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Abstract. The current work deals with the pulsating flow of Au-blood micropolar nanofluid with
the existence of thermal radiation and Joule heating. Micropolar fluid is addressed as blood (base
fluid) and Au (gold) as a nanoparticle. The flow has been mathematically modeled, resulting in
a delicate system of partial differential equations (PDEs). A perturbation technique is used to
convert the PDE system into ordinary differential equations (ODEs), which are subsequently solved
by using the shooting method with the Runge–Kutta fourth-order scheme. The effects of various
parameters on the velocity, microrotation, temperature, and heat transfer rate of Au-blood nanofluid
are graphically depicted and explored successively. The obtained findings bring out that the velocity
of nanofluid decreases over a rise in the coupling parameter, magnetic field, and nanoparticle
volume fractions. The temperature is reducing with an increment of radiation parameter, frequency
parameter, coupling parameter, magnetic field, and volume fraction of nanoparticles. Further, the
results show that the Nusselt number against frequency distribution increasing with the rising values
of the Eckert number.

Keywords: pulsatile flow, micropolar nanofluid, Joule heating, Hartmann number, thermal
radiation.

1 Introduction

In 1966, Eringen [12] introduced the theory of the micropolar fluid model and later
extended it into a thermo-micropolar fluid. The non-Newtonian micropolar fluid is char-
acterized by microstructures, rigid and randomly focused particles on microrotation of
fluid components. Such fluid is taken into account through macroscopic views such as
polymeric fluids, liquid crystals, colloidal suspensions, animal and human blood. Blood
is a nonhomogeneous fluid that streams inside the human artery system and delivers the
cells with nutrients due to the blood’s microstructure, and its flow inside a human carotid
model can be taken as micropolar fluid. Eringen have established the micropolar fluid
model for viscoplastic and viscoelastic medium containing through a classical continuum
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and thermodynamics. He formulated a much complex structure for simulating effective
microrheological properties and areas of applications in various industrial and engineering
fields like chemical engineering, arterial blood flows, synovial fluid, biofluids, semicircu-
lar canal fluids, gastric liquids, slurry technologies. Nowadays, a micropolar theory has
been successfully performed in various branches in the medical field [5, 7, 13, 20, 25].
Sheikholeslami et al. [27] discussed the effects of substantial parameters like microrota-
tion and angular velocity, Reynolds number, Peclet number then solved laminar flow of
steady micropolar fluid on porous walls of two-dimensional channel. Rashad et al. [24]
probed the heat transfer and convective flow of micropolar nanofluids on a cylinder in
a soaked penetrable medium. Kabeir et al. [10] investigated the hydromagnetic flow of
micropolar ferrofluid with thermal radiation and partial slip effects. Mahdy et al. [17]
scrutinized the convective flow of a micropolar hybrid nanofluid with the presence of
internal heat generation, magnetic field, and thermal radiation. Rashad et al. [23] studied
the coupled heat and mass transfer and the influence of chemical reaction through a com-
bined convectional micropolar fluid. Bhattacharyya et al. [3] analytically investigated the
heat transfer on the flow of carbon nanotubes between two expandable coaxial rotating
disks subject to the Cattaneo–Christov heat flux model by employing optimal homotopy
analysis method. Motivated by the aforesaid studies, it is noticed that there is a gap
related to the survey of the pulsating flow of micropolar nanofluid into a channel with
the presence of applied magnetic field, Joule heating, viscous dissipation. So that, in this
analysis, we made an attempt to study the simultaneous impacts of viscous dissipation and
Joule heating on pulsating magnetohydrodynamic (MHD) flow of a micropolar nanofluid
with the influence of heat source/sink and thermal radiation.

