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Abstract. This paper investigates the finite-time stabilization problem of fractional-order nonlinear
differential systems via an asymmetrically saturated reliable control in the sense of Caputo’s
fractional derivative. In particular, an asymmetrical saturation control problem is converted to
a symmetrical saturation control problem by using a linear matrix inequality framework criterion
to achieve the essential results. Specifically, in this paper, we obtain two sets of sufficient
conditions under different scenarios of structured uncertainty, namely, norm-bounded parametric
uncertainty and linear fractional transformation uncertainty. The uncertainty considered in this
paper is a combination of polytopic form and structured form. With the help of control theories
of fractional-order system and linear matrix inequality technique, some sufficient criteria to ensure
reliable finite-time stability of fractional-order differential systems by using the indirect Lyapunov
approach are derived. As a final point, the derived criteria are numerically validated by means of
examples based on financial fractional-order differential system and permanent magnet synchronous
motor chaotic fractional-order differential system.

Keywords: fractional-order differential system, reliable nonfragile controller, finite-time control,
asymmetric input saturation, structured uncertainty.

1 Introduction

Integer-order calculus is a classical tool to describe theory of physics. On the other hand,
fractional-order calculus possesses infinite memory, and fractional-order variables can
refine the performance of the system by rising a unit degree of freedom. Related with tra-
ditional integer-order calculus, fractional-order calculus can exactly describe the memory
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properties and hereditary of numerous equipments. Moreover, fractional-order calculus
performs a vital part in various environments, such as in finance, medicine, cardiac tissues,
material science, biological models, quantum mechanics, fluid mechanics and viscoelastic
systems [9]. In order to exhibit the importance of fractional-order calculus in different
areas of real world problems, several works were reported.

A crucial problem, which is dominant in integer-order and fractional-order differential
systems, is the appearance of saturation in the control input. Specifically, major two
approaches have been established in the studies for dealing with actuator saturations. The
first approach is the positive invariance in which the control design works within a domain
of linear mode, where saturations never occur. The next approach permits saturations in
the controller design while assuring asymptotic stability [17], which gives a bounded
ellipsoidal and symmetric stability region that can be established by solving a LMI con-
straint. One crucial threat in the above discussed approaches is to obtain a sufficient
initial states domain, which guarantees asymptotic stability even in the presence of satura-
tions. Lim et al. [11] has addressed the stabilization of fractional-order linear systems by
considering the actuator saturation. Shahri et al. [16] applied a state-feedback control
strategy to achieve the stability of fractional-order systems with saturation using the
Gronwall–Bellman lemma. Song et al. [18] introduced an adaptive fuzzy output-feedback
control algorithm for delayed fractional-order systems under saturation. In the existing
literatures, the symmetrically saturated constraints are formulated in the form of LMIs.
However, in real models, it is important to consider asymmetrically saturated constraints.
Indeed, asymmetric saturation function can be approximated as symmetric saturation
function with the minimum absolute value of the negative and positive saturation levels
as the symmetric saturation level. However, such a manipulation on the saturation level
is deemed conservative, and most often it could also result in an unsatisfactory controlled
performance, especially, when there is a large difference between the negative and positive
saturation levels of the asymmetric saturation function. As an alternative, many attempts
were proposed to emphasis the study on LMIs with asymmetric saturations as in [21].

Besides saturation, in engineering systems, the control inputs are often subject to
fluctuations within some scopes. The reason for such fluctuations are actuator faults,
external disturbance, environment noise and so on. Hence, it is also very important to deal
with the oscillation of system variables in order to obtain with the reliable performance in
the presence of uncertainties [3]. Various kinds of formulations on uncertainty have been
dealt with in the day-to-day research studies, namely, norm-bounded parametric uncer-
tainty [23], linear fractional transformation (LFT) uncertainty [15] and so on. Many vital
theories for various fractional-order uncertain differential systems have been developed
in [19]. In general, when we design a controller for a system, we always assume that the
designed controller gain is precise. However, the actuator degradation or the requirements
of readjustment of controller gains during the controller implementation stage in the
actual feedback control schemes may cause the fragile disturbances. Therefore, we should
design a proper controller to tolerate some level of controller gain variations. This highly-
sensitive characteristic of controller is called as fragility or nonresilience [4]. In this paper,
we design a nonfragile controller for the considered fractional-order system to ensure the
stability against some perturbations and asymmetric saturations [12].
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For fractional-order differential systems, many enticing stability results and various
kind of control designs have been explored and solved. It is well known that traditional
Lyapunov stability always gives more consideration to steady-state behavioral analysis
of controller gain dynamics over an infinite-time interval [22]. Also, the finite interval
bounds on the dynamical system state trajectories are usually not specified in Lyapunov
stability theory. However, almost in all concerned practical problems, the system states
are expected not to exceed some bound during some time interval. In this case, we have
to correct the values, which are not acceptable to judge if the trajectories of the system
states remain inside the prescribed bound within a finite time. Moreover, to handle these
transient performance in the dynamical control systems, short-time stability or finite-time
stability is designed. As there is a lack in the finite-time stability operative test conditions,
the finite-time stability concept has been studied recursively with the aid of linear matrix
inequality theory [10, 22]. By utilizing the theories on linear matrix inequalities, some
interesting results are established to guarantee the finite-time stabilization of various
dynamical control systems including linear systems, nonlinear systems and stochastic
systems [6, 14]. However, to date and to the best of our knowledge, the problems of
reliable finite-time stability for fractional-order systems with input asymmetric saturation
have not been investigated, which motivates the work of this paper.

Though some studies have been presented for fractional-order systems, there remain
many disputes in analysis, modeling and designing the control, which needs to be ad-
dressed. In spite of the fact that a great amount of research studies have been carried out on
stability and stabilization analysis of fractional-order differential systems, there still exists
many major, crucial and important issues in design of controllers, which are reliable when
subject to asymmetric input saturations in the presence of structured uncertainties. These
specifications stimulated us and grabbed our attention resulting to the research study on
reliable finite-time control protocol for fractional-order differential systems with asym-
metrical saturation and structured uncertainties. The core contributions of this research
paper are featured as follows:

• A feedback control design methodology is proposed for fractional-order nonlinear
systems with two types of uncertainties, namely, norm-bounded parametric and
linear fractional transformation uncertainties to obtain finite-time stability.

• Additionally, we perform an exhaustive study to demonstrate that the proposed de-
sign methodology is reliable to variations and asymmetrically saturated constraints
in the controller.

• Two real-time validations of fractional-order differential system, namely, financial
system and permanent magnet synchronous motor chaotic system are provided.

