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Abstract. In the modern world, big data is used in machine learning, which is 
quite difficult to process on a single computer, so various methods for parallel 
processing of such data are being developed. But what about microcontrollers? 
In a cloud system, microcontrollers are often found, thanks to which they make 
pacification of various devices, and sometimes you have to work with big data. 
In microcontrollers, the memory is quite small and the processor is not as pro-
ductive as on modern supercomputers. Therefore, many scientists propose va-
rious methods for parallel processing of big data for embedded systems, one of 
such methods is proposed by the author of this article.
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1 Introduction

In light of recent technological changes and advancements, distributed sys-
tems are becoming more and more popular. Many leading companies have 
built sophisticated distributed systems to handle billions of queries and 
updates without downtime. Also, in the modern world, traditional storage 
systems cannot expand indefinitely or at least fast enough, which is espe-
cially critical for deep learning tasks when there is more data than can fit on 
one machine. Keeping the data separate from the machine learning system 
where it is processed and where the model is trained can undermine efforts 
to speed up the neural network training process, especially when there is so 
much data that it does not fit on one machine.

2 Distributed system and Machine Learning

A distributed system is a system consisting of many devices distributed in 
space, each of which is independent of the others, but interacts with them 
to perform a common task. A process control system, characterized by the 
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construction of a distributed input-output system and decentralized data 
processing. Elements of the system can be located at a fairly large distance, 
and communication between them can be performed via the Internet. 

One can think of several methods to parallelize and/or distribute com-
putation across multiple machines and multiple cores [1]. There are some 
methods used to achieve faster training times:

• Local training: 
– The model and data are stored on a single machine [1].

• Multi-core: 
– The whole model and the data can be fit into the memory of a 

single machine with multiple cores. These multiple cores share the 
memory (PRAM model). There are two ways to use multiple cores 
to speed up the training process [1].

• Distribute training [2]:
– Data parallelism [1]: The same operation is performed simultane-

ously (that is, in parallel) on the elements in the original collection 
or array. In data parallel operations, the source collection is parti-
tioned so that multiple threads can work on different segments at 
the same time.

An important area of research is the development of machine learn-
ing methods specifically designed for large samples, as well as the develop-
ment of distributed computing systems that allow the application of exist-
ing methods on large samples. These systems are required to:

• Flexibility - Since the code for map and reduce functions are written 
by the user, there is considerable flexibility in specifying the exact 
processing that is required over the data rather than specifying it.

• Scalability - The main problem with many applications is the ability to 
scale to increase data volumes. in particular, many are pursuing elastic 
scalability, which can be dynamically scaled up and down as compute 
requirements change. Such a “pay-as-you-go” service model is now 
widely adopted by the cloud computing service providers, and MapRe-
duce can support it seamlessly through data parallel execution [3].

• Fault tolerance - The failed map task can be repeated correctly by 
reloading the replica. The failed reduce task can also be repeated by 
re-pulling the data from the completed map tasks [3]. 

• Versatility - Machine learning is usually a part of the data analysis 
process, including data preprocessing, feature calculation, selection 
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of training hyperparameters, analysis of the results of using the mod-
el in an applied problem, etc. Therefore, the possibility of solving all 
problems in one system is also a weighty argument.

There are the following approaches to developing programs for distrib-
uted machine learning: MapReduce computational model, MPI message 
passing, parameter server architecture, Spark system, graph computational 
models. Each of these approaches limits the developer in some way and as-
sumes a certain style of software development.

When it comes to distribution, there are two fundamentally different 
ways of partitioning the problem across all machines:

• Data parallel: The data is partitioned as per number of worker nodes 
in the system. All workers apply the same algorithm to different parti-
tions of data. The same model is available to all worker nodes (either 
through centralization, or through replication) so that a single coher-
ent output emerges naturally. This assumes i.i.d (independent and 
identically distribution) of data samples which is valid for most of the 
ML algorithms.

• Model parallel: Exact copies of entire data is processed by the worker 
nodes, which operate on different parts of the model. The model is 
aggregate of all model parts. This cannot be applied to every ML algo-
rithm, as parameters are often not divisible.

• Data and Model parallel: Ensemble applies a combination of two ap-
proach mentioned above. Training happens in two stages; first at lo-
cal sites where the data is stored and second in the global site that 
aggregates over the individual results of the first stage. This global 
aggregation can be achieved by applying ensemble methods such as 
Bagging, Boosting, Random Forests, Stacking.

