
Distributed machine learning for IoT

Volodymyr Kadzhaia, Aistis Raudys

Faculty of Mathematics and Informatics,
Vilnius University, Didlaukio st. 47, Vilnius
vkadzhaia@gmail.com, aistis.raudys@mif.vu.lt

Abstract. In the modern world, big data is used in machine learning, which is
quite difficult to process on a single computer, so various methods for parallel
processing of such data are being developed. But what about microcontrollers?
In a cloud system, microcontrollers are often found, thanks to which they make
pacification of various devices, and sometimes you have to work with big data.
In microcontrollers, the memory is quite small and the processor is not as pro-
ductive as on modern supercomputers. Therefore, many scientists propose va-
rious methods for parallel processing of big data for embedded systems, one of
such methods is proposed by the author of this article.

Keywords: Distributed machine learning, IoT, MapReduce, grid computing, mi-
crocontrollers.

1 Introduction

In light of recent technological changes and advancements, distributed sys-
tems are becoming more and more popular. Many leading companies have
built sophisticated distributed systems to handle billions of queries and
updates without downtime. Also, in the modern world, traditional storage
systems cannot expand indefinitely or at least fast enough, which is espe-
cially critical for deep learning tasks when there is more data than can fit on
one machine. Keeping the data separate from the machine learning system
where it is processed and where the model is trained can undermine efforts
to speed up the neural network training process, especially when there is so
much data that it does not fit on one machine.

2 Distributed system and Machine Learning

A distributed system is a system consisting of many devices distributed in
space, each of which is independent of the others, but interacts with them
to perform a common task. A process control system, characterized by the

Copyright © Volodymyr Kadzhaia, Aistis Raudys, 2022. Published by Vilnius University Press. This is an Open Access
article distributed under the terms of the Creative Commons Attribution License (CC BY), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original author and source are credited.
DOI: https://doi.org/10.15388/LMITT.2022.4

36 / Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai

construction of a distributed input-output system and decentralized data
processing. Elements of the system can be located at a fairly large distance,
and communication between them can be performed via the Internet.

One can think of several methods to parallelize and/or distribute com-
putation across multiple machines and multiple cores [1]. There are some
methods used to achieve faster training times:

• Local training:
– The model and data are stored on a single machine [1].

• Multi-core:
– The whole model and the data can be fit into the memory of a

single machine with multiple cores. These multiple cores share the
memory (PRAM model). There are two ways to use multiple cores
to speed up the training process [1].

• Distribute training [2]:
– Data parallelism [1]: The same operation is performed simultane-

ously (that is, in parallel) on the elements in the original collection
or array. In data parallel operations, the source collection is parti-
tioned so that multiple threads can work on different segments at
the same time.

An important area of research is the development of machine learn-
ing methods specifically designed for large samples, as well as the develop-
ment of distributed computing systems that allow the application of exist-
ing methods on large samples. These systems are required to:

• Flexibility - Since the code for map and reduce functions are written
by the user, there is considerable flexibility in specifying the exact
processing that is required over the data rather than specifying it.

• Scalability - The main problem with many applications is the ability to
scale to increase data volumes. in particular, many are pursuing elastic
scalability, which can be dynamically scaled up and down as compute
requirements change. Such a “pay-as-you-go” service model is now
widely adopted by the cloud computing service providers, and MapRe-
duce can support it seamlessly through data parallel execution [3].

• Fault tolerance - The failed map task can be repeated correctly by
reloading the replica. The failed reduce task can also be repeated by
re-pulling the data from the completed map tasks [3].

• Versatility - Machine learning is usually a part of the data analysis
process, including data preprocessing, feature calculation, selection

 Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai / 37

of training hyperparameters, analysis of the results of using the mod-
el in an applied problem, etc. Therefore, the possibility of solving all
problems in one system is also a weighty argument.

There are the following approaches to developing programs for distrib-
uted machine learning: MapReduce computational model, MPI message
passing, parameter server architecture, Spark system, graph computational
models. Each of these approaches limits the developer in some way and as-
sumes a certain style of software development.

When it comes to distribution, there are two fundamentally different
ways of partitioning the problem across all machines:

• Data parallel: The data is partitioned as per number of worker nodes
in the system. All workers apply the same algorithm to different parti-
tions of data. The same model is available to all worker nodes (either
through centralization, or through replication) so that a single coher-
ent output emerges naturally. This assumes i.i.d (independent and
identically distribution) of data samples which is valid for most of the
ML algorithms.

• Model parallel: Exact copies of entire data is processed by the worker
nodes, which operate on different parts of the model. The model is
aggregate of all model parts. This cannot be applied to every ML algo-
rithm, as parameters are often not divisible.