2 System formulation and preliminaries

Consider the following fractional-order differential system subject to asymmetrically con-
strained actuator saturation:

CDøx(t) = (Aη + ∆A)x(t) + g
(
x(t), t

)
+B satu,u

(
u(t)

)
, x(0) = x0, (1)
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where the state vector, which belongs to Rn, is denoted as x(t); fractional order ø =
{ø1, ø2, . . . , øn} in which 0 < øi < 1 for i = 1, 2, . . . , n; g(x(t), t) denotes the nonlinear
function, which is bounded and Lipschitz with a Lipschitz constant εg such that for all
x1(t) ∈ R and x2(t) ∈ R, g(x0, t) = 0, ‖g(x1(t), t)− g(x2(t), t)‖ 6 εg‖x1(t)−x2(t)‖;
u(t) ∈ Rm is the input vector, and satu,u(u(t)) ∈ Rm → Rm represents a saturation
function, which is vector valued and asymmetrical in nature. In (1), B ∈ Rn×m denotes
the input matrix, and Aη ∈ Rn×n denotes the system state weight matrix with polytopic
uncertainty, which belongs to the polyhedral convex bounded domain with N vertices

Ωη '

{
Aη

∣∣∣ Aη =

N∑
i=1

ηiAi,

N∑
i=1

ηi = 1, ηi > 0

}
, (2)

where Ωi ' Ai is the polytope’s ith vertex with appropriate dimensions, i = 1, 2, . . . , N ;
time-varying matrix ∆A represents the parameter uncertainty with prior structural infor-
mation, which will be defined in the later part of this paper. Further, the aspect of each and
every component of the asymmetrically saturated vector satu,u(u(t)) can be modelled by
the relation satu,u(u(t)) = [satu1,u1

(u1(t)), satu2,u2
(u2(t)), . . . , satum,um

(um(t))]T,
and for all j = {1, 2, . . . ,m},

satuj ,uj

(
uj(t)

)
=


uj , uj(t) ∈ (uj ,+∞),

uj(t), uj(t) ∈ [−uj , uj ],
−uj , uj(t) ∈ (−∞, uj),

where uj > 0 and uj > 0 represent, respectively, the positive and negative saturation
levels, u = [u1, u2, . . . , um]T and u = [u1, u2, . . . , um]T. Clearly, if uj = uj , then
satuj ,uj (uj(t)) = satuj (uj(t)) will become a saturation function, which is symmetric in
nature. Further, we also assume that uj > uj for all j = {1, 2, . . . ,m}.

At this juncture, to stabilize the saturated system with asymmetrical constraints, we
design a state feedback control protocol as

u(t) = L(K + ∆K)x(t) +K0, (3)

where K denotes the controller gain matrix, and ∆K denotes the possible fluctuations in
control design. Further, the asymmetrical set Ł(K) will be symmetrized because of the
gain matrices L ∈ Rm×m and K0 ∈ Rm×m. The state space representation of Ł(K) can
be given by

Ł(K) =
{
x(t) ∈ Rn

∣∣ −Γe 6 LKx(t) +K0 6 Λe
}
, (4)

where the diagonal matrices Γ and Λ take the form

Γ =


u1 0 . . . 0
∗ u2 . . . 0
∗ ∗ . . . 0
∗ ∗ ∗ um

 , Λ =


u1 0 . . . 0
∗ u2 . . . 0
∗ ∗ . . . 0
∗ ∗ ∗ um
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with ∗ representing the terms induced by symmetry, and e ∈ Rm is a vector of the form
e = [1, 1, . . . , 1]T. The parameter uncertainty matrix ∆A and control gain fluctuation
matrix ∆K are considered to fulfill any one of the understated two cases.

(C1) Norm-bounded parametric uncertainty: Under this case of parametric uncer-
tainty, matrices ∆A and ∆K are considered to satisfy ‖∆A‖ 6 εA and
‖∆K‖ 6 εK , where εA and εK are positive constants.

(C2) Linear fractional transformation (LFT) uncertainty: Under this case LFT uncer-
tainty, matrices ∆A and ∆K are considered to satisfy ∆A = D(I−∆1F )−1×
∆1E and ∆K = X(I − ∆2Y )−1∆2Z. Here the matrices, which describe
the degree of uncertainty, are denoted by D, E, F , X , Y and Z, and the
uncertainty ∆r for r = 1, 2 are defined in B∆r

= {∆r : R→ Rn×n, ∆r ∈ ∇r,
‖∆r‖ 6 1}, where ∇r = diag{∇r1,∇r2, . . . ,∇rm} such that ‖∇rj‖ 6 1,
j = 1, 2, . . . ,m.

Remark 1. In case (C2), if we take ∆r as an unknown time-varying matrix where the
elements are Lebesgue measurable and also bounded by ∆T

r (t)∆r(t) 6 I , then it is
similar to the case of LFT uncertainty discussed in [14]. Besides, if we consider F and Y
as null matrices, then case (C2) deduces to the most familiar norm-bounded uncertainty
case. So, case (C2) is a generalization of some special uncertainty cases.

Right away, we are at the juncture to deal with the problem of stabilization of fractional-
order differential system (1) by utilizing a state feedback control (3). Therefore, to take
over this situation with in a LMI framework, we require the following definitions and
lemmas, which are presented here.

Now, we connect the saturation function satu,u(u(t)) with an asymmetrical saturation
function using a normalized saturation symmetrical function. On account of this, we
initiate a formal new variable wj(t) as follows:

wj(t) = uj(t)−
uj − uj

2
. (5)

Accordingly, the saturation control can be reformulated as

satu,u
(
uj(t)

)
= satw,w

(
wj(t)

)
+
uj − uj

2
,

where for j = 1, 2, . . . ,m,

satw,w
(
wj(t)

)
=


uj+uj

2 , wj(t) >
uj+uj

2 ,

wj(t), −uj+uj

2 < wj(t) <
uj+uj

2 ,

−uj+uj

2 , wj(t) 6 −
uj+uj

2 .

Now, by introducing a second change of variable

zj(t) = wj(t)
2

uj + uj
(6)
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we obtain

sat
(
zj(t)

)
=


1, zj(t) > 1,

zj(t), −1 6 zj(t) 6 1,

−1, zj(t) 6 −1,

(7)

for j = 1, 2, . . . ,m. The above obtained equation (7) is nothing but the normalized
saturation symmetric function. Further, by using equations (5) and (6), it is easy to obtain
uj(t) as uj(t) = (uj + uj)zj(t)/2 + (uj − uj)/2. This obtained uj(t) can be written
equivalently in matrix form as u(t) = (Λ+Γ )z(t)/2+(Λ−Γ )e/2. Therefore, the asym-
metrical saturation satu,u(u(t)) can be established as a symmetrical saturation function
sat(z(t)) by using the relation

satu,u
(
u(t)

)
=
Λ+ Γ

2
sat
(
z(t)

)
+
Λ− Γ

2
e. (8)

Now by using (8) in (1), the fractional-order differential system can be expressed with the
symmetrical saturation function sat(z(t)) as

CDøx(t) = (Aη + ∆A)x(t) + g
(
x(t), t

)
+ B̃ sat

(
z(t)

)
+ Eτ(t), (9)

where B̃ = B(Λ + Γ )/2, E =
√
nB(Λ − Γ )/2 and τ(t) = e/

√
m. Clearly we can

observe that τT(t)τ(t) = 1. The obtained system (9) is a fractional-order symmetri-
cally saturated differential system with τ(t) as its external disturbance. Further, the state
feedback control for the fractional-order differential system (9) takes the form z(t) =
(K+∆K)x(t). Therefore, the asymmetrical set Ł(K) given in (4) has been symmetrized
by using the feedback control (3) withL = (Λ+Γ )/2 andK0 = (Λ−Γ )e/2. For detailed
proof, the readers can see [2, Lemma 8.2].

