSION  

In this section, NCA, MRMR, and K-means clustering algorithms are used for data mining and 

features selection. Furthermore, GPR was used to build the corresponding three predictive model to select the 

best one. The results are compared with the TSA based on TDS results.   

 

3.1.  GPR based neighborhood component analysis features selection 

The neighborhood component analysis (NCA) is a filter type feature selection algorithm which 

depends on the features’ similarities and correlations [23]. NCA is considered as a robust feature selection 

technique which can be applied for features ranking and selection. The method works on the diagonal 

adaptation of NCA with regularization to minimize a loss function such as RMSE or MAE. The 

regularization term tends to reduce the weights of the irrelevant features to zero [24], [25]. Figure 5(a) 

presents the fitted values of CCT using the NCA algorithm relative to the actual values of CCT which 

explains the ability of NCA algorithm to predict the response values and presents fitted CCT and the actual 

values. The mean squared error as the measure of accuracy of the predict relative to the actual values of CCT 

is 0.005. Figure 5(b) presents the features weight where the small correlation features with the CCT have 

nearly zero weights. 

The features with high weight factors were collected to be used in predictive model implementation. 

The selected 30 features which have high correlations with the CCT are presented in Table 2. The data sets of 

the selected 30 features and corresponding actual CCT were used to build GPR predictive model. 

 

 

  
(a) (b) 

 

Figure 5. The fitted values of (a) CCT and (b) the features weight using NCA 

 

 

Table 2. The selected 30 features using NCA algorithm. 
 Variable High score 30 features by NCA No 

1 PQ-Area Sum PA-Sum QA-Sum QB-Sum PC-Sum QC 5 

2 PQ-G Pg1- Pg2 - Pg3 -Qg4- Pg6-Qg8 -Pg8-Qg9-Pg10-Pg1- Pg12-Pg13 12 

4 PQ-Line PA1-4/QA1-4/PA1-2/QA1-2/PA4a-5/PA2-5a/PA2-B5b/QB1-2/PB2-3/QB2-3/PB5-9/PB7-8/PC1-2 13 

Total number of selected features 30 

 

 

The performance evaluation of GPR is presented in Table 3. The results show the goodness of the 

regression process during the training process to classify the system states into stable or unstable correctly 

where the error between the predicted CCT relative to the calculated CCT is almost less than 2 milliseconds 

and standard deviation of 0.34 milliseconds as shown in Figure 6(a). Figure 6(b) presents the CCT obtained 

during the testing stage for 50 out of 150 unforeseen operating points. The GPR protective model was able to 
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classify the system state of 128 out of 150 operating point correctly. The results indicate the difficulty to 

exact mapping of system dynamics by the selected features at some points. The maximum error is 30 

milliseconds with standard deviation of 6 millisecond. This is due to the sensitivity of the CCT for the 

variation in operating conditions. However, the GPR model classifies the system states into stable or unstable 

correctly where most relative values are in the same side from the border line of 150 millisecond. 

 

 

Table 3. The performance indexes for GPR model based NCA evaluation 
Data %Acc RMSE R2 MAE 

Training 100 0.0003 0.999 0.0011 

Testing 85 0.0172 0.877 0.0126 

All Data 96.3 0.0077 0.973 0.0113 

 

 

  
(a) (b) 

 

Figure 6. The error between calculated and predicted CCT using NCA during (a) training and (b) testing 

 

 

3.2.  GPR based minimum redundancy maximization algorithm features selection 

The minimum redundancy maximum relevance (MRMR) algorithm is used to rank the features 

according to their importance with respect to the target response. The basic idea of MRMR depends on 

maximizing the mutual information which relate the different discrete variables. MRMR considers the mutual 

information between variables and the target classes of response. The mutual information represents the 

independence of any two variables and is defined as in (7) [26], [27]; 

 

𝐼(𝑋; 𝑍) = ∑ ∑ 𝑝(𝑥, 𝑧) log (
𝑝(𝑥,𝑧)

𝑝(𝑥)𝑝(𝑧)
)𝑥∈𝑋𝑧∈𝑋   (7) 

 

where 𝑝(𝑥, 𝑧) represents the joint probability distribution function (PDF) of x and z. 𝑝(𝑥) and 𝑝(𝑧) are the 

marginal PDF of x and z respectively. 

MRMR algorithm aims to maximize the relevance (𝑉𝑥) between selected feature (𝑥𝑖) and the target 

class C. The relevance value is defined as in (8). 

 

𝑉x = 𝐼(𝑥i;  𝐶)   (8) 

 

Maximizing the redundancy (Mutual distance between variables, 𝑊x) of variable 𝑥𝑖 with respect to the set of 

S variables enhances the classification or regression process. The redundancy is defined in (9). 

