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AbSTrACT

Fog computing architecture competent to support the mission-oriented network-centric warfare provides the 
framework for a tactical cloud in this work. The tactical cloud becomes situation-aware of the war from the information 
relayed by fog nodes (FNs) on the battlefield. This work aims to sustain the network of FNs by maintaining the 
operational efficiency of the FNs on the battlefield at the tactical edge. The proposed solution monitors and predicts 
the likely overloading of an FN using the long short-term memory model through a buddy FN at the fog server 
(FS). This paper also proposes randomised task scheduling (RTS) algorithm to avert the likely overloading of an 
FN by pre-empting tasks from the FN and scheduling them to another FN. The experimental results demonstrate 
that RTS with linear complexity has a schedulability measure 8% - 26% higher than that of other base scheduling 
algorithms. The results show that the LSTM model has low mean absolute error compared to other time-series 
forecasting models.
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NomeNClATure
_abs err  Mean absolute error

i
realX  Actual value of CPU usage 
i
predictedX  Predicted value CPU usage
'

BWF  Buddy FN

WF  FN pair of Buddy FN '
BWF

T  Task list of size M

F  FN list of size N

TP  Preference list of tasks in T
Allot  Final scheduling list

ijA  i jT F→ Task-FN allocation

1. INTroduCTIoN
The information revolution has transformed warfare 

doctrines from platform-centric warfare (PCW) to network-
centric warfare (NCW)1. There is a paradigm shift in warfare 
strategy from centralised to distributed command and control 
(C2)2,3 tactics. The modus operandi of the PCW is the physical 
attrition of the opponent through a centralised C2 using 
autonomous, closed, self-sustaining and independent weapon 
systems or platforms, leading to a lack of situational awareness 
and making it impossible to use other platforms to engage the 
target.

NCW is a decentralised combat model realised by the 
advances in technology and communication systems and 
operates through robust networking of forces engaged in a 
mission. The situational awareness of the battlefield through 
information sharing aids in self-synchronisation and speed of 
combat, which increases the precision of action and mission 

effectiveness. NCW dramatically improves the speed of the 
observe, orient, decide and act (OODA) cycle of the force. 
It renders a digital battlefield to achieve high performance in 
terms of maximum enemy damage while incurring minimal 
loss through precise and fast decision-making. NCW integrates 
the technologies on the battlefield (sensor grid, communication 
technology) and those thousands of miles away (commander 
centre, satellite) to make the real-time integrated common 
operational picture (COP) available to every stakeholder of the 
battle enabling timely decision making. 

Cloud computing is a solution for decentralised combat 
operations3; however it does not envisage the vision of NCW 
that demands the execution of precise and highly time-critical 
mission-centric operations. Cloud processes the data at its data 
centre in a distant location, making it incapable of meeting the 
critical needs of combat operations. Extending cloud services 
near the tactical end through fog computing4 assures the 
operational requirement of NCW.

The term ‘tactical cloud’5, 6, 7, 8 or ‘combat cloud’ used in 
this paper is the fog computing framework that implements 
NCW in defence. Fog nodes (FNs)9 in the battlefield are 
instrumental in providing computing, storage and networking 
services. FNs on tactical edge systems capture real-time data 
on the battlefield as well as disseminate and share information. 
The tactical edge sensing devices generate enormous amounts 
of data from various technologies, such as the smart sensor 
network, unmanned aerial vehicles (UAV) and autonomous 
multi-agents. FNs aggregate the data from sensors, perform 
elementary data analysis and forward relevant information 
to the fog server (FS). The FS relays the information from 
FNs to the C2 unit at the tactical cloud for obtaining a COP 
for higher-level decision-making. FSs connect the tactical 
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edge to the centralised military-owned cloud for real-time 
and near real-time data processing and quick information 
sharing. The operational efficiency of FNs is critical for the 
realisation of network-centric operations. Maintaining FNs in 
optimal operational conditions is crucial for the lethality and 
survivability of the combat units. 