Now, an ellipsoidal set εs(Pη, ρ) is defined by

εs(Pη, ρ) =
{
x(t) ∈ Rn

∣∣ xT(t)x(t) 6 1
}
. (10)

Then
Łs(K) =

{
x(t) ∈ Rn

∣∣ ∣∣Kx(t)
∣∣
j
6 1, j = 1, 2, . . . ,m

}
(11)

is an equivalent form of Łs(K) defined in (4), in such a way, εs(Pη, ρ) ⊂ Łs(K). Let
us define a matrix D to be the set of m ×m diagonal matrices whose diagonal elements
are either 1 or 0. Suppose that each element of D is labeled as Ds, and each element
of I − Ds is taken as the elements of D−s . Then the following equation (12) could be
obtained by using Lemma 1 in [8]:

sat
(
z(t)

)
=

2m∑
s=1

δs(t)
(
Dsz(t) +D−s v(t)

)
, (12)

where z(t) = (K + ∆K)x(t) and v(t) = Hx(t) with |hix(t)| < 1. If H is an auxiliary
control matrix, then hi is the ith row of H . Henceforward, the problem of stabilization of
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system (1) with asymmetrical saturated control is converted to the problem of stabilization
of system (9) with a symmetrical saturated control. Now, by using (12) in (9), the closed-
loop fractional-order system can be expressed in the form

CDøx(t) = (Aη + ∆A)x(t) + g
(
x(t), t

)
+ B̃

(
2m∑
s=1

δs(t)(DsK +Ds∆K +D−s H)

)
x(t) + Eτ(t)

or in the equivalent form

CDøx(t) = (A+ ∆A)x(t) + g
(
x(t), t

)
+ Eτ(t), (13)

whereA = Aη + B̃
∑2m

s=1 δs(t)(DsK+D−s H) and ∆A = ∆A+ B̃
∑2m

s=1 δs(t)Ds∆K.
It is possible to obtain the domain of attraction of the above fractional-order differential
system (13) only under the assumption that A + ∆A is Hurwitz. Therefore, we assume
that A+ ∆A is Hurwitz.

Now let us consider the case when system (1) is subject to actuator faults. Then the
controller becomes a reliable controller of the form z(t) = (G̃K + ∆K)x(t), where G̃
is the matrix, which represents the actuator fault such that G̃ = diag{g1, g2, . . . , gm}.
Further, gk ∈ [glk, g

u
k ], with glk > 0 and guk 6 1. Let us define some matrices as follows:

G̃u = diag{gu1 , gu2 , . . . , gum}, G̃l = diag{gl1, gl2, . . . , glm}, G̃0 = (G̃u + G̃l)/2 and
G̃1 = (Gu −Gl)/2. Then G̃ = G̃0 + G̃1Ω, where Ω = {ω1, ω2, . . . , ωm} ∈ Rm×m and
−1 6 ωk 6 1, k = {1, 2, . . . ,m}. Now, by using (12) in (9), the closed-loop fractional-
order differential system subject to actuator faults can be expressed as

CDøx(t) = (Ag + ∆A)x(t) + g
(
x(t), t

)
+ Eτ(t), (14)

where Ag = Aη + B̃
∑2m

s=1 δs(t)(DsG̃K + D−s H). Further, for (14), we assume that
Ag + ∆A is Hurwitz to obtain the domain of attraction.

3 Finite-time stability of fractional-order differential system subject
to norm-bounded parametric uncertainties

The sufficient conditions established in the following Theorem 1 can guarantee finite-
time stability of the differential system (13), which is subject to asymmetrically saturated
control input. The results are then further advanced to the case when actuator faults affect
system (14) in Theorem 2. Assume that the uncertain parameters of the fractional-order
differential system and control gain fluctuation fulfil the uncertainty as in case (C1).

Theorem 1. For given scalars a, α, f1, T, εA, εK , the asymmetrically constraint fractional-
order differential system (13) is stable within a finite interval of time with respect to
(f1, f2,T, V ) if there exist matrices T and U , matrices P̂i, R̂ and Ŝ, which are symmetric
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and positive definite, diagonal matrices Q̂i > 0 and scalars γ, εa, εb, εg such that the
following LMI holds for i = 1, 2, . . . , N :

Ω̂1,1 R̂− aQ̂T
i ER̂ P̂i + R̂AT

i − R̂ I B̃
∑2m

s=1 δsDs R̂

∗ −γI 0 Q̂i + R̂ 0 0 0

∗ ∗ −aŜ R̂ET 0 0 0

∗ ∗ ∗ −2R̂ I B̃
∑2m

s=1 δsDs 0
∗ ∗ ∗ ∗ −εaI 0 0
∗ ∗ ∗ ∗ ∗ −εbI 0

∗ ∗ ∗ ∗ ∗ ∗ Ω̂7,7


< 0, (15)

(λi2f1 + λ3)Eø
(
atø
)
< λi1f2, (16)[−1

ρ U

∗ −P̂i

]
6 0, (17)

where Ω̂1,1 = AiR̂ + B̃
∑2m

s=1 δs(t)(DsT +D−s U) + αP̂i − aP̂i and Ω̂7,7 = −(γε2g +
εaε

2
A+εbε

2
K)−1. Eventually,K andH can be computed by using the relationsK = TR̂−1

and H = UR̂−1.

Proof. Equations (10) and (11) imply that εs(Pη, ρ) ⊂ Ł(K). On this basis, in or-
der to accomplish the finite-time stability sufficient conditions for the considered asym-
metrically constraint fractional-order differential system (13), we structure a Lyapunov–
Krasovskii functional candidate V(t, x(t), η) > 0 as

V
(
t, x(t), η

)
= xT(t)Pηx(t) + 2

n∑
j=1

qjη

x(t)∫
0

gj(s) ds+ τT(t)Sτ(t). (18)

Further, based on τ(t) defined in (9) and with the aid of Property 1 in [7], if Γ denotes
the gamma function, then the fractional-order derivative of V(t, x(t), η) in the sense of
Caputo is given by

CDøV
(
t, x(t), η

)
= RDø

[
x(t)TPηx(t)−

n∑
k=1

(
x(t)TPηx(t)

)k
(0)

tk

k!

