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1. Introduction 

Applications of plate structures are found in ship 

and airplane structures, bridges, etc. Plate’s application 

in engineering is enormous and different theories which 

use linear strain-displacement expressions have been 

developed [1-3]. Studies have shown that results 

obtained using linear strain-displacement may appear 

inconsistent for nonlinear stress and bending analyzes 

[4-6]. Hence, with the increasing use of plates, the need 

for an improved theory is easily discovered. Thus, the 

need to develop a non-linear displacement model [7-9] 

that considers the transverse shear stress effect at a 

given boundary condition to achieve consistency is 

urgent. 

Isotropic plates are widely used in structures under 

heavy transverse loading which generates large stresses 

[10-12]. The actual stress induced in such a plate is 

analyzed using one of the shear deformation theories 

[13-15] of different shape functions [16-18]. A Series 

of theories have been developed and applied to analyze 
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the bending behavior of plates. Results were obtained 

using refined theories with Fourier series over-

predicted stresses in the plate when subjected to a 

combination of boundary conditions [19-21]. The 

advantage of polynomial shear deformation functions 

over exponential, hyperbolic and trigonometric shear 

deformation functions is that they are easier to apply, 

which helps to reduce error in the analysis [22-24]. 

In [16], the authors used a combination of the 

Hamilton principle and Navier with hyperbolic shear 

deformation theory for the bending and free vibration 

analysis of isotropic orthotropic plate. Authors in [18] 

applied Trigonometric shear deformation theory 

(TSDT) which involves the shear deformation effect, 

but its results are quite difficult to apply in the analysis. 

Their work did not consider the isotropic plate material 

in the analysis. 

The stability study can be carried out using either 

equilibrium, numerical, energy methods, or a 

combination of any [25-27]. Numerical methods such 
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 This paper presents the bending stress analysis of anisotropic plate material under 

transverse loading using a three-dimensional (3-D) plate theory. The static elastic theory 

was used to formulate the total energy expression of the plate thereafter, transformed 

into a compatibility equation through general variation to get the slope and deflection 

relationship. The solution of equations of the equilibrium gave rise to the exact 

polynomial deflection function while the coefficient of deflection and shear deformation 

of the plate was gotten from the governing equation through the direct variation method. 

These solutions were used to obtain the characteristic expression for analyzing the 

displacement and stresses of the rectangular plate. This formula was used for the solution 

of the bending problem of the rectangular plate that is clamped at the first-two edge and 

the other edges simply supported (CCSS). The result of the deflection and stresses 

decrease as the span-thickness ratio increases. More so, the aspect ratio effect of the 

shear stress of isotropic plates is investigated and discussed after a comparative analysis 

between the present work and previous studies. The result shows that the present study 

differs from that refined plate theory (RPT) of assumed deflection by 5.5% whereas exact 

2-D RPT by 5.3%. This shows the efficacy of the exact 3-D plate theory for flexural 

characteristics of CCSS isotropic rectangular thick plate. 
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as finite difference methods, boundary element 

methods, and truncated double Fourier series, often 

yield approximate solutions to the plate problem. To 

obtain exact solutions requires so much time and lots of 

work. The energy method differs from the numerical 

and the equilibrium method in that it adds all the strain 

energy and potential energy or external work on the 

continuum to be equal to the total potential energy [28-

30]. Their work did not analyze the stresses that might 

be induced due to applied load on the structure. 

In [31], the authors used a polynomial shear 

deformation theory for the analysis of a rectangular 

thick plate that is clamped and simply support at the 

second and the fourth edge (CSFS). They developed the 

calculation formula for the critical load of the CSFS 

thick rectangular plate. They neither determine the 

displacement and stresses nor check the effect of shear 

stress in responses to the applied load which can lead to 

failure of the structures. 

In [32], the authors applied 2-D theories to 

investigate the stability of elastic thick plates. Their 

study did not consider the stresses in the direction of the 

thickness axis. The outcome of their analysis was not a 

closed-form solution as the shape function used was 

assumed. The authors failed to cover plates with CCSS 

boundary conditions. The authors in [33] employed the 

displacement potential function method and used an 

assumed shape function to obtain the solution of 

buckling of thick plates that are simply supported. The 

authors applied the method of variable separation and 

satisfied the support conditions of the plate in order to 

establish the governing differential equations. Both 

authors in [28] and [29] did not use the displacement 

function that stems from the compatibility equation, 

and their study did not perform a bending analysis of 

CCSS rectangular plates.  

