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 This paper summarizes the literature on computer-aided detection (CAD) 

systems used to identify and diagnose lung nodules in images obtained with 

computed tomography (CT) scanners. The importance of developing such 

systems lies in the fact that the process of manually detecting lung nodules is 

painstaking and sequential work for radiologists, as it takes a long time. 

Moreover, the pulmonary nodules have multiple appearances and shapes, 

and the large number of slices generated by the scanner creates great 

difficulty in accurately locating the lung nodules. The handcraft nodules 

detection process can be caused by messing some nodules spicily when these 

nodules' diameter be less than 10 mm. So, the CAD system is an essential 

assistant to the radiologist in this case of nodule detection, and it contributed 

to reducing time consumption in nodules detection; moreover, it applied 

more accuracy in this field. The objective of this paper is to follow up on 

current and previous work on lung cancer detection and lung nodule 

diagnosis. This literature dealt with a group of specialized systems in this 

field quickly and showed the methods used in them. It dealt with an 

emphasis on a system based on deep learning involving neural convolution 

networks. 
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1. INTRODUCTION 

Cancer can be considered the second-largest mortality cause worldwide. The number of deaths 

caused by this disease is estimated to be 1 per 6 mortalities at the international level. Moreover, 

approximately 9,6 million fatalities in 2018, as shown in the World Health Organization (WHO) reports [1]. 

Lung cancer is amongst the most prevalent types of cancer in the world, with a high rate of infection for both 

sexes alike. We can verify this through the data provided by the International Agency for Research on Cancer 

(IARC) for the year 2018 [2]. The data of this agency showed that lung cancer takes the lead the remainder of 

the injury types of cancer; furthermore, it showed that the incidence of lung cancer reached (11.6 percent) 

from totally registered cancer cases. The agency reports indicated that the number of injuries reached more 

than (2,093,876), distributed by (1,368,524) injuries in men and (725,352) injuries in women. On the other 

hand, according to (IARC), the total number of deaths worldwide in 2018 (1,761,007) as a result of lung 

cancer. Tobacco consumption is one of the most severe factors that cause cancer, and tobacco is responsible 

for an estimated 22% of cancer deaths. 

 The mortality of cancer can indeed be decreased by the early diagnosis and treatment of cases. So, 

for earlier detection, several ways to screen lung cancer are utilized, for example, a biopsy, computed 

tomography scans, radiography, and sputum cytology, which doctors recommend among the various  
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ways [2]. The usual method is computed tomography scanning, and the updated screening technology is the 

low-dose computed tomography (LDCT) [3]. The adoption of LDCT protocols to screen lung cancer is an 

effective way to detect lung nodules early. However, there are many obstacles in this type of diagnosis, 

including [1] the negative impact on low disparity lesion visibility due to low dose spatial imaging resolution 

and noise is growing. This presents defiance for radiologists to find small nodules and try to interpret  

them [2]. Moreover, it is also a challenge for radiologists to decide whether a node is malignant or benign in 

interpreting LDCT scans [3]. Furthermore, results may be susceptible to error due to manual reading or due 

to many cases number, and the radiologists can lose nodules and thus possible cancer. The exposure to 

radiation in a low-dose computed tomography scan ranges from 1 to 4 millisieverts [3]. If the scanning 

process has a positive result, it is especially recommended to low-dose CT screening [4]. The risk that older 

patients will develop cancer can be increased due to repeated computed tomography scans. To reduce 

frequent computed tomography scanning, several researchers developed systems known as computer-aided 

detection (CAD), which can contribute to reducing false-positive discovery and increased sensitivity in 

cancer diagnosis. As lung cancer deaths have increased, extensive research has been undertaken since 2009. 

Based on the information presented above, the mortality rate can be decreased or treat this type of cancer if it 

is detected early and precisely. This is what CAD systems attempt to provide.  

In this paper, the crux of the research problems revolves around: firstly, the diversity of CAD 

systems and the various approaches utilized in them, and how utilized a proper technique. Secondly utilizing 

the (CAD) systems developed by researchers, there was a variation in diagnostic results for cancerous 

nodules in the lung in terms of sensitivity and accuracy of these systems. The objective of this paper is to 

investigate several kinds of CAD systems and try to focus on some details to assess the efficiency of the 

mechanisms. Finally, the performance of some CAD systems proposed in the literature are compared 

methods is compared in terms of specificity, accuracy, and sensitivity. 