This work aims to maintain the FN in optimal operational 
condition to ensure the sharing of quality information. In the 
proposed architectural framework of tactical cloud, FSs are at a 
safe location near the battlefield, usually in the communication 
base (signal corps infrastructure)10,11. The FS hosts a buddy 
FN for every FN deployed on the battlefield. The purpose of 
the buddy FN is to monitor the operational parameters (CPU, 
memory, disk, network, power consumption) of its FN pair in 
real-time. A buddy FN in the proposed work employs the long 
short-term memory (LSTM) model trained for predicting the 
operational efficiency of the FN pair. The LSTM model at the 
buddy FN uses the CPU utilisation history recordings of the FN 
pair for predicting its working condition. An FN underperforms 
and eventually gets overloaded if its CPU utilisation exceeds 
the threshold value. Since an underperforming FN cannot 
provide real-time services, the buddy FN considers relieving 
the workload of its FN pair by pre-empting one or a few of its 
tasks to avoid overloading. On likely overloading of an FN on 
the battlefield, its buddy FN sends scheduling requests to the 
FS for tasks that would be pre-empted to relieve the FN. This 
work proposes a randomised task scheduling (RTS) policy for 
the FS to schedule such tasks to FNs with a lighter workload. 

This paper proposes a solution for maintaining the 
fog network in a highly dynamic setup of the battlefield to 
ensure NCW. The proposed work is of high relevance as it 
provides a framework for the potential application of artificial 
intelligence12, 13, 14 in defence for efficient data acquisition and 
precise decision making.

2. mATerIAl ANd meThodS
2.1 Architecture of Tactical Cloud

Figure 1 elaborates the architecture of the tactical cloud. 
Figure 1(a) provides the deployment of force. Subsequently, 
the FNs, FSs and C2 are deployed accordingly on the 
battlefield, forming the tactical cloud, as seen in Fig. 1(b). 
Figure 1(c) shows the functional structure of the tactical cloud 
in hierarchical form.

The tactical cloud is primarily a 3-tier system and the 
layers are:
(i) Tactical edge:- It is the bottom-most tier comprising the 

disaggregated network of sensors, data collecting devices 
and the weapon systems deployed on the battlefield.

(ii) Fog layer:- FNs, buddy FNs and FSs form the fog layer, 
connecting the tactical edge to C2 and the defence cloud. 

(iii) The tactical cloud:- It forms the C2 of the combat force 
and is at a safe distance from the point of action. Relevant 
data reach the tactical cloud in real-time through the fog 
layer from the tactical edge.

(iv) Defence cloud:- Above all is the centralised cloud owned 
by the Department of Defence for the collaboration and 
coordination of various departments, forces and defence 
activities. 
C2 decides the type, the number of the sensors and the 

initial deployment of the sensors on the battlefield using 
a strategic model. This model provides the layout for the 
distribution of FNs on the battlefield such that they cover the 
sensors optimally within their range. The battlefield situation 
awareness depends upon the coverage and control of the FNs 
over the sensors. C2 assigns the authority and control of FNs 
in a well-defined area to an FS. C2 controls and directs the FNs 
through the FS.

 FS instils in itself a worker host called buddy FN for 
each FN deployed and pairs them. The FN updates its status to 
its buddy FN. The buddy FN has the image of its FN pair. FN 
being vulnerable, the buddy FN acts as the backup of its FN 
pair. In the event of loss or damage of an FN, the FS replaces 
it with a new FN using a copy of the virtual image15 from its 
buddy FN. The FS manages the FNs through their buddy FNs. 

2.2 Problem Statement
Given the pivotal role of FNs in the mission-critical 

operation of NCW, the operational efficiency of FNs is critical. 
Hence, the problem this paper addresses is: 

‘to sustain the FNs in the tactical edge by maintaining them 
in optimal working conditions by ensuring their operational 
efficiency’.