The topology of a distributed machine learning system is an important 
part of a distributed machine learning architectural design. Based on the 
architectural pattern, various nodes of a distributed system are used. How-
ever, the choice of template affects the role that a node can play in the 
degree of communication between nodes and in the fault tolerance of the 
system. Also one of the decisive factors for the topology is the degree of 
distribution: 

• Centralized systems use a strictly hierarchical approach to aggrega-
tion, which occurs in one central place. 

• Decentralized systems allow intermediate aggregation.
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There are several schemes for distributed topologies:
• Trees: In Tree topology, each node communicates only with its parent 

or child nodes.
• Rings: In situations where the communication system does not 

provide efficient support for broadcast or where communication 
overhead needs to be kept to a minimum, nodes synchronize only 
through messages.

• Parameter server: Uses a decentralized set of workers with a centrally 
maintained shared state. All model parameters are stored in a seg-
ment on each parameter server. From the global shared memory, 
they can be read and written as a key and value store.

• Peer to peer: In a fully distributed model, each node has its own copy 
of the parameters, and workers interact directly with each other. This 
has the advantage of higher scalability and the elimination of single 
points of failure in the system. 

3 Approach

A distributed system is a system consisting of many devices distributed in 
space, each of which is independent of the others, but interacts with them 
to perform a common task. 

The proposed approach in distributed machine learning is to distribute 
data between different microcontrollers. For this, the project used I2C com-
munication protocols as well as network protocols. Algorithms for data par-
allelization and algorithms for distributed systems were also used. 

The principle of operation of this idea is that communication protocols 
between microcontrollers are used, as well as algorithms for dividing large 
data into smaller pieces that this microcontroller can process. This principle 
of operation can be similar to the principle of operation of the grid system. 
Figure 1 shows how microcontrollers are configured to communicate with 
each other via the I2C protocol. As can be seen from Fig. 1 communica-
tion protocol works through wires, thus the advantage may be that there 
is no delay in data transmission, as well as loss as is the case with wireless 
transmission (tcp, udp protocols, etc.). Moreover, the performance of I2C 
protocol is 100kB/s. One of the algorithms for distributing data between 
microcontrollers is shown in Figure 2, you can see that this algorithm re-
sembles MapReduce which divides the data into smaller data, after which it 
is processed and combined to obtain the final result.
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Also in this project, various machine learning algorithms (KNN, k-means, 
perceptron, etc.) are used, which have shown themselves quite effectively. 
In the table 1 can be seen all existing algorithms with their time complexity.

3 Approach 

3 Approach 

Fig. 2. Work process

Fig. 1. Communication through I2C.
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One of the most important in the study and analysis of the algorithm 
is to determine the complexity of the algorithm. Big(O) notation is an algo-
rithm complexity metric. It defines the relationship between the number of 
inputs and the steps taken by the algorithm to process those inputs. Table 1 
shows algorithms in machine learning and their complexity.

Table 1.  Complexity algorithm

Algorithm Complexity Worst complexity

k-NN O(n) O(n*m)

Support Vector Machine O(n^2) O(n^3)

Decision Tree O(log(n)) O(n)

k-Means O(n) O(n^2)

Naive Bayes O(n*d) O(m*(n-m+1))

Random Forest O(v * n log(n)) O(log(n))

Linear Regression O(k^2*(n + k)) -

3.1 I2C

I2C is a synchronous communication protocol, which means that both de-
vices that communicate using this protocol must share a common clock sig-
nal. Since only 2 lines (wires) are used in this protocol, a synchronization sig-
nal must be transmitted along one of them, and useful information must be 
transmitted along the other. The defining feature of I2C is that each device 
on the bus must be connected to the clock (SCL for short) and data (SDA for 
short) lines via open-drain (or open-collector) output drivers.  There are two 
conditions  in  I2C  protocol that  is  STARI  condition  and  STOP  condition 
which  are always  generated  by  the  master.  In  START  condition  high to  
low  transition  on  the  SDA  line  while  SCL  is  high and  in STOP  condition  
a  low  to  high  transition  on  the  SDA  line while SCL is high. Data transfer 
is initiated by the master, which sends the address of the required device 
to the bus, clocking is also carried out by the master. But, at the same time, 
the Slave device has the ability to “hold” the clock line, as if informing the 
Master device that it does not have time to receive or send data, which is 
sometimes very useful. Clock generation is always the responsibility of the 
master; each master generates its own clock signal when sending data over 
the bus.
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The exchange procedure ends with the master generating a STOP state - 
the transition of the state of the SDA line from a low state to a HIGH state 
with a HIGH state of the SCL line.