• Data and Model parallel: Ensemble applies a combination of two ap-
proach mentioned above. Training happens in two stages; first at lo-
cal sites where the data is stored and second in the global site that
aggregates over the individual results of the first stage. This global
aggregation can be achieved by applying ensemble methods such as
Bagging, Boosting, Random Forests, Stacking.

The topology of a distributed machine learning system is an important
part of a distributed machine learning architectural design. Based on the
architectural pattern, various nodes of a distributed system are used. How-
ever, the choice of template affects the role that a node can play in the
degree of communication between nodes and in the fault tolerance of the
system. Also one of the decisive factors for the topology is the degree of
distribution:

• Centralized systems use a strictly hierarchical approach to aggrega-
tion, which occurs in one central place.

• Decentralized systems allow intermediate aggregation.

38 / Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai

There are several schemes for distributed topologies:
• Trees: In Tree topology, each node communicates only with its parent

or child nodes.
• Rings: In situations where the communication system does not

provide efficient support for broadcast or where communication
overhead needs to be kept to a minimum, nodes synchronize only
through messages.

• Parameter server: Uses a decentralized set of workers with a centrally
maintained shared state. All model parameters are stored in a seg-
ment on each parameter server. From the global shared memory,
they can be read and written as a key and value store.

• Peer to peer: In a fully distributed model, each node has its own copy
of the parameters, and workers interact directly with each other. This
has the advantage of higher scalability and the elimination of single
points of failure in the system.

3 Approach

A distributed system is a system consisting of many devices distributed in
space, each of which is independent of the others, but interacts with them
to perform a common task.

The proposed approach in distributed machine learning is to distribute
data between different microcontrollers. For this, the project used I2C com-
munication protocols as well as network protocols. Algorithms for data par-
allelization and algorithms for distributed systems were also used.

The principle of operation of this idea is that communication protocols
between microcontrollers are used, as well as algorithms for dividing large
data into smaller pieces that this microcontroller can process. This principle
of operation can be similar to the principle of operation of the grid system.
Figure 1 shows how microcontrollers are configured to communicate with
each other via the I2C protocol. As can be seen from Fig. 1 communica-
tion protocol works through wires, thus the advantage may be that there
is no delay in data transmission, as well as loss as is the case with wireless
transmission (tcp, udp protocols, etc.). Moreover, the performance of I2C
protocol is 100kB/s. One of the algorithms for distributing data between
microcontrollers is shown in Figure 2, you can see that this algorithm re-
sembles MapReduce which divides the data into smaller data, after which it
is processed and combined to obtain the final result.

 Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai / 39

Also in this project, various machine learning algorithms (KNN, k-means,
perceptron, etc.) are used, which have shown themselves quite effectively.
In the table 1 can be seen all existing algorithms with their time complexity.

3 Approach

3 Approach

Fig. 2. Work process

Fig. 1. Communication through I2C.

40 / Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai

One of the most important in the study and analysis of the algorithm
is to determine the complexity of the algorithm. Big(O) notation is an algo-
rithm complexity metric. It defines the relationship between the number of
inputs and the steps taken by the algorithm to process those inputs. Table 1
shows algorithms in machine learning and their complexity.

Table 1. Complexity algorithm

Algorithm Complexity Worst complexity

k-NN O(n) O(n*m)

Support Vector Machine O(n^2) O(n^3)

Decision Tree O(log(n)) O(n)

k-Means O(n) O(n^2)

Naive Bayes O(n*d) O(m*(n-m+1))

Random Forest O(v * n log(n)) O(log(n))

Linear Regression O(k^2*(n + k)) -

3.1 I2C

I2C is a synchronous communication protocol, which means that both de-
vices that communicate using this protocol must share a common clock sig-
nal. Since only 2 lines (wires) are used in this protocol, a synchronization sig-
nal must be transmitted along one of them, and useful information must be
transmitted along the other. The defining feature of I2C is that each device
on the bus must be connected to the clock (SCL for short) and data (SDA for
short) lines via open-drain (or open-collector) output drivers. There are two
conditions in I2C protocol that is STARI condition and STOP condition
which are always generated by the master. In START condition high to
low transition on the SDA line while SCL is high and in STOP condition
a low to high transition on the SDA line while SCL is high. Data transfer
is initiated by the master, which sends the address of the required device
to the bus, clocking is also carried out by the master. But, at the same time,
the Slave device has the ability to “hold” the clock line, as if informing the
Master device that it does not have time to receive or send data, which is
sometimes very useful. Clock generation is always the responsibility of the
master; each master generates its own clock signal when sending data over
the bus.

 Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai / 41

The exchange procedure ends with the master generating a STOP state -
the transition of the state of the SDA line from a low state to a HIGH state
with a HIGH state of the SCL line.

The START and STOP states are always generated by the master. The
bus is considered to be busy after the START condition is latched. The bus is
considered free some time after the STOP condition is fixed.