 

 

2. METHODS 

This section of the paper overview and describes previous literary works, techniques, and methods 

used by researchers at the various stages of CAD systems. It deals with each stage according to what was 

stated in the previous literature; furthermore, it gives a brief introduction about each stage. But before starting 

to describe the CAD systems, it is necessary to describe the data packets entering these systems and 

processed by the CT scanner. 

 

2.1. Data acquisition 

The availability of several public websites hosting huge medical image repositories related to all 

lung diseases is a promising attempt to enhance lung cancer research. It is therefore noted that most 

researchers in the field of computer-aided detection (CAD) systems have developed their systems based on 

the databases and medical images available at these sites. So, firstly, the medical CT images are collected 

from these public repositories and adopted to the computer-aided detection (CAD) system. These images are 

in a digital imaging and communications in medicine file format (DICOM). When the work concerns lung 

nodules detection, the CT images are usually (512 by 512) pixels in the shape of a two-dimensional slice. 

Slices vary in number between one scan and another. It is also worth noting are some of these essential sites 

which provide medical images, to name a few (LIDC-IDRI) repositories [1] and The automatic nodule 

detection 2009 (ANODE09) databases [2].  

 

2.2. CAD system  

A brief introduction is discussed in this section about the formation of (CAD) system. CAD systems 

are classified into two forms, as shown in Figure 1, depending on the feature extraction method that is 

utilized to extract the lung nodules. The first one is well known as a Handcraft or traditional-CAD system, 

which utilizes manual feature extraction, and the second one is adopted deep learning spatially convolution 

neural network (CNN) to learn these features automatically. In this paper, these two systems will be 

reviewed, and a comparison made based on what researchers presented in these two fields.  

 

2.2.1. CAD system utilized handcraft or traditional feature extraction 

These systems utilized handcrafted features extracted to specify malignant tissue and benign tissue. 

The images obtained from a CT scan in these systems are often handled in four main stages. The first one is 

noise denoising and images enhancements (pre-processing). After that, the second stage is a segmentation of 

the lungs, the third stage deals with detecting nodules. Finally, the fourth stage deals with the nodule 

classification if it is benign or malignant Figure 2. Each stage was precisely described by looking at the 

related works so far.  
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Figure 2. CAD system based on handcraft or traditional feature extraction 

 

 

a. Noise denoising and image enhancements 

This stage is a pre-processing stage and can be done by implementing a variety of types of filters, 

which can contribute to reducing the noise and enhancement computed tomography scan images. The 

literature contains various filters, among them the log filter, Gaussian and median filter, and dot enhancement 

filter, and in the pre-processing stage, histogram-based filters are frequently adopted. Log filter is adopted in 

[5]–[7]. Gaussian filter is adopted in the work of [8], [9]. The median filter has been adopted in [9]–[13]. In 

other literature, the dot enhancement filter was adopted in [14], [15]. Wiener filter was examined in [11]. The 

multi-scale filter was examined in [16], [17]. Wiener filter with contrast limited adaptive histogram 

equalization (CLAHE) is applied in [14]. The selective enhancement filter is applied in [18]–[20].  

A multi-scale selective enhancement filter was applied in [14]. Gabor filter was examined in [17]. Local 

binary patterns (LBP) filter was used in [18], fuzzy filter adopted in [19], the sequential filter was 

implemented in [20] was used as a pre-processing step Shell filter examined in [21]. 