Following are the assumptions made while designing the 
fog computing framework and the solution:
(i) The buddy FN is a virtual machine in the FS that hosts an 

image of its FN pair. 

Figure 1. Architecture of the tactical cloud: (a) deployment of force, (b) deployment of the tactical cloud, and (c) hierarchical 
structure of tactical cloud.

(a) (b) (c)
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(ii) The FN updates its status to its buddy FN.
(iii) This work limits its span to a mission-centric operation in 

NCW. 
(iv) The role of the defence cloud is overall supervision of the 

mission operation and, hence, is not visible here.

2.3 Proposed Solution
There are several existing task scheduling solutions 

for near-end services at the network edge. Qin16, et al. have 
provided reconnaissance utility-based task scheduling in 
multi-access edge computing enabled by UAV. Tang17, et al. 
have conceived functions (monitoring, scheduling) as 
microservices for data sharing among aircraft nodes. Various 
aspects of task scheduling in different warfare scenarios, 
such as operational coordination in combat clusters18, cross-
platform task scheduling in warship networks19 and route 
finding for information transmission in mobile ad hoc 
networks formed using UAV20 are under study. There are also 
hybrid solutions20 of autonomous intelligent combat systems 
for C2, including manned and unmanned systems. Solutions 
for modelling the tactical edge21,22 for information processing 
and decision making in military operations have also drawn 
interest. Task scheduling in fog computing is an active area 
of research, with solutions that focus on parameters23 such 
as response time, delay, latency, cost and load balancing. 
However these task scheduling solutions become impractical 
for the highly dynamic and critical environment of the tactical 
cloud for NCW. The FN network at the tactical edge must 
be reliable, operationally efficient and fault-tolerant. NCW 
demands collection and rapid analysis of data, relay of quality 
information, low latency response, interoperability among 
devices, low bandwidth consumption and scheduling and 
processing of tasks. A solution for the efficient execution of a 
mission-critical operation at the tactical edge must incorporate 
these features. In the time-critical mission of NCW, the optimal 
functioning of the fog network is vital. The FNs must operate 
under optimal conditions to deliver maximum efficiency for 
real-time effectiveness.

This paper presents the solution in two phases: monitoring 
FNs for operational efficiency and then pre-empting and 
scheduling tasks in overloaded/underperforming FNs to 
maintain their performance. Fig. 2 provides the workflow of 
the proposed solution.

Phase I: Monitoring And Predicting the Operational 
Efficiency of FNs

The buddy FN employs LSTM, the recurrent neural 
network, for predicting the CPU utilisation of its FN pair. The 
LSTM is efficient in handling sequential time-series data, such 
as the CPU utilisation parameter of the FN pair. The LSTM 
has an internal memory that stores the data history and offers 
superior performance and high forecasting accuracy when 
compared withits counterparts such as the ARIMA24 model. 
The buddy FN monitors and profiles the CPU utilisation of 
its FN pair on the battlefield and uses the profiled history to 
predict the future CPU utilisation of the FN. CPU utilisation 
above the optimal level (the CPU utilisation threshold value) 
lowers the efficiency of the FN dramatically. The LSTM 

successfully captures long-term dependencies and provides an 
accurate prediction of CPU utilisation, with a minimal error 
rate when compared with other neural networks. This work 
evaluates the mean absolute error of the predicted value with 
the actual value to assess the accuracy of the model. Eqn (1) 
defines the mean absolute error mathematically.

1
| |

_
n i i

predicted reali
X X

abs err
n

=
−

= ∑                          (1)

where _abs err  is the mean absolute error, i
realX  and i

predictedX  
are thi  actual and predicted value, respectively. 