The investigation of pulsating flow in a channel turns out to be the aim of scien-
tific exploration due to its significance on biological demands, which is corresponding
to hemodynamics, and the several researchers have attracted due to their technological
systems like circulatory systems, gaseous diffusion, transpiration cooling, and respira-
tory system [2, 6, 18, 19, 21, 33]. The pulsatile flow, which is the rate of fluid flow that
stimulates by a periodic oscillation or pressure gradient and the superimposed periodical
time-varying component, is composed into a steady flow component. The mathematical
analysis is divided into two sections, one dealing with higher-order outcomes for the
microinertia, microstretch, and micropressure fields, as well as the other with solutions for
the velocity and microrotation fields. The pulsatile flow of microstretch fluids in circular
tubes is studied as a result of a sinusoidally changing pressure gradient. Venkatesan and
Reddy [31] analyzed the effects of pulsatile flow of blood-alumina nanofluid in a channel
with the existence of viscous dissipation and Joule heating. Bitla and Iyengar [4] ex-
amined the pulsating flow of noncompressible micropolar fluid in the middle of porous
walls with an angled magnetic field by adopting the perturbation method. Srinivas et
al. [28] investigated the chemical and Soret impacts on the hydromagnetic pulsatile flow
of Casson fluid into the permeable channel.

In the present days, the study of nanofluid is greatly essential due to its significant
implementations in electronic, optical, and biomedical fields. Nanofluids are a compara-
tively current category of heat transfer that has fascinated much observation of researchers
from previous generations around the globe [22, 30]. The section of nanofluids was first
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established by Choi [9] in 1995. Nanofluid is a fluid that contains nanosized (less than
100 nm) solid particles in the base fluid. Many scientists have been observed extraordinary
thermal characteristics in nanofluids and developed a new model. The good compilation
of issued papers on nanofluids can be discovered in the book by Choi [8]. Selimefendigil
et al. [26] performed the numerical study of forced convective nanofluid flow in a bifur-
cating channel with the existence of a uniform magnetic field by adopting the Galerkin
weighted residual finite element method. Hashmi et al. [14] analytically discussed the
problem of MHD squeezing flow of a nanofluid between two disks employing homotopy
analysis approach. Vijayalakshmi et al. [32] investigated the hydromagnetic pulsating flow
of nanofluids between parallel walls, and the authors treated water as base fluid, and silver,
alumina, titanium dioxide, and copper oxide are indicated as nanoparticles. Hatami et
al. [15] pointed out the features of gold-blood nanofluid flow through a hollow vessel in
the existence of a magnetic field. Elgazery [11] presented the flow of a blood-based non-
Newtonian nanofluid with alumina and gold nanoparticles via the non-Darcian penetrable
medium. Reddy et al. [29] highlighted the thermal properties of Au/Cu-blood nanofluid
flow through a permeable channel with stretching or shrinking walls for its heat transfer
properties. Abo-Dahab et al. [1] interrogated the hydromagnetic Casson nanofluid flow in
a permeable medium with the transversal magnetized field and suction/injection effects.
Kumar et al. [16] exhibited the pulsatile flow characteristics of Casson nanofluid into an
allowable channel with help of the perturbation method.

Propelled by the above literature survey, it is noticed that no attempt related to the
survey of the pulsating flow of micropolar nanofluid into a channel with the applied
magnetic field, Joule heating, viscous dissipation effects has made so far. The current
work aims to look at the simultaneous impacts of viscous dissipation and Joule heating
on pulsating MHD flow of a micropolar nanofluid with the influence of heat source/sink
and thermal radiation. The present study may be useful in the study of physical aspects
of biomedical, drug delivery, or radio therapy using nanoparticles. In the present work,
blood is taken as micropolar fluid (base fluid), and gold (Au) is chosen as a nanoparticle.
Gold nanoparticles are efficient in drug carry and drug delivery vehicles because they can
encapsulate large quantities of therapeutic molecules. Here the perturbation technique
is utilized to convert a set of partial differential equations (PDEs), which are governing
current flow into a set of ordinary differential equations (ODEs) and then numerically
solved by employing the shooting technique and the Runge–Kutta fourth-order procedure.
The velocity, temperature, and rate of heat transfer distributions of micropolar nanofluid
are discussed via pictorial representations in detail.