The START and STOP states are always generated by the master. The 
bus is considered to be busy after the START condition is latched. The bus is 
considered free some time after the STOP condition is fixed. 

This acts as an “Attention” signal to all of the connected devices, all ICs 
on the bus will listen to the bus for incoming data [4]. After receiving the 
Slave address, the device must inform the master about the acceptance of 
the address, which confirms the very fact of the existence of a Slave device 
with such an address on the line. Having received the address, all ICs will 
compare it with their own address, if it does not match, they simply wait 
until the bus is released by the stop condition [4]. 

Confirmation is required when transferring data. The corresponding 
synchronization pulse is generated by the master. The transmitter releases 
(HIGH) the SDA line for the duration of the acknowledge clock. The receiver 
must hold the SDA line during the HIGH state of the acknowledgment clock 
in a stable LOW state.

In the event that the receiving slave cannot acknowledge its address (for 
example, when it is currently performing any real-time functions), the data 
line should be left in the HIGH state. The master can then issue a STOP sig-
nal to interrupt the data transfer.

If a master-receiver is involved in the transfer, then it must report the 
end of the transfer to the slave-transmitter by not acknowledging the last 
byte. The slave-transmitter must release the data line in order to allow the 
master to issue a STOP signal or repeat the START signal.

3.2 Microcontrollers

To successfully develop a schematic diagram, it is needed to immediately 
make a list of materials that will be used in its construction. In this work, 5 
microcontrollers are used, below is a table 2 of used microcontrollers and 
their technical characteristics.

As can be seen from table 2, all 5 microcontrollers have different mem-
ory sizes, different processors, as well as different voltage consumption. 
According to these characteristics, these devices were selected.
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Table 2. Characteristics of microcontrollers

Character-
istics

Arduino 
Uno

Arduino 
Mega 2560

Arduino Nano 
33 BLE Sense

STM32L053R8 Raspberry Pi 4

Processor ATmega32P ATmega2560 ARM Cortex-M4 ARM Cortex-M0+ ARM Cortex-A72

Clock Speed 16MHz 16MHz 64MHz 32MHz 1.5GHz

Flash Memory 32kB 256kB 1MB 64kB 32GB

SRAM 2kB 8kB 256kB 8kB 2GB

Voltage 5V 5V 3.3V 3.6V 5V

Digital I/O 14 54 14
51 40

Analog Pins 6 15 8

3.3 Results

In Figure 3, you can see the principle of operation, the first step is data paral-
lelization, then COM4 processes part of its data and in parallel transfers the 
rest of the data to the COM3 device. COM3, in turn, gives a message that it 
received data, displays the size and the beginning of the classification of the 
algorithm that was launched. Thus, it can be seen that the data transfer rate 
over the wire using the I2C protocol is 100kB / s, moreover, the probability 
of data loss is very low, as well as the delay if Internet protocols were used.

Fig. 3. Results.

Comparing my approach with the author of “Evaluation of MapReduce-
Style Computation on a Cluster of Arduinos”, the algorithmic approach to 
splitting big data is similar, the only advantage in his approach is that his 
algorithm can read data from external devices. brands of microcontrollers, 
and not the use of machine learning methods.
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4 Conclusions

In its current form, this work shows the effectiveness of using the proposed 
approach. Firstly, due to the flexibility of the I2C protocol, you can connect 
several devices that can communicate with each other and transmit infor-
mation. Secondly, the algorithm that is used to implement data paralleliza-
tion is similar to the MapReduce algorithm that is effectively used for com-
mercial purposes.

At the moment, several machine learning algorithms are used, but even 
these algorithms can be used quite effectively in different projects. In addi-
tion, the author thinks that a faster SD card interface would be a possible 
improvement. Even if a single peripheral can provide I/O to an SD card at 
maximum I2C or SPI bandwidth, storage can be used as intermediate stor-
age, greatly improving the size of the problems it can handle.

In the future, it is planned to add more machine learning methods as 
well as the use of Internet protocols.
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