The distinguishing feature of this current study from 

other works is that previous studies used an assumed 

deflection function to produce an approximate solution 

instead of an exact functional from the equilibrium 

equation, thereby making their solution unrealistic for 

the plate analysis of any type of load and thickness 

configuration. This unrealistic result produced could be 

attributed to the inability of the previous scholars to 

achieve an exact displacement function produced from 

the equilibrium equation formulated from the first 

principle of elasticity [34]. 

Authors in [35] applied an exact shear deformation 

theory for the analysis of a simply supported 

rectangular thick plate under a uniformly distributed 

load. They have obtained the expression for the 

displacement, and buckling load that may occur due to 

the compressive forces for a rectangular plate from the 

equilibrium equation but neither analyze for the stresses 

which produce the real exact solution for bending 

analysis nor solve for the present boundary condition. 

As well, the author in [36] considered all the stress 

elements to produce an exact solution for bidirectional 

composites and sandwich plate analysis but did not 

achieve the deflection function from the equilibrium 

equation. 

Apart from the work of authors in [36-38], no work 

can be seen in the literature that adopted the 3-D plate 

theory to evaluate the bending and stress analysis of 

rectangular thick plates. Meanwhile, both authors did 

not study the plate at the first-two edge and the other 

edges simply (CCSS) or use the polynomial shape 

function which is easily applied to complex boundary 

conditions such as CCSS, so this research work is 

needed. 

In this study, nonlinear strain-displacement 

polynomial shape functions are employed for the 

analysis of a rectangular plate and suggest a more 

reliable plate theory that gives exact solutions for plates 

with varying thicknesses and still satisfies the boundary 

condition. This theory, which is based on the 3-D 

theory of elasticity and includes all of the transverse 

stress components is presented and applied to the 

bending analysis of CCSS rectangular plate analysis 

under uniformly distributed load. Furthermore, the 

effects of the aspect ratio of the transverse shear stress 

of isotropic plates are investigated and discussed. 

2. Methodology 

2.1. Kinematics/Constitutive Relationship 

By considering a rectangular plate subjected to 

uniformly distributed load as shown in Fig. 1 the 

displacement-strain relationship is established 

applying a consideration of non-linear deformation of 

the plate section as presented.  

The constitutive equations for five stress 

components are: 

𝑢 =  
𝑧𝑑𝑤

𝑑𝑦
+  𝐹. 𝜃𝑠𝑋     (1) 

𝑣 =  
𝑧𝑑𝑤

𝑑𝑦
+  𝐹. 𝜃𝑠𝑦     (2) 

Where, F is the profile of the plate.  

𝜀𝑥 =
𝜕𝑢

𝜕𝑥
       (3) 

𝜀𝑦 =
𝑑𝑣

𝜕𝑦
       (4) 

𝜀𝑧 =
𝜕𝑤

𝜕𝑧
       (5) 

𝜎𝑥 = 𝐸
[(−

𝑧𝜕2𝑤

𝑑𝑥2 +
𝐹𝜕𝜃𝑆𝑥

𝜕𝑥
)−𝜇(

𝑧𝜕2𝑤

𝑑𝑦2 +
𝐹𝜕𝜃𝑆𝑦

𝜕𝑦
)]

(1−𝜇2)
  (6) 

𝜎𝑦 = 𝐸
[(−

𝑧𝜕2𝑤

𝑑𝑦2  +
𝐹𝜕𝜃𝑆𝑥

𝜕𝑥
)−𝜇(

𝑧𝜕2𝑤

𝜕𝑥2 +
𝐹𝜕𝜃𝑆𝑦

𝜕𝑦
)]

(1−𝜇2)
  (7) 

𝜏𝑥𝑦 = 2𝐺 [−
𝑧𝜕2𝑤

𝜕𝑥𝜕𝑦
+ 𝐹 (

𝜕𝜃𝑆𝑥

𝑑𝑦
+

𝜕𝜃𝑆𝑦

𝑑𝑥
)]   (8) 

𝜏𝑥𝑧 = 2𝐺 [
𝑧𝜕2𝑤

𝜕𝑥𝜕𝑧
+ 𝐹 (

𝑑𝜃𝑆𝑥

𝜕𝑧
+

𝜕𝜃𝑆𝑧

𝜕𝑥
)]   (9) 

𝜏𝑦𝑧 = 2𝐺 [
𝑧𝜕2𝑤

𝜕𝑦𝜕𝑧
+ 𝐹 (

𝜕𝜃𝑆𝑦

𝜕𝑧
+

𝜕𝜃𝑆𝑧

𝜕𝑦
)]              (10) 

𝐺 =
𝐸(1−𝜇)

2(1−𝜇2)
                (11) 
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Let the non-dimensional coordinates be R = x/a, Q 

= y/b and S = z/t corresponding to x, y and z-axes 

respectively. Substituting appropriately, the six stresses 

in the plate becomes: 

𝑥 =
𝐸𝑡𝑠

(1+𝜇)(1−2𝜇)𝑎
[(1 − 𝜇) .