 

𝑊𝑥 =
1

𝑆
∑ 𝐼(𝑥i, 𝑥j)𝑥i,𝑥j∈𝑆     (9) 

 

The MRMR algorithm ranks the features using the mutual information quotient (MIQ) value which involves 

relevance maximizing and redundancy minimizing simultaneously as in (10). 

 

𝑀𝑎𝑥𝑥∈𝑆𝑀𝐼𝑄𝑥 = 𝑀𝑎𝑥𝑥∈𝑆 (
𝑉x

𝑊x
)  (10) 

 

Figure 7 shows the features ranking based on their importance with respected to the CCT. The 30 

features with higher score are selected and tabulated in Table 4. The ranking of the selected features shows 

the variation among the NCA and MRMR algorithms in features selection. The high ranked 30 features using 

MRMR algorithm were selected to build GPR predictive model.  

https://localhost:31515/static/help/stats/fscmrmr.html#mw_733b9b36-11f2-4aa2-85fc-0988c425cd95_head
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Figure 7. The score of features using MRMR algorithm 

 

 

Table 4. The selected 30 features using MRMR algorithm 
 Variable Higher weight 30 features by MRMR No 

1 Sum PQ-Area Sum PA-Sum QB-  2 

2 PQ-G Qg5-Qg6-Pg13 3 

3 V-Bus VmA3 -VmA6-VmA7-VmB1-VaB8-VmC6-VmC12 7 

4 PQ-Line 
QA1-4/QA1-2/PA4a-5/PA2-5a/QA5a-5b/PA6-7/QB1-2/QB2-5/QB6-C10/QB3-11/PC1-2/QC2-
3/QC3-6/PC5-6/QC5-16/PC7-8/QC7-8/PC9-10/QC11-12/PC13-14 

18 

Total number of selected features 30 

 

 

Figure 8(a) presents the error in CCT prediction using GPR predictive model during training 

process. The model was able to predict the system state of all training data sets with error less than  

2 milliseconds and standard deviation of 0.27 milliseconds. Figure 8(b) presents the CCT obtained during the 

testing stage for 50 out of 150 unforeseen operating points. The GPR protective model was able to classify 

the system state of 120 out of 150 operating point correctly. The results show that the GPR predictive model 

based NCA features selection algorithm was slightly accurate than the GPR model based MRMR selected 

features. The maximum error is 30 milliseconds at five operating points with standard deviation of  

7.8 milliseconds. The variation is due to the strategy of each algorithm to pike up the preferred feature from 

each correlated group. Also, the reduction of the accuracy occurs due to the nonzero weights corresponding 

to the other features. Only six features were common between NCA and MRMR model. For more 

investigation, third feature selection-based K-means algorithm was used to classify the features into  

30 clusters. The performance indexes of the GRP predictive model based MRMR is tabulated in Table 5. 

 

 

  
(a) (b) 

 

Figure 8. The error between calculated and predicted CCT using MRMR during (a) training and (b) testing 

 

 

3.3.  GPR based K-means clustering algorithm 

K-means clustering algorithm is recursive, sequential, and heuristic search algorithms that add 

or/and remove features using selection criterion into subsets of variables [26]. K-means algorithm depends on 

the variable’s allocation into an arbitrary number of clusters based on the minimization of the average 

squared Euclidean distance between the centroid of the cluster and its observation. The allocation process is 

repeated iteratively to positioning the variables closed to the k centroids to separate variables into k clusters 

(groups). In this study, K-means algorithm was used to categorize the collected variables based on the 
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observations to 30 clusters containing the nearest variables to the centroids. The variables in each group have 

similar characteristics which keep the Euclidean distance to the corresponding centroid minimal. The 

separation depends on the actual data instead of the dissimilarity between each two variables. Therefore, the 

closest variables to the centroids are selected to represent the groups. The shortage of K-means clustering 

algorithm in features selection is that the clusters have the same distance from the centroids are treated 

equally and the selected best ones depends on the method of ranking not the correlation with CCT. Table 6 

presents the selected 30 features using K-means algorithms. The selected 30 features were used to build GPR 

predictive model. The results show that there are 15 features are common between NCA and K-means 

features selection algorithms where only 6 features are common between MRMR and K-means features 

selection algorithms. Figure 9(a) shows the error in CCT for the GPR predictive model during training 

process. The maximum error of GPR model was 1.4 milliseconds with standard deviation of  

0.3 milliseconds. Figure 9(b) presents the predicted CCT of unforeseen 50 operating points out of 150 test 

operating points using GPR model relative to the calculated CCT using TDS during the testing stages. The 

GPR model was able to predict 100 out of 150 operating points. The performance indices of the model for 

training, testing and all data sets are tabulated in Table 7. The performance indices are less quality than the 

performance of the GPR models based NCA and MRMR features selections. 