]

+ 2

n∑
j=1

qjηg
T
(
x(t), t

)C
Døx(t),

CDøV
(
t, x(t), η

)
=
[
RDøx(t)

]TPηx(t) + xT(t)Pη
[
RDøx(t)

]
+ Pη

∞∑
k=1

Γ(1 + ø)

Γ(1 + k)Γ(1− k + ø)
RDkx(t)RDø−kx(t)

− RDøxT(0)Pηx(0) + 2

n∑
j=1

qjηg
T(x(t), t)CDøx(t),
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https://doi.org/10.15388/namc.2022.27.27486


774 L. Susana Ramya et al.

CDøV
(
t, x(t), η

)
=
[
RDøx(t)

]TPηx(t) + xT(t)Pη
[
RDøx(t)

]
+ Pη

∞∑
k=1

Γ(1 + ø)

Γ(1 + k)Γ(1− k + ø)
RDkx(t)RDø−kx(t)

− t−øPη
Γ(1− ø)

xT(0)x(0) + 2

n∑
j=1

qjηg
T
(
x(t), t

)C
Døx(t),

where RDø denotes the fractional derivative in the sense of Riemann–Liouville. For the
sake of notational ease, let us replace all Riemann–Liouville fractional derivative as
Caputo fractional derivative

CDøV
(
t, x(t), η

)
=
[
CDøx(t)

]TPηx(t) + xT(t)Pη
[
CDøx(t)

]
+ Pηχx(t)− t−øPη

Γ(1− ø)
xT(0)x(0) + 2

n∑
j=1

qjηg
T
(
x(t), t

)
CDøx(t),

where

χx(t) =

∞∑
k=1

Γ(1 + ø)

Γ(1 + k)Γ(1− k + ø)
RDkx(t)RDø−kx(t),

and we can consider the boundedness condition χx(t) 6 xT(t)αx(t), where α > 0
is a constant. For the sake of notational ease, we denote CDøx(t) = ˙̄x(t) and Qη =∑n
j=1 qjη . Since t−øP/Γ(1− ø)xT(0)x(0) > 0, we can obtain

CDøV
(
t, x(t), η

)
6 2x(t)TPη ˙̄x(t) + xT(t)αPηx(t) + 2gT

(
x(t), t

)
Qη ˙̄x(t). (19)

Further, if ˙̄x(t) + x(t) is taken as x̃(t), then the following equality is true for any matrix
R with respect to the fractional-order differential system (13):

2x̃T(t)R
[
(A+ ∆A)x(t) + g

(
x(t), t

)
+ Eτ(t)− ˙̄x(t)

]
= 0,

or, equivalently,

2x̃T(t)R
[
Ax(t) + g

(
x(t), t

)
+ Eτ(t)− ˙̄x(t)

]
+ 2x̃T(t)R∆Ax(t) = 0. (20)

By using the facts stated in case (C1) and by applying Lemma 2 of [7] for the second term
in the above equation, we have

2x̃T(t)R∆Ax(t) = 2x̃T(t)R

(
∆A+ B̃

2m∑
s=1

δs(t)Ds∆K

)
x(t)

6 εax
T(t)ε2Ax(t) + ε−1

a x̃T(t)RRTx̃(t) + εbx
T(t)ε2Kx(t)

+ ε−1
b x̃T(t)

(
RB̃

2m∑
s=1

δsDs

)(
RB̃

2m∑
s=1

δs(t)Ds

)T

x̃(t). (21)
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Also, for any scalar γ > 0, we have

γ
[
ε2gx

T(t)x(t)− gT
(
x(t), t

)
g
(
x(t), t

)]
> 0. (22)

Now, combining (18)–(22), we have

CDøV
(
t, x(t), η

)
− aV

(
t, x(t), η

)
6 xT(t)

[
2RA+ γε2g + εaε

2
A + εbε

2
K

]
x(t) + 2xT(t)Rg

(
x(t), t

)
+ 2xT(t)REτ(t) + 2xT(t)

[
Pη +ATRT −R

]
˙̄x(t)

+ 2gT
(
x(t), t

)[
Qη +RT

]
˙̄x(t)− γgT

(
x(t), t

)
g
(
x(t), t

)
+ 2 ˙̄xT(t)REτ(t)− 2 ˙̄xT(t)R ˙̄x(t) + xT(t)αPηx(t) + ε−1

a x̃T(t)RRTx̃(t)

+ ε−1
b x̃T(t)

(
RB̃

2m∑
s=1

δsDs

)(
RB̃

2m∑
s=1

δs(t)Ds

)T

x̃(t)

− a

[
xT(t)Pηx(t) + 2

n∑
j=1

qjη

x(t)∫
0

gj(s) ds+ τT(t)Sτ(t)

]
.

Alternatively, the above obtained inequality can be written in an explanatory form as

CDøV
(
t, x(t), η

)
− aV

(
t, x(t), η

)
6 xT(t)

[
2RA+ γε2g + εaε

2
A + εbε

2
K + αPη − aPη

]
x(t)

+ 2xT(t)Rg
(
x(t), t

)
+ 2xT(t)REτ(t) + 2xT(t)

[
Pη +ATRT −R

]
˙̄x(t)

+ 2gT
(
x(t), t

)[
Qη +RT

]
˙̄x(t)− γgT

(
x(t), t

)
g
(
x(t), t

)
− aτT(t)Sτ(t)

+ 2 ˙̄xT(t)REτ(t)− 2 ˙̄xT(t)R ˙̄x(t)− 2gT(x(t), t)aQηx(t) + ε−1
a x̃T(t)RRTx̃(t)

+ ε−1
b x̃T(t)

(
RB̃

2m∑
s=1

δsDs

)(
RB̃

2m∑
s=1

δs(t)Ds

)T

x̃(t)

6 ξT(t)Θηξ(t) + ε−1
a x̃T(t)RRTx̃(t)

+ ε−1
b x̃T(t)

(
RB̃

2m∑
s=1

δsDs

)(
RB̃

2m∑
s=1

δs(t)Ds

)T

x̃(t), (23)

where ξT(t) = [xT(t), gT(x(t), t), τT(t), ˙̄xT(t)]T and

Θη =


Θ(1,1),η R− aQT

η RE Pη +ATRT −R
∗ −γI 0 Qη +RT

∗ ∗ −aS ETRT

∗ ∗ ∗ −2R



Nonlinear Anal. Model. Control, 27(4):766–788, 2022

https://doi.org/10.15388/namc.2022.27.27486


776 L. Susana Ramya et al.

with Θ(1,1),η = 2RA + γε2g + εaε
2
A + εbε

2
K + αPη − aPη . Then, using the convexity

defined in (2), it is easy to get

Θη =

N∑
i=1

ηiΘi ∀
N∑
i=1

ηi = 1, ηi > 0.