𝜕𝑥

𝜕𝑅
+



𝛽
.

𝜕𝑦

𝜕𝑄
+

𝑎

𝑠𝑡2 .
𝜕𝑤

𝜕𝑆
]  

(12) 

𝑦 =
𝐸𝑡𝑠

(1+𝜇)(1−2𝜇)𝑎
[ .

𝜕𝑥

𝜕𝑅
+

(1−𝜇)

𝛽
.

𝜕𝑦

𝜕𝑄
+

𝑎

𝑠𝑡2 .
𝜕𝑤

𝜕𝑆
]   (13) 

𝑧 =
𝐸𝑡𝑠

(1+𝜇)(1−2𝜇)𝑎
[ .

𝜕𝑥

𝜕𝑅
+



𝛽
.

𝜕𝑦

𝜕𝑄
+

(1−𝜇)𝑎

𝑠𝑡2 .
𝜕𝑤

𝜕𝑆
]    (14) 

𝑥𝑦 =
𝐸(1−2)𝑡𝑠

2(1+𝜇)(1−2𝜇)𝑎
. [

1

𝛽

𝜕𝑥

𝜕𝑄
+

𝜕𝑦

𝜕𝑅
]               (15) 

𝑥𝑧 =
𝐸(1−2)𝑡𝑠

2(1+𝜇)(1−2𝜇)𝑎
. [

𝑎

𝑡𝑠
𝑥 +

1

𝑡𝑠

𝜕𝑤

𝜕𝑅
]                (16) 

𝑦𝑧 =
𝐸(1−2)𝑡𝑠

2(1+𝜇)(1−2𝜇)𝑎
. [

𝑎

𝑡𝑠
𝑦 +

1

𝛽𝑡𝑠

𝜕𝑤

𝜕𝑄
]              (17) 

Given that: 𝛽 = a/t. 

2.2. Potential Energy Expressions 

Total energy expression being the algebraic 

summation of strain energy (M) and external work (V) 

is expressed mathematically as [39-41]: 

 = M − V                (18) 

The strain energy equation which is the dot product 

of stresses and strain [42-44] as obtained in equations 

(3) – (17) as follows: 

𝑀 =
𝑎𝑏𝑡

2
∫ ∫ ∫ (𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧

0.5

−0.5

1

0

1

0
  

+𝜏𝑥𝑦𝑥𝑦
+ 𝜏𝑥𝑧𝑥𝑧

+ 𝜏𝑦𝑧𝑦𝑧
) 𝑑𝑅 𝑑𝑄 𝑑𝑆  (19) 

While the potential energy for the plate with a 

uniformly distributed load is given as: 

𝑉 = 𝑎𝑏𝑞 ∫ ∫ 𝑤
1

0

1

0
𝑑𝑅 𝑑𝑄               (20) 

Where, the symbol w denotes the deflection function of 

the plate, while; q, a, and b denote the uniformly 

distributed load, length, and breadth of the plate, 

respectively. 

Thus, putting equations (19) and (20) into equation 

(18) after substituting equation (17) into (19) gives: 

 =
𝐷∗𝑎𝑏

2𝑎2 ∫ [(1 − 𝜇) (
𝜕𝑠𝑥

𝜕𝑅
)

2

 +
1

𝛽

𝜕𝑠𝑥

𝜕𝑅
.

𝜕𝑠𝑦

𝜕𝑄

1

0
   

        +
(1−𝜇)

𝛽2 (
𝜕𝑠𝑦

𝜕𝑄
)

2

+
(1−2)

2𝛽2 (
𝜕𝑠𝑥

𝜕𝑄
)

2

+
(1−2)

2
(

𝜕𝑠𝑦

𝜕𝑅
)

2

  

+
6(1−2)

𝑡2 (𝑎2𝑠𝑥
2 + 𝑎2𝑠𝑦

2 + (
𝜕𝑤

𝜕𝑅
)

2

+
1

𝛽2 (
𝜕𝑤

𝜕𝑄
)

2

  

+2𝑎. 𝑠𝑥
𝜕𝑤

𝜕𝑅
+

2𝑎.𝑠𝑦

𝛽

𝜕𝑤

𝜕𝑄
) +

(1−𝜇)𝑎2

𝑡4 (
𝜕𝑤

𝜕𝑆
)

2

  

−
2𝑞𝑎4𝑤

𝐷∗ ] 𝑑𝑅 𝑑𝑄               (21)  

 

 

2.3. Governing Energy Equation 

The solution of the general governing equation is 

obtained in line with the work of the authors in [35] to 

get the exact deflection equation and slope at the x and 

y-axes of the plate as presented in equations (22), (23), 

and (24) respectively.  