 

b. Lung segmentation 

This stage's goals are to increase the ability of lung nodules detections, and this is done by reducing 

the search area. So, several steps are followed to get lung segmentation properly. To achieve the lung 

segmentation stage sub-steps are utilized to images. The first sub-step is extracting thorax from a computed 

tomography scan: In this phase, cleans and removes all things outside the patient's body. For instance, the 

place where the patient lies, the bedsheets, and the air in its [22]. The second sub-step is to extract the left and 

right lungs only, and this can be achieved by adopting the Hounsfield method to CT scan images. These 

images' histograms after hounsfield are divided into a variety of voxel intensities. The lungs with low voxel 

intensity are with a range from -900 to -500 HU. The other higher voxel intensity with a value above the  

-500 HU, for instance, blood, fat, bone, muscles, and chest wall. The threshold is made to isolate lung 

parenchyma. The -500 HU value is used as an ideal thresholding value by many researchers or optimal 
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threshold computed by adopting iterative optimal threshold methods. After that, a region growing algorithm 

is adopted to reconstruct the lungs depending on the most significant region, representing the first lung, and 

the second biggest one represents the second lungs. Thus, by designing a proper mask, the two-lung region 

(left & right) can be extracted from a computed tomography slice. For lung segmentation, a region-growing 

algorithm, in addition to a threshold as stopping criteria, can be implemented, as described in [22]. Several 

studies have used a 3D region-growing algorithm for pulmonary segmentation. The image labels after 

segmentation by using a 3D labeling algorithm. In the end, two lung regions were extracted from the labeled 

image, the largest and next largest connected regions, and the rest of the segmented regions set as the 

background [23], [24]. The threshold segmentation of the lungs is the work of [18], [19], [21]–[23],  

[25]–[27], [28]–[36]. Otsu threshold [28], [37], segmentation on the basis of the iterative threshold [9], [38], 

[39], adaptive threshold [26], [40], The literature has an adaptive 3-D fuzzy threshold [41]. Pulmonary 

segmentation on the basis of region and 3D region can be located in [5], [42]–[48]. A global active contour 

method for lung segmentation is discussed in [24].  

 

c. Feature extraction 

The significant benefit of this phase is to eliminate or reduce false-positive lung nodule detection. 

Several features’ kinds are presented in the literature. Furthermore, these features are classified as nodules 

depending on shapes, texture, and intensity. The first feature depending on the shape, especially the 

morphology of the nodule, is a circular in 2D CT scan or spherical morphology in 3D CT scan, and the 

second feature depends on the texture. Another extracted feature is the intensity feature. The extracted vector 

of this feature is then fed to the final step (classification step) to decide the nodule if it is benign or malignant. 

Some of the literature showed that the reduction of false-positive nodules detection could be made throw 

extracting more than feature types, for instance, the shape and the texture features. In [25], texture features 

like (Shannon and Tsallis Q entropy) are adopted. In [49], Shannon entropy, Gaussian smoothing, Kullback 

and Leibler divergence method, Canny edge detection, Gaussian filter, and doble thresholding method are 

adopted to extract features from CT scan images. In [50], several features are adopted, for instance, grey 

value features, shape features, the position of each region of interest (ROI), computed tomography min value, 

computed tomography max value, volume sphericity, spatial distribution density, and maximum diameter 

feature. In [51], area feature is utilized, pixel mean intensity, and centroid, finally, diameter and perimeter 

eccentricity feature used in this work. In [52], the shape feature, besides several features such as grey-level 

and surface feature, gradient feature, texture feature, and forward-backward feature selection, is utilized in 

this work. In [53], the alpha shape method is adopted. Besides shape feature, texture feature and a 

combination between shape and texture feature vectors are utilized to feed the classifier later. In [9], surface 

saliency and surface-normal vector, and applied novel feature, wall detection, and elimination and angular 

histogram of surface normal (AHSN) to extract features from CT scan images. Finally, the comparison is 

held between the novel feature and others. In [54] diversity index feature, ring feature, and sphere feature are 

used in this work. In [55], the Gaussian mixture feature and rule-based filtering are implemented in this work. 

In [56] Shape diagram, 3D proportion measurement is used, and the 3D cylindrical approach is utilized in 

this work. Appearance feature, morphology feature, texture feature, grey-level feature, two-dimensional 

feature, long axis feature, short axis feature, perimeter feature, area feature, three-dimensional shape, 

barycenter difference feature are implemented in the work of [13]. 