 

 

Table 5. The performance indexes for GPR model based MRMR evaluation 
Data %Acc RMSE R2 MAE 

Training 100 0.0003 1.000 0.001 

Testing 79.3 0.0176 0.871 0.1126 

All Data 95.8 0.0079 0.971 0.0233 

 

 

Table 6. The selected 30 features using k-means algorithm 
 Variable Selected 30 features by K-means No. 

1 Sum PQ-Area Sum PA-Sum PB-Sum QB-Sum Pc-Sum Qc 3 

2 PQ-G Pg1 -Pg2- Pg3-Qg8 - Pg8 -Pg9-Pg12-Pg13-Qg13-Pg14-Pg15-Qg16 10 

3 V-Bus VmA4-VmB11-VmC5-VmC13 4 

 PQ-Load P_L10-P_L24-P_L20 3 

4 PQ-Line PA4a-5/PA2-5a/QB1-2/PB2-3/QC2-3/PC18-19 9 

Total number of selected features 30 

 

 

  
(a) (b) 

 

Figure 9. The error between calculated and predicted CCT using K-means during (a) training and (b) testing 

 

 

Table 7. The performance indexes for GPR model-based k-means evaluation 
Data %Acc RMSE R2 MAE 

Training 99.7 0.0003 0.999 0.0011 

Testing 66.34 0.0181 0.863 0.1398 

All Data 92.2 0.0081 0.969 0.0288 

 

 

3.4.  Identification of hybrid features selection 

To verify accuracy of the GPR predictive model, the results obtained from the three investigated 

features selection algorithm are compared with the accurately obtained results from TDS. Figure 10 presents 

the comparison between the CCT corresponding to randomly selected 20 operating points using TDS and the 

GPR predictive model based the 30 selected features using NCA, MRMR and K-means algorithms. The 
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results show the ability of GPR models to state the system stability. The investigation is investigated based 

on the selection of best features as well as testing the GPR predictive model using test operating points. 

 

 

 
 

Figure 10. The CCT using TDS and GPR predictive models for 20 unforeseen operating points 

 

 

The results from the three algorithms show that 6 features are common as presented in 

Tables 3, 5, and 7. The selected features depend on the used method of algorithms during ranking and 

correlation process. In this step, GPR predictive model was built using the common and best features from 

the three methods. The features with higher scores using NSA and higher weights using MRMR were 

collected sequentially and used to build new hybrid GPR models. The accuracy is enhanced from 83, 79.3 

and 63.34 for NCA, MRMR and K-means respectively to 89.23% with 26 selected features during training 

process. The selected features with high accuracy are tabulated in Table 8. Table 9 displays the performance 

indices of the GPR model using the combined features from the three techniques where the number of the 

selected features are 26. The results show the enhancement not only in the testing data but also in all data 

sets. Therefore, the application of different feature selection algorithms can be used to discover hidden 

characteristics and correlation within collected big data. 
 

 

Table 8. The selected features with high accuracy of the hybrid GPR predictive model 
 Variable Common features Features (NCA) Features (MRMR) No. 

1 PQ-Area Sum_PA -Sum QB Sum PC  3 

2 PQ-G Pg13 Pg1-Pg2-Pg8-Qg8-Pg3-Pg12-Pg10 Qg5 9 

3 PQ-Line P_A4aA5-P_A2A5a-Q_B1B2 P_C1C2-P_A1A2 
P_A6A7-Q_C2C3-Q_C5C16-

Q_B2B5-Q_C11C12-P_C5C6 

11 

4 V-Buss   VmC6-VmA7-VmA6 3 

Total number of selected features 26 

 

 

Table 9. The evaluation of the hybrid GPR model based combined selection 
Training stage Testing stage All Data 

% Acc RMSE R2 MAE % Acc RMSE R2 MAE % Acc RMSE R2 MAE 

100 0.0011 0.999 0.0026 89.23 0.0053 0.985 0.013 0.971 0.0028 0.996 0.0053 

 

 

4. CONCLUSION  

This work presents transient stability assessment of power system using analytical methods-based 

feature selection techniques. The effect of the RES was considered during data collection through random 

variation of load levels and the penetration level of RES. Minimum CCT is considered as indicator for TSA 

which represents the system dynamic stability following self-clearance three-phase faults at critical fault 

locations. GPR model was built for online monitoring of the TSA using group of selected features which can 

be collected using PMU units. The features were selected using NCA, MRMR and K-means algorithms. The 

application of the different feature selection algorithms presents different correlations between the selected 

features and CCT. The selection of the common features and the features with high correlations with CCT 

from different feature selection algorithms enhances the performance of the GPR model. The results show the 

high accuracy of the GPR predictive model (97.1%) to estimate CCT for TSA over a wide range on operating 

points. The proposed method can be used to build GPR predictive model for TSA in large scale power 

systems. 
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