The ability of the LSTM to process time-series data step-
by-step, along with the feature to remove or add information 
to the cell state, precisely regulated by the gates, efficiently 
predicts the operational efficiency of the FNs. The LSTM model 
is the most appropriate one for predicting the performance of 
FN in a dynamic environment, such as a battlefield, because 
it learns from the most relevant and recent past behaviours of 
the FN for predicting its future performance under the current 
workload.

Phase II: Workload Scheduling
Two cases trigger workload scheduling. One is when an 

FN turns hostile or fails; in this case, the FS has to replace it 
with another FN. The FS loads the new FN with the image from 
the respective buddy FN, pairs it with the buddy and deploys 
it on the battlefield. The other is when a buddy FN predicts the 
probable overloading of its FN pair. To avert the overloading 
of the FN pair, the buddy FN pre-empts one or more tasks in 
the FN pair to maintain it in optimal working conditions. The 

Figure 2. Workflow of the proposed solution.
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buddy FN places scheduling requests for the pre-empted tasks 
to the FS. Furthermore, the buddy FN provides the FS with 
the list of the FNs that each of these preempted tasks prefer in 
the descending order of their preference. The FS executes the 
procedure of scheduling these tasks to a nearby capable FN. 
The FS assesses the FNs regularly and prepares a list of FNs 
with CPU utilisation below the threshold value. Buddy FNs 
use this list to prepare the preference list for the tasks to be 
scheduled. The FS follows the RTS method in Algorithm 1 to 
schedule the tasks without hindering the operational efficiency 
of the destination FNs. 

Algorithm 1 includes both cases: the FN failure and the 
underperformance of  FN due to overloading. The availability 
of resources such as CPU, memory, disk and network defines 
the capability of an FN. An FN can serve a task if it can 
guarantee the resource requirement of the task and serve it 
within its threshold CPU utilisation value. The FS forms a set T 
of the tasks received at any instant t for scheduling and passes 
T  as an input to the RTS algorithm. The FS executes the RTS 
algorithm to select a task from T for scheduling and schedules 
it to the FN that the chosen task has first on its preference list. 
The FS removes the FN scheduled from the list of preferences 
of all the other tasks. The FS repeats these steps until the 
preference list and the list of available FNs are empty. Eqn (2) 
provides the FN priority value of a task. The FN preference list 
for a task is the descending order of FN priority as provided by 
the buddy FN. The buddy FN selects the FN for the preference 
list only if it is within the proximity threshold value of the FN 
pair and has CPU utilisation below the threshold value.

[ ]cpuTh PredCPU TaskCPUPriority
ProxTh

− +
=                 (2)

where cpuTh  is the CPU utilisation threshold value, PredCPU  
is the predicted CPU utilisation value of the FN, TaskCPU  is 
the CPU utilisation required by the task and ProxTh  is the 
proximity range provided by the buddy FN. The criteria for 
choosing the proximity threshold value depend on the diameter 
of the transmission range of the sensors providing data for the 
task.

Algorithm 1 (rTS)

Input :  Buddy FN '
BWF  sends request to FS to replace or 

relieve the FN WF .
 Output: Replacing or relieving FN WF  by FS.

1.     FS listens( BuddyRequest  '
BWF )

2.     while ( BuddyRequest True== )
        1.1   if ( 1BuddyRequestNo == )
                i.    Action is to replace FN WF .
               ii.    FN with equivalent capability of WF  is selected.
               iii.   Image of WF  is loaded in new FN from '

BWF .
               iv.    New FN is deployed in battlefield.
        1.2   else if ( 2BuddyRequestNo == )
               i.      Buddy FN '

BWF  forwards list T of the task in WF   
                      to be scheduled in another FN.
               ii.   FS creates a list F of FNs in the transmission  
                      range of sensors monitored by WF .
               iii.    FS also creates a preference order of FNs for each  
                      task iT  using Equation 2.

                iv.   Confirm Resource requirements (CPU, memory,  
        disk, network) of task less than Resource  
                       Available in each of FNs in F .
                 v.    FS executes ( , )RTS T F .
          1.3  else Check BuddyRequest .
3.      End

procedure ( , )RTS T F

4. 1 2{ , ,..., }MT T T T= TP  denotes the list of tasks for FN 
allocation at the FS.