𝑤 = (𝑎0 +   𝑎1𝑅 +  
𝑎2𝑅2

2
+

𝑎3𝑅3

6
+  

𝑞𝑎4

𝐷
(

𝑛1

𝑤3
) .

𝑅4

24
) . (𝑏0   

+  𝑏1𝑄 + 
𝑏2𝑄2

2
+

𝑏3𝑄3

6
+ 

𝑞𝑎4

𝐷
(

𝑛1

𝑤3
) .

𝑄4

24
)          (22) 

𝜃𝑥 = (𝑎4 +   𝑎5𝑅 +
𝑎6𝑅2

2
+  

𝑞𝑎3

𝐷
(

𝑛4

𝑔2𝜃3
) .

𝑅3

6
) . (𝑏7 +   𝑏8𝑄  

+ 
𝑏9𝑄2

2
+

𝑏10𝑄3

6
+

𝑏11𝑄4

24
)   (23) 

𝑦 = (𝑎7 +   𝑎8𝑅 +  
𝑎9𝑅2

2
+

𝑎10𝑅3

6
+

𝑎11𝑅4

24
) . (𝑏4 +   𝑏5𝑄  

+
𝑏6𝑄2

2
+  

𝑞𝑎3

𝐷
(

∝3𝑛5

𝑔2𝜃1
) .

𝑄3

6
)   (24) 

Let: 

𝑤 = 𝐶1. ℎ                (25) 

𝜃𝑥 =  [
𝑑ℎ

𝑑𝑅
] [

𝐶2

𝑎
]                 (26) 

𝑦 = [
𝑑ℎ

𝑑𝑄
] [

𝐶3

𝑎𝛽
]                 (27) 

Where; h, C1, C2, and C3 are the plate shape function, 

coefficient of deflection, coefficient of shear 

deformation along the x-axis, and coefficient of shear 

deformation along the y-axis respectively. 

The solution of the governing equation is achieved 

by differentiation equation (21) with respect to 𝐶1,
𝐶2 , and 𝐶3 to get: 

𝜕Π

𝜕𝐶1
=

𝜕Π

𝜕𝐶2
=

𝜕Π

𝜕𝐶3
= 0                (28) 

The solution of equation (28) gives:  

 =
𝐷∗𝑎𝑏

2𝑎4
[(1 − 𝜇)𝐶2

2𝑘𝑥  +
1

𝛽2
[𝐶2. 𝐶3 +

(1−2)𝐶2
2

2
  

+
(1−2)𝐶3

2

2
] 𝑘𝑥𝑦 +

(1−𝜇)𝐶3
2

𝛽4 𝑘𝑦 + 6(1 − 2) (
𝑎

𝑡
)

2
([𝐶2

2  

 + 𝐶1
2 + 2𝐶1𝐶2]. 𝑘𝑧 +

1

𝛽2 . [𝐶3
2  

+2𝐶1𝐶3]. 𝑘2𝑧) −
2𝑞𝑎4𝑘ℎ𝐶1

𝐷∗
]       (29) 

Where: 

𝑘𝑥 = ∫ ∫ (
𝜕2ℎ

𝜕𝑅2)
2

1

0

1

0
𝑑𝑅𝑑𝑄                 (30) 

𝑘𝑥𝑦 = ∫ ∫ (
𝜕2ℎ

𝜕𝑅𝜕𝑄
)

2
1

0

1

0
𝑑𝑅𝑑𝑄                (31) 

𝑘ℎ = ∫ ∫ ℎ
1

0
.

1

0
𝑑𝑅𝑑𝑄                 (32) 

𝑘𝑦 = ∫ ∫ (
𝜕2ℎ

𝜕𝑄2)
2

1

0

1

0
𝑑𝑅𝑑𝑄                (33) 

𝑘𝑧 = ∫ ∫ (
𝜕ℎ

𝜕𝑅
)

21

0

1

0
𝑑𝑅𝑑𝑄                 (34) 

𝑘2𝑧 = ∫ ∫ (
𝜕ℎ

𝜕𝑄
)

21

0

1

0
𝑑𝑅𝑑𝑄                 (35) 
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Fig. 1 CCSS rectangular plate. 