This acts as an “Attention” signal to all of the connected devices, all ICs
on the bus will listen to the bus for incoming data [4]. After receiving the
Slave address, the device must inform the master about the acceptance of
the address, which confirms the very fact of the existence of a Slave device
with such an address on the line. Having received the address, all ICs will
compare it with their own address, if it does not match, they simply wait
until the bus is released by the stop condition [4].

Confirmation is required when transferring data. The corresponding
synchronization pulse is generated by the master. The transmitter releases
(HIGH) the SDA line for the duration of the acknowledge clock. The receiver
must hold the SDA line during the HIGH state of the acknowledgment clock
in a stable LOW state.

In the event that the receiving slave cannot acknowledge its address (for
example, when it is currently performing any real-time functions), the data
line should be left in the HIGH state. The master can then issue a STOP sig-
nal to interrupt the data transfer.

If a master-receiver is involved in the transfer, then it must report the
end of the transfer to the slave-transmitter by not acknowledging the last
byte. The slave-transmitter must release the data line in order to allow the
master to issue a STOP signal or repeat the START signal.

3.2 Microcontrollers

To successfully develop a schematic diagram, it is needed to immediately
make a list of materials that will be used in its construction. In this work, 5
microcontrollers are used, below is a table 2 of used microcontrollers and
their technical characteristics.

As can be seen from table 2, all 5 microcontrollers have different mem-
ory sizes, different processors, as well as different voltage consumption.
According to these characteristics, these devices were selected.

42 / Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai

Table 2. Characteristics of microcontrollers

Character-
istics

Arduino
Uno

Arduino
Mega 2560

Arduino Nano
33 BLE Sense

STM32L053R8 Raspberry Pi 4

Processor ATmega32P ATmega2560 ARM Cortex-M4 ARM Cortex-M0+ ARM Cortex-A72

Clock Speed 16MHz 16MHz 64MHz 32MHz 1.5GHz

Flash Memory 32kB 256kB 1MB 64kB 32GB

SRAM 2kB 8kB 256kB 8kB 2GB

Voltage 5V 5V 3.3V 3.6V 5V

Digital I/O 14 54 14
51 40

Analog Pins 6 15 8

3.3 Results

In Figure 3, you can see the principle of operation, the first step is data paral-
lelization, then COM4 processes part of its data and in parallel transfers the
rest of the data to the COM3 device. COM3, in turn, gives a message that it
received data, displays the size and the beginning of the classification of the
algorithm that was launched. Thus, it can be seen that the data transfer rate
over the wire using the I2C protocol is 100kB / s, moreover, the probability
of data loss is very low, as well as the delay if Internet protocols were used.

Fig. 3. Results.

Comparing my approach with the author of “Evaluation of MapReduce-
Style Computation on a Cluster of Arduinos”, the algorithmic approach to
splitting big data is similar, the only advantage in his approach is that his
algorithm can read data from external devices. brands of microcontrollers,
and not the use of machine learning methods.

 Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai / 43

4 Conclusions

In its current form, this work shows the effectiveness of using the proposed
approach. Firstly, due to the flexibility of the I2C protocol, you can connect
several devices that can communicate with each other and transmit infor-
mation. Secondly, the algorithm that is used to implement data paralleliza-
tion is similar to the MapReduce algorithm that is effectively used for com-
mercial purposes.

At the moment, several machine learning algorithms are used, but even
these algorithms can be used quite effectively in different projects. In addi-
tion, the author thinks that a faster SD card interface would be a possible
improvement. Even if a single peripheral can provide I/O to an SD card at
maximum I2C or SPI bandwidth, storage can be used as intermediate stor-
age, greatly improving the size of the problems it can handle.

In the future, it is planned to add more machine learning methods as
well as the use of Internet protocols.

References

[1] Vishakh Hegde, Sheema Usmani. Parallel and Distributed Deep Learning. Stanford Uni-
versity, 2016

[2] Beng Chin Ooi, Kian-Lee Tan, Sheng Wang, Wei Wang, Qingchao Cai, Gang Chen, Jinyang
Gao, Zhaojing Luo, Anthony K. H. Tung, Yuan Wang, Zhongle Xie, Meihui Zhang, Kaiping
Zheng. A distributed deep learning platform. ACM Multimedia, 2015

[3] Feng Li, Beng Chin Ooi, M. Tamer Özsu, Sai Wu. Distributed Data Management Using
MapReduce. ACM, 2014

[4] Frederic Leens. An Introduction to I2C and SPI Protocols. ACM, 200

	Distributed machine learning for IoT
	Abstract

	1 Introduction
	2 Distributed system and Machine Learning
	3 Approach
	3.1 I2C
	3.2 Microcontrollers
	3.3 Results

	4 Conclusions
	References