5. 1 2{ , ,..., }NF F F F=  denotes the list of tasks for available 
FNs for allocation. 

6. 1 2
{ , ,..., }

MT T T TP P P P= denotes the preference list of each 
task in T .

7. Allot  denotes the final task allocation to FNs
8. while ( , )TP F  are not empty do

8.1 Randomly choose a task in iT  in T  and schedule it 
to the FN jF  of its first preference in 

iTP .
8.2  Place the scheduled task-FN pair ij i jA T F= →  

for allocation in the list Allot .
8.3 Remove the task iT  fromT , FN jF  from F  and 

preference list 
iTP  from TP .

9. end while
10. return task scheduling list Allot .

3. reSulTS ANd dISCuSSIoN
The evaluation of the proposed task-scheduling algorithm 

is done in a laboratory setup similar to another research works 
in this area of research25. A standard desktop computer with 
Ubuntu OS simulates the FS. The VMs in different computers 
execute CPU and memory-intensive tasks to mimic the FNs on 
the battlefield. Xen hypervisor creates VM to simulate the FN 
pair and buddy FN in the experimental set of FS. SysBench26 

workload benchmark provides CPU and memory-intensive 
tasks as workload to the FNs. Each FN profiles its CPU and 
memory utilisation, which is updated to its buddy FN every 
5 ms. The buddy FN predicts the CPU utilisation of the FNs 
based on the profiled history of the FN pair and moves on 
to the workload scheduling phase if the FN is likely to be 
overloaded. The buddy FN pre-empts the tasks one by one from 
its underperforming FN pair until its CPU utilisation is below 
the threshold value. In the experiments, the task preemption 
follows the descending order of the CPU utilised by the tasks.

3.1 Phase I: monitoring And Predicting the 
operational efficiency of the FNs
The result of the LSTM model evaluation at the buddy FN 

shows that it accurately predicts the future working condition 
of the FN pair. Each FN samples its CPU and memory usage/
utilisation over 5 ms, while the FN serves CPU-intensive 
and memory-intensive tasks as workloads. The buddy FN 
monitors its FN pair from the profiles and predicts its future 
CPU utilisation using the LSTM model. Here, 70% of the data 
sampled trains the LSTM model, 20% validates the model and 
the remaining 10% tests it.

 Figure 3 shows the profiling data of CPU and the memory 
usage parameters of an FN sampled every 5 ms. Figure 4 
represents the successful forecasting of the CPU utilisation 
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of the FN pair based on the history of the CPU utilisation 
parameter received from the FN pair. 

Figure 4 predicts the CPU utilisation (in percentage) 1 h 
into the future using the LSTM model. It takes a window of 24-
hour time-series input data from the dataset with all its features 
to predict the CPU utilisation 1 hour into the future. Figure 4 
illustrates the prediction of the CPU utilisation of the FN pair 
in eachy time step of 1 hour from its profiled data by its buddy 
FN. The CPU utilisation value depicted by filled circles in Fig. 
4 denotes the target prediction value in response to the previous 
input step. The cross symbol is the actual CPU utilisation value 
predicted by the LSTM model trained over the dataset, while 
the continuous line in the graph of Fig. 4 is the actual CPU 
utilisation profiled at that hour. The y-axis of the graph in Fig. 
4 shows the CPU utilisation value scaled using normalisation, 
which is usually done while training the model. Fig. 4 confirms 
that the CPU utilisation value of an FN predicted for a moment 
in the future is close to the actual value recorded later at that 
moment. Hence, the LSTM model adopted by the buddy FN to 
predict the working condition of its FN pair using the history of 
the profiled CPU utilisation of the FN is reliable.