Minimizing equation (21) with respect to 𝐶2 and 

simplifying the outcome gives: 

[(1 − 𝜇)𝑘𝑥 +
1

2𝛽2
(1 − 2)𝑘𝑥𝑦 + 6(1 − 2) (

𝑎

𝑡
)

2

𝑘𝑧] 𝐶2 

+ [
1

2𝛽2 𝑘𝑥𝑦] 𝐶3 = [−6(1 − 2) (
𝑎

𝑡
)

2

𝑘𝑧] 𝐶1 (36) 

Minimizing equation (21) with respect to 𝐶3 and 

simplifying the outcome gives: 

[
1

2𝛽2 𝑘𝑥𝑦] 𝐶2 + [
(1−𝜇)

𝛽4 𝑘𝑦 +
1

2𝛽2
(1 − 2)𝑘𝑥𝑦 +

6

𝛽2 (1  

−2) (
𝑎

𝑡
)

2

𝑘2𝑧] 𝐶3  = [−
6

𝛽2
(1 − 2) (

𝑎

𝑡
)

2

𝑘𝑄] 𝐶1   (37) 

Equations (38) and (39) are the solutions of 

equations (36) and (37) respectively. 

𝐶2 = 𝐴𝐶1                (38) 

𝐶3 = 𝐵𝐶1                (39) 

Minimizing equation (33) with respect to 𝐶1 and 

simplifying the outcome gives: 

6(1 − 2) (
𝑎

𝑡
)

2

([𝐶1 + 𝐶1𝐴]. 𝑘𝑧 +
1

𝛽2 . [𝐶1 + 𝐶1𝐵]. 𝑘2𝑧)   

−
𝑞𝑎4𝑘ℎ

𝐷∗ = 0     (40) 

Factorizing equation (40) and simplifying further 

gives: 

6(1 − 2) (
𝑎

𝑡
)

2

𝐶1 ([1 + 𝐴]. 𝑘𝑧 +
1

𝛽2 . [1 + 𝐵]. 𝑘2𝑧) =
𝑞𝑎4𝑘ℎ

𝐷∗   

(41) 

Thus: 

𝐶1 =
𝑞𝑎4

𝐷∗ ( 
𝑘ℎ

𝑇
)                (42) 

Let: 

𝐾 = 6(1 − 2) (
𝑎

𝑡
)

2

∗ ([1 + 𝐺2]. 𝑘𝑧 +
1

𝛽2
. [1 + 𝐺3]. 𝑘2𝑧) 

           (43)  

𝐴 =
(𝑠12𝑠23−𝑠13𝑠22)

(𝑠12𝑠12−𝑠11𝑠22)
               (44) 

𝐵 =
(𝑠12𝑠13−𝑠11𝑠23)

(𝑠12𝑠12−𝑠11𝑠22)
               (45) 

Where, 

𝑠11 = (1 − 𝜇)𝑘𝑥 +
1

2𝛽2
(1 − 2)𝑘𝑥𝑦 + 6(1 − 2) (

𝑎

𝑡
)

2

𝑘𝑧 

(46) 
 

𝑠22 =
(1−𝜇)

𝛽4
𝑘𝑦 +

1

2𝛽2
(1 − 2)𝑘𝑥𝑦 +

6

𝛽2
(1 − 2) (

𝑎

𝑡
)

2

𝑘2𝑧  

(47) 

𝑠23 = 𝑠32 = −
6

𝛽2
(1 − 2) (

𝑎

𝑡
)

2

𝑘2𝑧              (48) 

𝑠13 = −6(1 − 2) (
𝑎

𝑡
)

2

𝑘𝑧               (49) 

𝑠12 = 𝑠21 =
1

2𝛽2
𝑘𝑥𝑦              (50) 

𝐷∗ =
𝐸𝑡3

12(1+𝜇)(1−2𝜇)
               (51) 

D*, E, t denotes the modulus of rigidity of 3-D plate, 

modulus of elasticity and thickness of the plate 

respectively. 

2.4. Numerical Analysis 

The isotropic rectangular plate subjected to CCSS 

plate boundary condition shown in Fig. 1 at varying 

span to depth and aspect ratios of the plate is analyzed 

using the established polynomial deflection function in 

the previous section. 