 

d. Classification step 

At this phase, the features vectors obtained in the previous step are classified through two  

sub-stages. The first phase investigated whether or not the ROI is a nodule, so this can be assumed reducing 

in the false positive, and this can increase the specificity for a CAD system. The second stage examines if the 

nodule is classified as benign or malignant. The k-means clustering is implemented to segmentation of  

juxtavascular and juxtapleura nodules, and it takes less time when compared with other methods [30].  

In [50], rule-based classification (RBC) is utilized to minimize the false-positive rate and classify nodules 

correctly. Furthermore, a comparison is made with k-nearest neighbors and neural networks. Several 

researchers are adopted the space vector machine (SVM) classifier to reduce the false-positive rate and 

examine if nodules are malignant or benign. In [52], a novel method is adopted to decrease the false-positive 

ratio, so the classifier implemented to classify nodule is SVM with Massive training artificial neural network 

(MTNN). In [53], the generalized linear model regression (GLMR) classifier is implemented and compared 

with the other classes. After this step, the detection of nodules from non-nodule is done, and the performance 

for the system must be calculated.  

 

2.2.2. CAD system based on automatic feature extraction (utilized deep learning) 

Due to the differences observed in the complexity of biomedical images, medical things, for 

example, lesions and anatomy are difficult to recognize from the picture. Therefore, instead of seeking 
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excellent features based on manual extracting, there has been an emphasis on the automatic method of 

functional learning known as (learning example). Furthermore, deep learning algorithms have become a 

precious tool for medical imagery utilized for detection, characterization, and analysis the lesions. This 

method involved developing layer-specific network architecture by taking into account the aim of increased 

prediction performance. In this type of system, two models can be achieved. First, no manual vector of 

feature extraction is used because a deep learning algorithm depends on a U-net network to extract nodules 

masks in lung segmentation steps and then feed them directly to another neural network to classify them. The 

second model deals with feeding the images after pre-processing techniques directly to the neural network 

and taking the image as pixels to detect nodules. Figure 3 views the architecture for this technique. However, 

there are two kinds of deep learning classified depending on the training method. The first one is a supervised 

method that needs a training data set to learn from it, for example, of these networks (MTNN), convolution 

neural networks (CNN). In contrast to supervised networks, the unsupervised deep learning method never 

need to data set for learning from it and directly fed the images to the network, for instance, of these 

networks (AEs) auto-encoders and (SAEs) stacked auto-encoders. A survey was conducted on deep learning 

in various network architectures with medical imaging implementations is utilized in [57]. The latest 

enhancement and challenges in medical imagery machine learning are discussed in [58], [59]. Previous 

literature has shown that method convolution neural network is a promising method with valuable medical 

results. It has, therefore, been included in many works of literature. Various kinds of it can be constructed 

According to the number of classes and layer dimensions. In previous literature, this method was applied to 

the form (2-D CNN), and the second form is (3-D CNN). 

 

 

 
 

Figure 3. Deep learning network 

 

 

a. CNN based on a 2-dimension image 

In this method, the essential 2-D conversion procedure was being utilized to detect local 

characteristics of the whole image. For its computational efficiency and simplicity, CNN architecture uses 

this mostly. Images in tradition contain an intensity matrix, and these images are 2-D dimensions. In this 

network, it automatically learned to various 2-D features/filters from the training dataset. Several 2-D 

convolution Nets streams are proposed in [60]. In the beginning, three algorithms for candidate detectors 

specially designed for finding sub-solid, massive, and solid nodules were combined. Then, a 2-D patches 

group with 64×64 pixels was taken away from distinct, focused planes for each candidate. In [61], the data 

are from two sources PET/CT scans images after filtered fed to CNN to detect nodules and finally used SVM 

classifier. In [62], U-net architecture is adopted for image segmentation. This method is used to extract the 

high-level information by contracting path and the other path, which is the symmetric expanding path used to 

reconstruct the information needed. In [63], several models of convolution neural networks are implemented, 

such as LeNet, VGG-16 deep learning, and AlexNet in the final, the fully connected layer output is applied 

directly to various classifiers, and comparisons are held between these classifier outputs to select the best 

methods. In [64], 2-D CNN is adopted with two ROI sizes; the first one is 32*32, and the second is 64*64. 