Figure 5 compares the performance of the LSTM model 
with other time-series forecasting models, such as baseline, 
linear, dense, multi-step dense and convolutional models, in 

terms of the absolute mean error in the predicted value. The 
LSTM model has low absolute mean error as per Fig. 5. 
Accordingly, the baseline model has the least absolute mean 
error. However, the baseline model is unrealistic as it predicts 
the next step from just the previous step and does not perform 
well if predictions are to be made further into the future.

3.2 Phase II: Workload Scheduling
The result of the experiments in the second phase of the 

proposed algorithm, RTS, has lower time complexity than 
the other base scheduling methods such as First Come First 
Serve (FCFS), Shortest Job First (SJF), laxity and greedy. 
Fig. 6 demonstrates RTS has linear time complexity while 
the other methods have polynomial time complexity.  These 
methods spend a substantial amount of time pre-processing 
the list of tasks as per their policy. The buddy FN prepares a 
task preference list for each task and forwards it along with the 
scheduling request to the FS, because of which the RTS takes 
much less time to implement random policies while scheduling 
the tasks.   

Figure 5. Comparison of the lSTm model with other algorithms.Figure 3. monitoring of CPu and memory utilisation of an fog 
node (FN).

Figure 6. Time complexity comparison of the scheduling 
algorithms.

Figure 4. CPu utilisation prediction using lSTm.
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Table 1 compares the scheduling solutions as per 
their schedulability (i.e. the ratio of the number of tasks an 
algorithm successfully schedules to the number of task 
requests it receives). The first column gives the total number 
of task requests the scheduling algorithm receives and the cells 
provide the number of tasks successfully scheduled by them. 
Table 1 demonstrates that the RTS algorithm possesses the 
highest schedulability even when there is an increasing number 
of the task scheduling requests at the FS. RTS schedules more 
number of the tasks than the other scheduling algorithms with 
an increase of 8% - 26% in schedulability.

Table 1. Schedulability comparison

No. of 
tasks 

Scheduling algorithms
rTS FCFS SJF laxity Greedy

200 85 90 77 82 76
150 60 52 56 52 58
100 40 37 34 37 32
50 18 16 18 16 13
10 3 2 2 3 2

The proposed RTS algorithm has linear time complexity, 
which is in contrast to the polynomial time complexity of the 
other scheduling algorithms. Solutions with linear complexity 
can serve highly dynamic, critical and time-sensitive scenarios 
of NCW. The proposed solution is capable of sustaining the 
fog network on the battlefield through the buddy-FN pair 
strategy. Unlike a battleground, the experimental evaluation of 
the proposed solution in a lab set-up or a simulator provides 
an ideal condition for communication. Hence, there is a need 
to test the two-phased RTS solution under low bandwidth, 
uneven terrain and volatile conditions of the battlefield for 
further improvement, such as using relay networks with 
UAV27. A battlefield-like situation can also be used to test the 
agility of the fog network. There are several challenges to 
overcome the implementation of tactical cloud and the defence 
department of various countries is working towards it in  
various sphere28,29,30.

4. CoNCluSIoN
NCW has a decisive war-fighting advantage over its 

enemy through a lethal combination of quick decision-
making, tactics and techniques. The presented tactical cloud 
framework integrates real-time information for NCW through 
the networking forces involved in the mission. The framework 
provides quality information to create situational awareness 
in C2 for undertaking tactical operations. The LSTM model 
employed by the buddy FNs and the RTS policy at the FS 
meet the time dynamics required for NCW operation. The 
tactical cloud is a promising platform for networking various 
combat units in mission-centric operations and offers an edge 
over the enemies through a robustly connected network. 
Nonetheless, this work must be evaluated in the real-life 
scenario of tactical networking environment. Future studies 
should be aimed at incorporating all other complex scenarios 
on a battlefield, such as self-destructing FNs in case of  
node compromise.
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