The boundary conditions of the plate in Fig. 1 are as 

follows, At: 

𝑅 =  𝑄 =  0; Deflection (𝑤)  = 0                     (52) 

𝑅 =  𝑄 =  0; Slope ( 
𝑑𝑤

𝑑𝑅
=

𝑑𝑤

𝑑𝑄
) = 0             (53)                                                                                        

𝑅 =  𝑄 =  1; Deflection (𝑤) = 0             (54) 

𝑅 =  𝑄 =  1; Bending moment (
𝑑2𝑤

𝑑𝑅2 &
𝑑2𝑤

𝑑𝑄2) = 0 (55) 

The deflection function that satisfies the boundary 

conditions for one edge free and the other three edges 

clamped rectangular plate boundary conditions are 

determined as follows: 

Substituting equations (52) – (55) into the 

derivatives of w and solving gave constants: 

𝑅 = 0, 𝑤 = 0 

𝑄 = 0, 𝑤 = 0 

Solving, gave the following constants: 

𝑎0 = 0, 𝑏0 = 0                (56) 

For 𝑅 = 0, 
𝑑𝑤

𝑑𝑅
= 0 and 𝑄 = 0, 

𝑑𝑤

𝑑𝑄
= 0, thus 

𝑎1 = 0; 𝑏1 = 0                (57) 

For 𝑅 = 1, 
𝑑2𝑤

𝑑𝑅2 = 0 and 𝑄 = 1, 
𝑑2𝑤

𝑑𝑄2 = 0, thus 

𝑎2 =
𝐹𝑎4

8
; 𝑏2 =

𝐹𝑏4

8
               (58) 

For 𝑅 = 1, 𝑤 = 0 and 𝑄 = 1, 𝑤 = 0,  

𝑎3 =
−5𝐹𝑎4

8
; 𝑏3 =

−5𝐹𝑏4

8
               (59) 

Substituting these constants back into equations 
(56) – (59) back into equation (22) and solving gives: 

𝑤 =
𝐹𝑎4

48
(3𝑅2 − 5𝑅3 +  2𝑅4).

𝐹𝑏4

48
(3𝑄2 − 5𝑄3 +  2𝑄4)  (60) 
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Let the amplitude, 

𝐶1 =
(𝐹𝑎4.𝐹𝑏4)

2304
                 (61) 

and 

ℎ = (1.5𝑅2 − 2. 5𝑅3 +  𝑅4). (1.5𝑄2 − 2.5𝑄3 +  𝑄4)    (62) 

Using equations (30) – (35), the stiffness 

coefficients of the CCSS rectangular plate are 

established as presented in Fig. 2.  

2.5. Exact Displacement and Stress Expression 

The expression for the in-plane displacement (𝑢 and 

𝑣), deflection (𝑤) and stress of 3-D plate were derived 

by substituting the values of 𝐶1, ∁2, and ∁3 in equations 

(38), (39) and (42) into equations (12) – (17), simplify 

appropriately, gives: 

𝑢 = F.
𝐶2

𝑎
.

∂ℎ

∂𝑄
                 (63) 

𝑤 = 𝐶1(1.5𝑅2 − 2.5𝑅3 +  𝑅4). (1.5𝑄2 − 2.5𝑄3 +  𝑄4) (64) 

𝑥 =
Ets

(1+μ)(1−2μ)a
[ 𝐶2

∂2ℎ

∂𝑅2 +   
𝐶3

𝛽2  
𝑑2ℎ

𝑑𝑄2 +
(1−μ)a

𝑠t2 .
∂w

∂S
]       (65) 

𝑧 =
Ets

(1+μ)(1−2μ)a
[


𝐶2
.

∂2ℎ

∂𝑅2 +   
𝐶3

𝛽
 

∂2ℎ

∂𝑄2 +
(1−μ)a

𝑠t2 .
∂w

∂S
]        (66) 

𝑥𝑦 =
Ets

2(1+μ)(1−2μ)
.

1

𝛽𝑎3
[ 𝐶2 + 𝐶3]

∂2ℎ

∂𝑅 ∂𝑄
               (67) 

𝑦𝑧 =
Ets

2(1+μ)(1−2μ)
.

1

𝛽𝑎2 [ 𝐶1 +
𝐶3

𝑡
.