Then (23) becomes

CDøV
(
t, x(t), η

)
− aV

(
t, x(t), η

)
6

N∑
i=1

ηi

[
ξT(t)Θiξ(t) + ε−1

a x̃T(t)RRTx̃(t)

+ ε−1
b x̃T(t)

(
RB̃

2m∑
s=1

δsDs

)(
RB̃

2m∑
s=1

δs(t)Ds

)T

x̃(t)

]
, (24)

where

Θi =


Θ(1,1),i R− aQi RE Pi +ATR−R
∗ −γI 0 Qi +R
∗ ∗ −aS ETR
∗ ∗ ∗ −2R


with Θ(1,1),i = 2RA + γε2g + εaε

2
A + εbε

2
K + αPi − aPi. By using Schur complement

and A = Aη + B̃
∑2m

s=1 δs(t)(DsK + D−s H), it can be observed that right side of (24)
is equivalent to

∑N
i=1 ηiΩi, where

Ωi =



Ω(1,1),i R− aQi RE Pi +AT
ηR−R R RB̃

∑2m

s=1 δsDs
∗ −γI 0 Qi +R 0 0
∗ ∗ −aS ETR 0 0

∗ ∗ ∗ −2R R RB̃
∑2m

s=1 δsDs
∗ ∗ ∗ ∗ −εaI 0
∗ ∗ ∗ ∗ ∗ −εbI



with Ω(1,1),i =RAη+RB̃
∑2m

s=1 δs(t)(DsK+D−s H)+γε2g+εaε
2
A+εbε

2
K+αPi−aPi.

Then, by pre- and post-multiplying Ωi by diag{R−1, R−1, R−1, R−1, I, I} and by de-
noting R−1 = R̂, R̂PηR̂ = P̂η, R̂QηR̂ = Q̂η and R̂SR̂ = Ŝ, it is easy to get that
Ωi and the left side of equation (15) are equivalent. Therefore, if (15) is satisfied, then
CDøV(t, x(t), η)− aV(t, x(t), η) < 0.

The above inequality indicates that CDøV(t, x(t), η) + J(t, x(t), η) = aV(t, x(t), η)
for some function J(t, x(t), η) > 0. By using the theory of the Laplace transform, we
have søV(s, x(s), η)−V(0, x(0), η)sø−1 +J(s, x(s), η) = aV(s, x(s), η). Consequently,
V(s, x(s), η) = (V(0, x(0), η)sø−1 − J(s, x(s), η))/(sø − a). Now by using the theory
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of inverse Laplace transform, we can arrive at an equation as follows:

V
(
t, x(t), η

)
= V

(
0, x(0), η

)
Eø
(
atø
)
−

t∫
0

J(µ)
[
(t− µ)ø−1Eø,ø

(
a(t− µ)ø)] dµ.

Since (t−µ)ø−1 and Eø,ø(a(t−µ)ø) are nonnegative functions, from the above equation
we obtain

V
(
t, x(t), η

)
6 V

(
0, x(0), η

)
Eø
(
atø
)
. (25)

By using convexity definition and defining P̃i = (1/
√
V )Pi(1/

√
V ), S̃ = (1/

√
V )S ×

(1/
√
V ), λi1 = λmin(P̃i), λi2 = λmax(P̃i) and λ3 = λmax(S), we obtain

V
(
t, x(t), η

)
= xT(t)

√
V P̃i
√
V x(t) + τT(t)

√
V S̃
√
V τ(t)

> +2

n∑
j=1

qjη

˙̄x(t)∫
0

gj(s) ds λmin(P̃i)x
T(t)V x(t) = λi1x

T(t)V x(t), (26)

V(0, x(0), η)Eø
(
atø
)

=

(
xT(0)Pix(0) + τT(0)Sτ(0) + 2

n∑
j=1

qjη

˙̄x(0)∫
0

gj(s) ds

)
Eø
(
atø
)

6 λmax(P̃i)x
T(0)V x(0) + λmax(S)τT(0)τ(0)Eø

(
atø
)
.

If xT(0)V x(0) 6 f1, the above expression can be written in a simplified form as

V
(
0, x(0), η

)
Eø
(
atø
)
6 (λi2f1 + λ3)Eø

(
atø
)
. (27)

Combining (25), (26) and (27), we can derive that

λi1x(t)TV x(t) 6 V
(
t, x(t), η

)
6 V

(
0, x(0), η

)
Eø
(
atø
)

6 (λi2f1 + λ3)Eø
(
atø
)
.

Hence, x(t)TV x(t) < (λi2f1 + λ3)Eø(atø)/λi1. Therefore, if (16) holds, then
x(t)TV x(t) < f2 for all t ∈ [0,T]. Thus, for all x0 ∈ εs(Pη, ρ), it follows that system
(13) is finite-time bounded according to Definitions 3 and 4 in [1].

Furthermore, ρhiP−1
η hT

i 6 1, i = 1, 2, . . . ,m, is the equivalent form of εs(Pη, ρ) ⊂
Ł(K), where hi is the ith row ofH . ρhiP−1

η hT
i 6 1, i = 1, 2, . . . ,m, can be alternatively

written by using the Schur complement lemma in the form of matrix as[−1
ρ H

∗ −Pη

]
6 0. (28)

Further, by using the change of variables as stated in the previous section and convexity
definition, then pre- and post-multiplying (28) by diag{I, R̂}, we obtain (17). Hence, the
proof is completed.
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In the forthcoming corollary, we establish the finite-time stability of fractional-order
differential system (13) when controller is affected by a symmetric saturation. As dis-
cussed in the previous section, if uj=uj , then satuj ,uj

(uj(t)) is converted to a symmetric
saturation function satuj

(uj(t)) with its saturation level uj . Under such a case,

Λ = Γ =


u1 0 . . . 0
∗ u2 . . . 0
∗ ∗ . . . 0
∗ ∗ ∗ um

 , B̃ = BΓ and E = 0.

Corollary 1. For given scalars a, α, f1, T, εA, εK , the fractional-order differential
system (13) under symmetrically saturated controller achieves stability within a finite
interval of time with respect to (f1, f2,T, V ) if there exist matrices T and U , symmetric
matrices P̂i > 0 and R̂ > 0, diagonal matrices Q̂i > 0 and scalars γ, εa, εb, εg such that
for i = 1, 2, . . . , N , (16), (17) and the following LMI hold:

Ω̂s1,s1 R̂− aQ̂T
i P̂i + R̂AT − R̂ I BΓ

∑2m

s=1 δsDs R̂

∗ −γI Q̂i + R̂ 0 0 0

∗ ∗ R̂ET 0 0 0

∗ ∗ −2R̂ I BΓ
∑2m

s=1 δsDs 0
∗ ∗ ∗ −εaI 0 0
∗ ∗ ∗ ∗ −εbI 0

∗ ∗ ∗ ∗ ∗ Ω̂s7,s7


< 0,

where Ω̂s1,s1 = AiR̂ + BΓ
∑2m

s=1 δs(t)(DsT + D−s U) + αP̂i − aP̂i and Ω̂s7,s7 =
−(γε2g + εaε

2
A + εbε

2
K)−1. Further, the desired control gain can be calculated by using

the relation K = TR̂−1 and H = UR̂−1.

Proof. Assume that εs(Pη, ρ) ⊂ Ł(K) holds to establish the stability criterion within a
finite interval of time for (13) under symmetrically saturated control design. Now, we
frame a Lyapunov–Krasovskii functional candidate V(t, x(t), η) > 0 such that

V
(
t, x(t), η

)
= xT(t)Pηx(t) + 2

n∑
j=1

qjη

˙̄x(t)∫
0

gj(s) ds.