Furthermore, the architecture for this neural network depends on two convolution layers. The first 

convolution layer is adopted with eight feature maps at the same time; the second contains sixteen feature 

maps. The convolution layers are followed by the downsampling layer with kernel size 2*2. Finally, four 

layers are fully connected, attached to the final downsample layer. The first one fully connected layer 

contains 150 nodes, while the second layer has 100 nodes, also the third layer deals with 50 nodes; finally, 

the last layer deals with two nodes to make a final decision. In [65], a cascade of neural networks with 

selective classifiers are adopted. This implementation is used to address the class imbalance problem. 
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b. CNN based on a 3-dimension image 

The fundamental convolution operation was considered in three directions (x, y, z) simultaneously 

in this network. The 3-D convolutional filters implement and have been used for automatic extraction via the 

input 3-D data. These networks cost more than 2-D networks in terms of calculation efficiency. 3-D 

convolution operations require further memory, while a 3-D matrix calculation is necessary to save features 

extracted in the memory of the computer. The main 3-D CNN benefit is that with 3-D filters, it provides 

multi-view features. Lung nodule detection architecture based on 3-D CNN, proposed by [66]. There are 

Three 3-D CNNs used by researchers to representative features and encode spatial information by adopting a 

hierarchical structure, in the first structure, using a field size of 20×20×6, the second structure with size 

30×30×10, finally third structure with field size 40×40×20. After that, these structures are merged and made 

a feature extractor system. In [67], 3-D CNN is adopted with multi-level contextual. Due to variation in the 

size of nodules, so four various size of 3-D CNN is designed and the fusion for these networks give an 

excellent coverage error for classifiers. 

 

2.3.  Summarized CAD systems 

The performance of a CAD system employing Handcraft or conventional feature extraction is 

dependent in some way on the processing steps performed before the feature extraction step. Therefore, CT 

scan images are passed through the image enhancement and image segmentation processes. In order to 

prepare the region of interest (ROI) for feature extraction, approaches chosen during the enhancement and 

segmentation steps are sometimes manually and precisely tuned. While the CAD system based on automatic 

feature extraction (using deep learning) (the second module) employs an automatic features extractor, each image 

pixel is analyzed, and the best features are extracted directly. The automatically features extracted can reduce the 

requirement for image enhancement and segmentation techniques. Therefore, the time consumption is decreased. 

Table 1 classified these techniques based on feature extraction methods which is utilized in previous 

literatures works and try to summarized its and compare stages in two systems. Moreover, Table 2 showed 

performance of these techniques based on handcraft feature extraction methods which is utilized in previous 

literatures works and try to summarized its. 

 

 

Table 1. Summarized CAD systems depends on feature extraction methods 
Stages CAD system utilized handcraft or 

traditional feature extraction  

(first module) 

CAD system based on 
automatic feature 

extraction (utilized 

deep learning)  
(the second module) 

Note 

Noise 

denoising and 

image 
enhancements 

Filters 

The log filter, Gaussian and median 

filter, and Dot Enhancement filter, 

Wiener filter, multi-scale filter, Gabor 
filter, Sell filter, LBP, Fuzzy and 

sequential filter. 

Croup, Zooming, 

Normalization, 

resizing images. 

This stage deals with reducing noise to CT 

scan images and try to enhance images by 

applied different filters. This step as we 
noticed used in the first (handcraft) model 

widely, because the best results, can be 

obtained in the next segmentation steps if the 
quality of the images is increased. However, 

second model system scan images as pixel by 
pixel and take a decision so it is not preferred 

to use these filters but utilized some 

preprocessing technique can help in the auto 
feature detection systems. 

Lung 

Segmentation 

3D region-growing algorithm with 3D 

labeling algorithm, iterative threshold 
and Otsu threshold, global active 

contour method, adaptive threshold, 

adaptive 3-D fuzzy threshold, region 
and 3D region method, active contour 

method. 

U-net, V–net. These methods were used to extract the lungs 

in the first module. Furthermore, the second 
model implements a neural network to extract 

nodules. 

Feature 
extraction 

Shannon and Tsallis Q entropy, 
Computed Tomography min value, 

Computed Tomography max value, 

volume sphericity, spatial distribution 
density, and maximum diameter 

feature, angular histogram of surface 

normal (AHSN), Diversity index 
feature. 