∂𝐹

∂𝑆
]

∂ℎ

∂𝑄
              (68) 

3. Results and Discussion 

Fig. 2 shows the values of stiffness coefficient, k1, 

k2, k3, k4, k5, and kh for various supports while Table 1 

contains the result of the non-dimensional value of 

displacements and stresses in a rectangular thick plate 

with length to breadth ratio of 1.5 at different span-

thickness aspect ratio. These numerical values were 

obtained from the equations (30) – (35). The table 

contains the numerical representation of the result of 

the non-dimensional displacements (u, v, and w) and the 

stress characteristics of a CCSS rectangular plate using 

the established exact polynomial displacement 

function. The numerical and graphical comparison was 

made to show the disparities between the present study 

and the literature under review to show the effect of 

aspect ratio on the 3-D bending and stress analysis of 

rectangular plates at varying thicknesses. The span to 

thickness ratio considered ranges between 4, 5, 10, 15, 

20, 50, 100, and CPT, which is seen to span from the 

thick plate, moderately thick plate, and thin plate [37]. 

The present work obtained a non-dimensional result of 

the stresses of the plate by expressing the displacement 

function of the plate in the form of a polynomial to 

analyze the effect of the aspect ratio of bending 

characteristics of the plate. 

It is observed (Tables 1 – 2) that the value of the 

normal stress along the x, y, and z axes a shear stress 

perpendicular to the x-y, x-z, and y-z planes decreases 

as the span-thickness ratio increases as seen in Tables 1 

and 2. It is also observed in the tables that the non-

dimensional displacement (u, v, and w) characteristics 

decrease with increases in the value of the span-

thickness ratio. The value of deflection is discovered to 

vary less as the span to thickness increases. It is also 

observed in the tables that the non-dimensional 

displacement (u, v, and w) characteristics decrease with 

increases in the value of the span-thickness ratio. The 

value of deflection is discovered to vary less as the span 

to thickness increases, this is equal to the value of the 

CPT at a span to thickness ratio of 15 and above. 

A critical look at Table 1 shows that the 

displacement (u, v, and w) and stress characteristics 

increase as the value of the aspect ratio of the plate 

increases. Also, it was deduced that the normal stress 

and shear stress characteristics also decrease as the 

span-thickness ratio increases. This implies that the 

failure in a plate structure is bound to occur as more 

stresses are induced within the plate element which 

leads to the bending of the elementary section of the 

plate material.  

 

Fig. 2 Stiffness coefficient for the CCSS plate boundary 

condition. 

Table 1. The result of displacements and stresses of a CCSS square plates. 

𝛽 = a/t 𝑤 𝑢 𝑣 𝜎𝑥 𝜎𝑦 𝜎𝑧 𝜏𝑥𝑦 𝜏𝑥𝑧 

4 0.003151 0.001113 0.001113 0.247282 0.247282 0.240569 0.008995 0.004226 

5 0.002681 0.001008 0.001008 0.227704 0.227704 0.224145 0.008116 0.002579 

10 0.002076 0.000874 0.000874 0.202575 0.202575 0.202639 0.006989 0.000465 

15 0.001967 0.000851 0.000851 0.198038 0.198038 0.198699 0.006785 0.000083 

20 0.001929 0.000841 0.000841 0.196459 0.196459 0.197323 0.006714 -0.000051 

50 0.001889 0.000832 0.000832 0.194758 0.194758 0.195839 0.006416 -0.000110 

100 0.001883 0.000831 0.000831 0.194516 0.194516 0.195627 0.006627 -0.000213 

CPT 0.001883 0.000831 0.000831 0.194516 0.194516 0.195627 0.006627 -0.000213 
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Table 2. Displacement and stresses of a CCSS plate aspect ratio of 1.5. 

𝛽 = a/t 𝑤 𝑢 𝑣 𝜎𝑥 𝜎𝑦 𝜎𝑧 𝜏𝑥𝑦 𝜏𝑥𝑧 

4 0.005392 0.002076 0.001370 0.251789 0.249589 0.245189 0.010905 0.006215 

5 0.004747 0.001940 0.001260 0.235365 0.233165 0.228765 0.010063 0.003861 

10 0.003911 0.001765 0.001114 0.213859 0.211659 0.207259 0.008963 0.000789 

15 0.003759 0.001734 0.001087 0.209919 0.207719 0.203319 0.008762 0.000227 

20 0.003706 0.001723 0.001078 0.208543 0.206343 0.201943 0.008692 0.000031 

50 0.003649 0.001711 0.001068 0.207059 0.204859 0.200459 0.008616 -0.000110 

100 0.003640 0.001709 0.001066 0.206847 0.204647 0.200247 0.008605 -0.000210 

CPT 0.003640 0.001709 0.001066 0.206847 0.204647 0.200247 0.008605 -0.000210 

Table 3. Comparative analysis of present study for length to breadth ratio (∝= b/a) of 1.5 and past studies showing 

their percentage difference calculations of deflection (w) at varying span-depth ratio (β = a/t). 