Now by following the same proof as in Theorem 1 with the above given V(t, x(t), η), the
set of sufficient conditions given in the statement of this corollary can be readily obtained
by putting B̃ = BΓ and matrix E = 0.

As a sequel, in the subsequent theorem, we will discuss the reliable finite-time sta-
bilization of the uncertain fractional-order differential system (14) with known or fixed
actuator faults.

Theorem 2. Consider the actuator fault matrix G̃ to be known. The fractional-order
system differential (14) achieves stability within a finite interval of time with respect to
(f1, f2,T, V ) for all x0 ∈ εs(Pη, ρ) if there exist matrices T and U , symmetric matrices
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P̂i > 0, R̂ > 0 and Ŝ > 0, diagonal matrices Q̂i > 0 and scalars γ, εa, εb, εg such that
inequalities (16), (17) and the following LMI hold:

Ωy1,y1 R̂−aQ̂T
i ER̂ P̂i+R̂A

T
i −R̂ I B̃

∑2m

s=1 δsDs R̂

∗ −γI 0 Q̂i+R̂ 0 0 0

∗ ∗ −aŜ R̂ET 0 0 0

∗ ∗ ∗ −2R̂ I B̃
∑2m

s=1 δsDs 0
∗ ∗ ∗ ∗ −εaI 0 0
∗ ∗ ∗ ∗ ∗ −εbI 0

∗ ∗ ∗ ∗ ∗ ∗ Ω̂7,7


< 0,

for i = 1, 2, . . . , N , where Ωy1,y1 = AiR̂+ B̃
∑2m

s=1 δs(t)(DsG̃T +D−s U)+αP̂i−aP̂i
and Ω̂7,7 = −(γε2g + εaε

2
A + εbε

2
K)−1. Further, the desired control gain can be computed

by the relations K = TR̂−1 and H = UR̂−1, and all the other parameters remain same
as defined in Theorem 1.

Proof. By considering the similar lines as in Theorem 1 for system (14), the set of suf-
ficient conditions stated in this theorem can be easily derived.

4 Finite-time stabilization of fractional-order system subject to LFT
uncertainty

Now let us assume that the uncertain parameters of the system and the control parameters
satisfy case (C2). The conditions, which can guarantee stabilization within a finite interval
of time for system (13) with asymmetrically saturated controller, are established in Theo-
rem 3. Further, in Theorem 4 they results further extended to the case when system (14)
is affected by reliable asymmetrically saturated controller.

Theorem 3. For given scalar diagonal matricesG,M > 0, the fractional-order differen-
tial system (13) achieves finite-time stability for all x0 ∈ εs(Pη, ρ) if there exist positive
definite symmetric matrices P̂i, R̂ and Ŝ, diagonal matrices Q̂i > 0, matrices T and U
and constants γ, εg such that inequalities (16), (17) and the LMI given below hold:

Ω̃b1,b1 R̂−aQ̂T
i ER̂ P̂i+R̂A

T
i −R̂ Ω̃b1,b5 Ω̃b1,b6 R̂ R̂ET R̂ZT

∗ −γI 0 Q̂i+R̂ 0 0 0 0 0

∗ ∗ −aŜ R̂ET 0 0 0 0 0

∗ ∗ ∗ −2R̂ Ω̃b4,b5 Ω̃b4,b6 0 0 0

∗ ∗ ∗ ∗ Ω̃b5,b5 0 0 0 0

∗ ∗ ∗ ∗ ∗ Ω̃b6,b6 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ Ω̃b7,b7 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −G−1 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 −M−1


< 0, (29)

for i = 1, 2, . . . , N , where Ω̃b1,b1 = AiR̂ + B̃
∑2m

s=1 δs(t)(DsT + D−s U) + αP̂i −
aP̂i, Ω̃b1,b5 = Ω̃b4,b5 = D + R̂ETGF , Ω̃b5,b5 = FGFT − G, Ω̃b1,b6 = Ω̃b4,b6 =
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B̃
∑2m

s=1 δsDsX + R̂ZTMY , Ω̃b6,b6 = YMY T −M and Ω̃b7,b7 = −(γε2g)
−1. Further,

the required control gain is computed by means of the relations K = TR̂−1, H = UR̂−1

with the other parameters same as in Theorem 1.

Proof. Under case (C2), the matrices ∆A and ∆K are subject to LFT uncertainty. There-
fore, equation (21) gets transformed into the form

2x̃T(t)R∆Ax(t) = 2x̃T(t)R

(
∆A+ B̃

2m∑
s=1

δs(t)Ds∆K

)
x(t)

6 2x̃T(t)RD(I −∆1F )−1∆1Ex̃(t)

+ 2x̃T(t)R

(
B̃

2m∑
s=1

δs(t)Ds

)
X(I −∆2Y )−1∆2Zx̃(t).

Now according to Lemma 2.9 in [13], for G = G−FGFT>0 andM = T−YMY T>0,
where G > 0 and M > 0 are scalar diagonal matrices, we get

2x̃T(t)R∆Ax(t)

6 xT(t)ETGEx(t) + x̃T(t)
[(
RD + ETGF

)
G−1

(
RD + ETGF

)T ]
x̃(t)

+ xT(t)ZTMZx(t) + x̃T(t)

[(
RB̃

2m∑
s=1

δs(t)DsX + ZTMY

)
M−1

×

(
RB̃

2m∑
s=1

δs(t)DsX + ZTMY

)T ]
x̃(t). (30)

Then, by combining (19), (20), (22) and (30), we obtain

CDøV
(
t, x(t), η

)
− aV

(
t, x(t), η

)
6 ξT(t)Θ̃ηξ(t) + x̃T(t)

[(
RD + ETGF

)
G−1

(
RD + ETGF

)T ]
x̃(t)

+ x̃T(t)

[(
RB̃

2m∑
s=1

δs(t)DsX + ZTMY

)

×M−1

(
RB̃

2m∑
s=1

δs(t)DsX + ZTMY

)T ]
x̃(t),

where

Θ̃η =


Θ̃(1,1),η R− aQT

η RE Pη +ATRT −R
∗ −γI 0 Qη +RT

∗ ∗ −aS ETRT

∗ ∗ ∗ −2R
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with Θ̃(1,1),η = 2RA+γε2g+ETGE+ZTMZ+αPη−aPη . Then, using the convexity
defined in (2), it is easy to get

CDøV
(
t, x(t), η

)
− aV

(
t, x(t), η

)
6

N∑
i=1

ηi

{
ξT(t)Θ̃iξ(t) + x̃T(t)

[(
RD + ETGF

)
G−1

(
RD + ETGF

)T]
x̃(t)

+ x̃T(t)

[(
RB̃

2m∑
s=1

δs(t)DsX + ZTMY

)
M−1

×

(
RB̃

2m∑
s=1

δs(t)DsX + ZTMY

)T]
x̃(t)

}
,

where

Θ̃i =


Θ̃(1,1),i R− aQT

i RE Pi +ATRT −R
∗ −γI 0 Qi +RT

∗ ∗ −aS ETRT

∗ ∗ ∗ −2R


with Θ̃(1,1),i = 2RA+γε2g+ETGE+ZTMZ+αPi−aPi. Thus, by following the same
steps as in Theorem 1 and by using Schur complement, we can readily obtain LMI (29).
Therefore, the proof is completed.