Ann, CNN The first module depends on extracting vectors 
of features depending on shape or texture or 

intensity or mixed between these types to 

extract nodules. 
The second module utilizes a neural network 

to extract nodules and, after that, decide if it is 

nodule or non-nodule. 

Classification 

step 

Space vector machine (SVM), rule-

based classification (RBC), GLMR, 
K-means classifier, KNN classifier. 

Ann, CNN The first module utilizes different classifiers to 

predict benign or malignant tissue. 
The second module depends on a neural 

network to decided nodules or non-nodule 
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3. RESULTS AND DISCUSSION 

The results as shown in Tables 2 and 3 by applying various kinds, whether it is (handcraft or 

automatic) CAD system. the results are different some of these research calculates the accuracy and 

sensitivity and tries to reduce false-positive reduction other research show accuracy only in [53], [68]–[70] or 

sensitivity and false-positive reduction. Moreover, the results may differ if the dataset change so, this can be 

made the comparison more complex. Some of the researches in Table 3, as mentioned before, utilized 

systems and tested them on a single or private dataset like in [50], [52], [70]–[72]. Some of this research 

adopted competition performance metric (CPM). Other utilized free response receiver operating 

characteristic (FROC) metrics.  

 

 

Table 2. Performance for the system in literature based on handcraft features extraction  
Reference Data Sets Results 

[9] LIDC Acc.: 99.0% Sens.: 97.5% Spc.: 97.5% FPs=6.76 

[25] LIDC Acc.: 88.4% Sens.: 90.6% spc.: 85% FPs=1.17 

[50] Privet Sens.: 85% FPs=2 

[51] LIDC Acc.: 92% Sens.: 100% spc.: 50% FPs=21 

[52] Privet Sens.:91.95% FPs=17.64 
[54] LIDC-IDRI Acc.: 99.2% Sens.: 98% Spc.: 97.6% 

[55] LIDC Sens.: 89.7% FPs=4.14 

[56] LIDC-IDRI Acc.: 95.33% Sens.: 91.99% Spc.: 96.48% 
[60] LIDC Sens.: 97.33 % Spc.: 97.11% 

[61] NSRTC-LUNG/LIDC Acc.: 87.8 % Sens.: 93.75 % Spc.: 87.6% 
[62] JSRT Sens.: 78.1 

[68] LIDC Acc.: 91.00 

[69] JSRT Acc.: 96.58 
[71] University of Istanbul Acc.: 90.7 % Sens.: 89.6% Spc.: 87.5% 

[73] LIDC-IDRI Acc.: 97.55 % Sens.: 85.91 % Spc.: 97.7% 

[74] LIDC-IDRI Acc.: 80.36% Sens.: 82.05 % Spc.: 76.47% 
[75] NBIA/ELCAP Acc.: 82.66% Sens.: 96.15 % Spc.: 52.17% 

[76] 3AHG Acc.: 84.39 % Spc.: 92% 

 

 

Table 3. Review for results and networks architecture to CNN in literature 
References Network Data set Result 

[63] 2D CNN LIDC Acc.: 99.51 Sens.: 99.32 Spec.: 99.71 

[64] 2D CNN LIDC dataset Sens: 85.256% Spec.: 90.658% Acc.: 89.895% AUC: 0.94 

[65]  Luna Acc.: 91.23 Sens.: 81.2 
[66] M-RPN 3D DCNN Sph6 &LIDC-IDRI& ANODE09 

&LUNA 16 

Sens.: 98.4% and 98.7% at 2.1 and FPs/scan: 1.97 FROC 

score 0.946 

[67] MBEL-3D CNN LUNA 16 CPM score 87.3% 
[70] 2D CNN Italian MLD & Danish DLCST Acc.: 72.9% 

[72] 3D CNN Privet Sens.: 90% FPS/scan: 5 

[77] 3D Faster R-CNN LIDC CPM score 0.550 
[78] 3D Faster R-CNN 

& CMixNet 

LIDC-IDRI &LUNA 16 FROC score 94.21% 

[79] PSO CNN LIDC-IDRI Acc.: 97.62 Sens.: 92.20 Spec.: 98.21 
[80] 3D Faster R-CNN LIDC-IDRI &LUNA 16 FROC score 84.42% 