𝛽 = a/t Present work 
(𝑤) 

Previous study 

[37] 
Percentage 

difference (%) 
Previous study 

[36] 
Percentage 

difference (%) 
4 0.005392 0.005612 4.08 0.005545 2.84 
5 0.004747 0.004967 4.63 0.004940 4.07 

10 0.003911 0.004131 5.62 0.004129 5.57 
15 0.003759 0.003979 5.85 0.003978 5.83 
20 0.003706 0.003926 5.94 0.003926 5.94 

509 0.003649 0.003869 6.03 0.003869 6.03 
100 0.003640 0.003860 6.04 0.003864 6.15 
CPT 0.003640 0.003860 6.04 0.003864 6.15 

  Average difference (%) 5.5  5.3 

 Total average difference (%) 5.4 

 

Table 1 shows that, at span to thickness ratio 

between 4 and 15, the value of out-of-plane 

displacement varies between 0.003151 and 0.001967. 

These values decrease and maintain a constant value of 

0.0019 at the span to a thickness between 15 till 100 

which is equal to the value of the CPT. Similarly, Table 

2 shows that, at span to thickness ratio between 4 and 

15, the value of out-of-plane displacement varies 

between 0.005392 and 0.003759. These values 

decrease and maintain a constant value of 0.0037 at the 

span-thickness between 15 till 100 which is equal to the 

value of the CPT. 

It’s worth noting that, the plate whose deflection 

and transverse shear stress varies very much from zero 

is categorized as a thick plate. Thus, the span-thickness 

ratio for these categories of rectangular plates is that the 

thick plate is categorized as the plate with the span to 

thickness ratio∶ while the thin plate is categorized as the 

plate with the span to thickness ratio. 

Meanwhile, the present theory of stress prediction 

shows that the result of the displacement and stress of 

thin and moderately thick plates using the 3-D theory is 

the same for the bending analysis of rectangular plates 

under the CCSS boundary condition. Thus, the results 

obtained in the Figures reveal that the values of critical 

buckling load increase as the span-thickness ratio 

increases. This reveals that as the span or the depth of 

the plate is altered, it affects the performance in terms 

of the serviceability of the plate. Thus, caution must be 

taken when selecting the depth and other dimensions 

along the x and y co-ordinate of the plate to ensure the 
safety and accuracy of the analysis. 

The comparative analysis performed (as presented 

in Table 3) showed that the present model using a 

derived shape function is safer and more credible to use 

as it considered the six stress elements to yield the exact 

solution for the analysis of a thick plate that is clamped 

supported at the first edge and other three edges simply 

supported (CCSS). Hence, the result of the present 

analysis, which contains all the stress elements and 

ensured that the variation of the stresses through the 

thickness of the plate which induced buckling are 

uniformly distributed, showed that the present method 

can be used with confidence for bending analysis of 

plate. The plate with the largest thickness (a/t of 4) 

gives a percentage difference of 2.84% and 4.08% of 

the work of authors in [36] and [37] respectively when 

compared with the present study. On the other hand, the 

thinnest plate (a/t of 100 and above) gives a percentage 

difference of 6.15% and 6.04% of the work of authors 

in [35] and [36] respectively, when compared with the 

present study.   

Finally, it can be deduced that the overall average 

percentage difference values of deflection for the 

present theory and those of authors in [36] and [37] are 

5.3% and 5.5% respectively. This means that the 2-D 

RPT with exact deflection gives a closer result when 

compared with the exact 3-D plate theory than those 

with an assumed deflection in the analysis. 

4. Conclusion 

The 3-D bending and stress analysis of thick 

rectangular plates using the 3-D elasticity theory has 

been investigated. From this study, the following 

conclusion has been drawn: 

(a) It is concluded that the present theory of stress 

prediction shows that the result of the 

displacement and stress of thin and moderately 

thick plates using the 3-D theory is the same for 
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the bending analysis of rectangular plates under 

the CCSS boundary condition. 

(b) Plate analysis required a 3-D analogy for a true 

solution, but the 2-D shear deformation theory 

gives an unrealistic solution. 

(c) The 3-D exact plate model developed in this study 

is variationally consistent and can be used in the 

analysis of any category of the plate. 
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