Next, we will establish about the reliable finite-time stabilization of (14) with known
or fixed actuator faults against LFT uncertainty.

Theorem 4. The fractional-order differential system (14) achieves stability within a finite
interval of time with respect to (f1, f2,T, V ) for all x0 ∈ εs(Pη, ρ) if there exist symmetric
matrices P̂i > 0, R̂ > 0 and Ŝ > 0, matrices T and U , diagonal matrices Q̂i > 0 and
constants γ, εa, εb, εg such that inequalities (16), (17) together with the subsequent LMI
hold:

Ω1,1 R̂− aQ̂T
i ER̂ P̂i + R̂AT − R̂ Ω1,5 Ω1,6 R̂ R̂ET R̂ZT

∗ −γI 0 Q̂i + R̂ 0 0 0 0 0

∗ ∗ −aŜ R̂ET 0 0 0 0 0

∗ ∗ ∗ −2R̂ Ω4,5 Ω4,6 0 0 0

∗ ∗ ∗ ∗ Ω5,5 0 0 0 0

∗ ∗ ∗ ∗ ∗ Ω6,6 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ Ω7,7 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −G−1 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 −M−1


< 0,

for i = 1, 2, . . . , N , where Ω1,1 = AiR̂+ B̃
∑2m

s=1 δs(t)(DsG̃T +D−s U) + αP̂i − aP̂i,
Ω1,5 = Ω4,5 = D+R̂ETGF ,Ω5,5 = FGFT−G,Ω1,6 = Ω4,6 = B̃

∑2m

s=1 δsDsG̃X+
R̂ZTMY , Ω6,6 = YMY T−T and Ω7,7 = −(γε2g)

−1. The parameters of the controller
are determined by means of the relations K = TR̂−1 and H = UR̂−1, while the other
parameters remain same as in Theorem 3.
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Proof. Following the similar procedure as in Theorem 3, for system (14), the sufficient
conditions stated in this theorem can be obtained easily.

Remark 2. In the above theorems, we have obtained the finite-time stability of the closed-
loop system (13) and (14). We can equivalently write the unsymmetrically saturated sys-
tem (1) in closed loop under the symmetrical form (13) developed in Section 2 and derive
the sufficient conditions of stabilizability by using LMIs. Let CDøx̃(t) = CDøx(t) + ζ,
where ζ = (Aη + ∆A)−1K0. Now by following the same lines as in the proof of Theo-
rem 8.1 in [2], the unsymmetrically saturated closed-loop system converges toward −ζ.

5 Simulation results

This section provides two numerical models to exhibit clearly the usefulness of the results
accomplished in this paper. In Example 1, we validate the results obtained in Section 3 by
considering a financial fractional-order differential system as in [9], and in Example 2, the
results of Section 4 are validated by considering a permanent magnet synchronous motor
chaotic fractional-order differential system as in [20].

Example 1. In this example, we will validate the proposed results of Section 3 by consid-
ering a financial system, which is described by nonlinear fractional differential equations.
The financial fractional-order differential system is described in the following form [5,9]:

CDø1x1(t) = x3(t) + (x2(t)− â)x1(t),

CDø2x2(t) = 1− b̂x2(t)− x1(t)x1(t),
CDø3x3(t) = −x1(t)− ĉx3(t),

(31)

where the fractional order of the system is denoted by ø = (ø1, ø2, ø3). The state variable
x1(t) is the interest rate, x2(t) is the investment demand and x3(t) is the price index. Fur-
ther, â denotes the saving amount, b̂ denotes the cost per investment and c denotes the elas-
ticity of demand of commercial market. The parameters of the above financial fractional-
order differential system are taken as a = 1.0, b = 0.1, c = 1.0, fractional orders
ø1 = 0.95, ø2 = 0.9, ø3 = 0.8 with step time h = 0.04166, which is one hour sampling
approximately, and end time as 200 days. With these system state parameters, the system
exhibits a chaotic behavior with initial conditions x(0) = (x1(0), x2(0), x3(0))T =
(1, −1, 1)T as the only point of equilibrium. The abstract form of the dynamics of
financial fractional-order differential system (31) can be condensed as

CDøx(t) = Ax(t) + g
(
x(t), t

)
, (32)

where x(t) = (x1(t), x2(t), x3(t))T is the system state. Also, from the equations (31)
and (32) we deduce

A =

−â 0 1

0 −b̂ 0
−1 0 −ĉ

 , g(x(t), t) =

 x2(t)x1(t
−x1(t)x1(t)

0
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such that g(x(t), t) satisfies the Lipschitz condition with γ = 3. In order to stabilize
the financial fractional-order differential system (32) by using a asymmetrical saturated
controller with polytopic uncertainties âη and ĉη , we consider the system in the following
form:

CDøx(t) = (Aη + ∆A)x(t) + g
(
x(t), t

)
+B satu,u

(
u(t)

)
,

where

Aη =

 −â 0 1 + âη
0 −b̂ 0

−1 + ĉη 0 −ĉ

 , ∆A =

0.02 0 0.01
0 0.01 0

0.03 0 0.05

 and B =

1 0 0
0 1 0
0 0 1


with ‖âη‖ 6 0.5 and ‖ĉη‖ 6 1. Obviously, the above system belongs to the four vertex
polytopic convex polyhedron in the form of (2) with the following parameters:

A1 =

−1 0 1.5
0 −0.1 0
0 0 −1

 , A2 =

−1 0 1.5
0 −0.1 0
2 0 −1

 ,
A3 =

−1 0 0.5
0 −0.1 0
0 0 −1

 , A4 =

−1 0 0.5
0 −0.1 0
2 0 −1

 ,
and according to case (C1), the uncertainty ∆A gives that εA = 0.05. Let us assume
a = 0.5, α = 0.02, f1 = 0.0001, T = 0.04 and the parameters of the controller gain
fluctuation as εK = 0.2. With these parameters, by solving the sufficient conditions of
Theorem 1, we arrive at a feasible solution with f2 = 0.0703 as the optimum finite-time
bound value and

K =

−28.1603 0 −0.6209
0 −91.3284 0

−0.6107 0 −28.6257

 , H =

−0.0097 0 −0.0001
0 −0.1622 0

−0.0001 0 −0.0108


as the associated controller gain matrices. The corresponding simulation results for state
responses with the asymmetrically saturated control is presented in Fig. 1.

Figure 3 depicts the evolution of xT(t)V x(t) with asymmetrically saturated control
for various initial conditions within the interval [0, 0.04]. Hence, it is concluded that the
financial fractional-order differential system (31) is bounded within a finite interval of
time by means of the proposed asymmetrically saturated controller.