[81] 2D-CNN LIDC-IDRI Acc.: 88.28% Sens.: 83.82% F score 83.45% AUC 87% 

[82] Ensemble of  

3D-CNNs 

LIDC-IDRI Acc.: 97.35% Sens.: 96.57% F score 96.42 % AUC 0.98 

[83] CNN LIDC-IDRI Acc.: 84.15% Sens.: 83.96% Spec.: 84.32% 

[84] 2D- CNN LIDC Acc.: 93.20% Sens.: 92.40% Spec.: 94.80% Fps 4.5 
[85] CNN LIDC-IDRI Sens.: 80.06% at 4.7 FPs/scan and 94% at 15.1 FPs/scan 

[86] 3D CNN LIDC dataset. Sens.: 80% FPs/scan: 22.4 

[87] 3D CNN LIDC dataset  For 3D MVCNN with DAG architecture: Sens.: 95.68% 
Spec.: 94.51% Error rate: 4.59 

[88] 3D CNN LIDC dataset Acc.: 87.14% Sens: 0.77 Spec: 0.93 AUC: 0.93 

[89] MVCNN DLCST&ANODE09 Sens.: 85.4% at 1 FPs/scan and 90% at 4 FPs/scan CMP 
score 0.637 

[90]  LIDC Sens.:92.2 

[91]  Private Sens.:90.1 
[92]  LIDC-IDRI Acc.: 84 Sens.:89 

[93]  Luna Sens.:90.7% 

[94] 3D CNN SPIE-LUNGSx dataset Sens.: 80% FPs/scan: 10 
[95] 2D CNN LIDC dataset Acc.: 70.69 % AUC: 0.63 

[96] 2D- CNN LIDC Acc.: 97.52% Sens.:95.31% Spec.:99.73% 

[97] 3D-CNN LIDC Acc.: 87.50% Sens.:98.30% Spec.:77.60% FPs/scan: 11 
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4. CONCLUSION  

Firstly, the handcraft or traditional feature extraction are concluded as shown in this paper. The 

denoising step and enhancement image are important and can assume to reduce false-positive reduction in 

these CAD systems' next steps. The two lungs are extracted in lung segmentation steps, and some noise and 

air from the CT scan are removed. The extracted lungs feed to the next step to extract features which in turn 

contributes to nodule detection later. Moreover, Feature extraction steps are utilized to extract vectors of 

feature to extract nodules from segmented lungs. This step reduces the false-positive nodules through 

utilizing different kinds of the feature, as mentioned before in this paper. Finally, the classification step 

utilizes different classifiers to detect nodules and reduce the false-positive nodules and satisfied if tissue is 

benign or malignant. Secondly, this paper discussed types of automatic feature extraction systems which 

utilize deep learning analysis. This system takes image pixels by to analyze them. More computation is 

required especially when CNN is adopted to extract nodules. This type of system may not require complex 

denoising and image enhancing methods, but rather some image prepossessing techniques such as zooming, 

cropping, or rotating images in different directions, which improves diagnosis efficiency. The automatic 

feature extraction system adopts U-net to segment lungs and nodules masks from its. After that, feed the 

extracted nodules by U-net to another neural network to make diagnoses if this tissue is benign or malignant. 

On the other hand, in some literature, CNN 2D and 3D are utilized directly after preprocessing step. In 

conclusion, Different systems have been developed in lung nodule detection and diagnosis in the last few 

years, and much research tries to contribute to enhancing the detection and diagnosis of lung nodules 

systems. Although research tries to detect normal nodules with a size range from 3 to 30 mm, on the other 

hand, much research focused on nodules with a small radius. Despite these varieties of systems and much 

research, this topic still needs to be developed in techniques spatially in lung segmentation and reduce false 

positive detection. This paper's contribution summarized two CAD systems classified on how features have 

been extracted since 2008 and exhibited some detail about each step for these systems. Finally, the urgent 

and renewed need for a system used with more than one database with promising results in terms of 

accuracy, sensitivity, and the rest of the outcome factors. 
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