Next, for a known actuator fault G̃ = 0.5 and T = 0.06, we solve the LMIs of
Theorem 2 and obtain f2 = 0.1467 as the optimum finite-time bound value with

K =

−43.9841 0 −0.7610
0 −139.7311 0

−0.7559 0 −44.4807

 H =

−0.0557 0 0.0004
0 −0.8428 0

0.0004 0 −0.0566


as the associated controller gain matrices. The corresponding state responses of sys-

tem (14) are shown in Fig. 2.
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Figure 1. State responses of fractional-
order financial system (31) under asymmetrically
saturated control.
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Figure 2. State responses of fractional-
order financial system (31) under asymmetrically
saturated reliable control.
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Figure 3. Evolution of the trajectories of xT(t)V x(t).
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Figure 4. State responses under asymmetrical saturated control and symmetrical saturated control inside the
polyhedral set of saturation Ł(K).

From Figs. 1 and 2 we can observe that the financial fractional-order differential sys-
tem achieves stability, although it consumes more time in the presence of actuator faults.
Figure 4 shows the evolution of trajectories of the state vector x(t) under various initial
states x0 inside Ł(K), which is already defined as the polyhedral set of saturation in the
Section 2. In the case of asymmetrically saturated control, if x0 ∈ εs(Pη, ρ), then the tra-
jectories of the state vector converges to the point of equilibrium xe = −(Aη+BK)−1×
Eτ , which lies close to the origin due to the presence of τ(t), which is nothing but
the pseudo permanent perturbation. In the case of symmetrically saturated control, if
x0 ∈ εs(Pη, ρ), then the state trajectories converges to x0.
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Example 2. The permanent magnet synchronous motor fractional-order differential chaotic
system is described in [20] as

CDø1x1(t) = −x1(t) + x2(t)x3(t),
CDø2x2(t) = x2(t)− x1(t)x3(t) + ãx3(t),

CDø3x3(t) = b̃
(
x2(t)− x3(t)

)
,

(33)

where the fractional orders are ø1 = 0.98, ø2 = 0.95 and ø3 = 0.99. With the initial
values (x1(0), x2(0), x3(0))T = (35, 0.02, 0.01)T, when ã = 50 and b̃ = 4, sys-
tem (33) exhibits a chaotic behavior. Now, the state representation of permanent magnet
synchronous motor fractional-order differential chaotic system (33) can be written as

CDøx(t) = Ax(t) + g
(
x(t), t

)
, (34)

where x(t) = (x1(t), x2(t), x3(t))T is the system state. Further, from (33) and (34) we
have

A =

−1 0 0
0 −1 ã

0 b̃ −b̃

 , g(x(t), t) =

 x2(t)x3(t
−x1(t)x3(t)

0


such that g(x(t), t) satisfies the Lipschitz condition. Let the permanent magnet syn-
chronous motor fractional-order differential chaotic system (33) with uncertainty b̃η takes
the parameters ∆A = D(I − ∆1F )−1∆1E with F = 0.1I , E = I , ∆1 = diag{∆11,
∆12,∆13}, ‖∆11‖ 6 1, ‖∆12‖ 6 1, ‖∆13‖ 6 1,

D =

0.05 0.1 0
0.1 −0.1 0
0 0 0.02

 and Aη =

−1 0 0
0 −1 ã

0 b̃+ b̃η −b̃


with ‖b̃η‖ 6 0.05. Now, this is a two vertex polytopic convex polyhedron in the form
of (2) with

A1 =

−1 0 0
0 −1 50
0 4.05 −4

 , A2 =

−1 0 0
0 −1 50
0 3.95 −4

 .
With remaining parameters as in Example 1 and the control fluctuation parameter as
∆K = X(I − ∆2Y )−1∆2Z with X = 0.5I , Y = 0.2I , Z = I , ∆2 = diag{∆21,
∆22,∆23}, ‖∆21‖ 6 1, ‖∆22‖ 6 1, ‖∆23‖ 6 1, we solve the LMIs in Theorem 3 and
arrive at a feasible solution with f2 = 0.1041 as the optimum finite-time bound value and

K =

−5.0960 0.2157 0.5237
0.0183 −36.2074 −60.2708
−0.0680 −10.0624 −77.9895

 , H =

 0.0040 −0.0029 0.0038
−0.0014 −0.8940 0.8008
−0.0002 0.1350 −0.4396


as the associated controller gain matrices.
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Figure 5. Evolution of the trajectories of
xT(t)V x(t).
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Figure 6. State responses of permanent magnet
synchronous motor fractional-order differential
chaotic system (33) under asymmetrically satu-
rated reliable control.

Figure 5 depicts the evolution of the trajectories of xT(t)V x(t) with asymmetrically
saturated control for various initial conditions within the interval [0, 0.04]. Hence, we
arrive at a conclusion that the permanent magnet synchronous motor fractional-order
differential chaotic system (33) is finite-time bounded by means of the proposed asym-
metrically saturated controller.

Next, for a known actuator fault G̃ = 0.5 and T = 0.06, we solve the LMIs of
Theorem 4 and obtain f2 = 0.0899 as the optimum finite-time bound value with

K =

−11.2472 −0.0233 −0.2809
−0.1264 −35.6318 −0.0316
−0.2745 −0.0101 −11.3718

 , H =

−0.0111 −0.0007 −0.0008
−0.0015 −0.2017 −0.0003
−0.0007 −0.0001 −0.0130


as the associated controller gain matrices. The corresponding state responses of (14) are
depicted in Fig 6. The time taken for convergence in the presence of actuator failures
with a saturated controller, which is asymmetrically constraint is more when compared to
absence of actuator faults. However, proposed controller makes the system stable within
a finite-time, even if there are actuator faults.

Remark 3. In [9] and [5], the authors have studied the stabilization problem of fractional-
order systems without considering the effect of saturation and uncertainties. In this paper,
we have extended the results to fractional-order systems in the presence of asymmetrical
saturation and mixed uncertainties. Moreover, in [20], stabilization of fractional-order
uncertain chaotic systems is studied with the conventional controller, whereas this paper
considers a more generalized form with asymmetrical saturated controller and mixed
uncertainties in the state and control parameters.

6 Conclusion

In this study, a finite-time controller has been designed for the stabilization of the fraction-
al-order systems in the presence of structured uncertainties, actuator faults, asymmetric
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saturation and gain fluctuations. The primary concern of this study is to broaden the
results of fractional-order system with symmetric saturation to asymmetric constrained
saturation by using LMIs. By means of a suitable Lyapunov functional candidate, finite-
time boundedness of closed-loop system has been guaranteed through a set of LMI-based
sufficient conditions. Through these sufficient conditions, we have obtained the reliable
resilient controller gain matrix for obtaining the required result. Finally, two examples
are used by means of financial fractional-order differential system and permanent magnet
synchronous motor chaotic fractional-order differential system to depict the effectiveness
of the asymmetrically saturated controller design strategy. The nonfragile control prob-
lem for nonlinear fractional-order stochastic systems driven by G-Brownian motion with
quantization effects will be our future research work in this direction.
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