2 Formulation of the problem

We consider an incompressible and laminar pulsatile flow of electrically conducting mi-
cropolar nanofluid through a channel. The schematic diagram of the current flow model
is exhibited in Fig. 1. Assume that the bottom wall is parallel to the x∗-axis and that the
y∗-axis is perpendicular to it. Micropolar fluid is taken as blood (base fluid), and gold
(Au) as a nanoparticle. The Joule heating, viscous dissipation, thermal radiation, and heat
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Figure 1. Physical model for flow problem.

source/sink are taken into account. An applied magnetic field of magnitudeB0 is enforced
uniformly orthogonal to both the walls. Since no external electric field is applied and the
effect of polarization of the ionized fluid is negligible, we can assume that the electric field
is zero. When the external electric field is zero and the induced electric field is negligible,
the magnetic Reynolds number is very small; so that effects of both the Hall effect and
the induced magnetic field are negligible compared with the applied magnetic field. The
bottom and top walls are retained at consistent temperatures T0 and T1, respectively.
Under these hypothesis, the governing equations are given by [4, 5, 27, 32]:
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Here u∗ is velocity along with in x∗-direction, P ∗ is the fluid pressure. ρnf , µnf , σnf ,
(ρCp)nf , and knf represent density, dynamic viscosity, electrical conductivity, effective
specific heat, and thermal conductivity of nanofluid, accordingly, and the subscripts nf ,
f , and s denote the nanofluid, base fluid, and solid nanoparticles, respectively. T ∗ is
the temperature of nanofluid, K1 is coupling parameter, N∗ is microrotation vector, j is
microinertia parameter, qr is the radiative heat flux, and Q0 is the coefficient of the heat
source/sink.

The corresponding boundary conditions (BCs) are

u∗(0) = 0, N∗(0) = 0, T ∗(0) = T0,
(4)

u∗(h) = 0, N∗(h) = 0, T ∗(h) = T1.

Here h is the distance between the walls.
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Table 1. The thermal features of Au nanoparticles
and blood [11, 15].

Property Au Blood

k (W/mK) 318 0.52
Cp (J/kg K) 129 3617
ρ (kg/m3) 19300 1050
σ (Ω m)−1 4.10 · 107 0.8

The characteristics of nanofluid are defined as [15, 29]

(ρCp)nf = (1− φ)(ρCp)f + φ(ρCp)s; ρnf = (1− φ)ρf + φρs;

µnf =
µf

(1− φ)2.5
;

knf
kf

=
ks + 2kf − 2φ(kf − ks)

ks + 2kf + φ(kf − ks)
;

σnf
σf

= 1 +
3( σs

σf
− 1)φ

( σs

σf
+ 2)− ( σs

σf
− 1)φ

.

(5)

Here φ is volume fraction of nanoparticles. The thermal features of base fluid and nanopar-
ticles are shown in Table 1.

Now, with the help of Rosseland approximation for the radiative heat flux qr, Eq. (3)
becomes
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By utilizing the ensuing nondimensionl parameters,
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Equations (1), (2), and (6) become
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Here

A1 = (1− φ) + φ
ρs
ρf
, A2 =

1

(1− φ)2.5
, A3 = (1− φ) + φ

(ρCp)s
(ρCp)f

,
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3( σs
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− 1)

( σs

σf
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σf
− 1)φ

,

Pr = (ρCp)fνf/kf is the prandtl number, Ec = U2/((Cp)f (T1 − T0)) is the Eckert
number, R2 = ωh2/νf is the frequency parameter, M = B0h

√
σf/µf is Hartmann

number, K = K1/µf is coupling parameter, Rd = 4σ∗T 3
1 /(kfk

∗) is the radiation
parameter, n = K1h

2/γ is gyration parameter, Pj = jµf/γ is microinertia parameter,
Q = Q0h

2/((ρCp)fνf ) is the heat source/sink parameter.
The appropriate BCs are

u(0) = 0, N(0) = 0, θ(0) = 0,

u(1) = 0, N(1) = 0, θ(1) = 1.
(11)

3 Solution of the problem

The pressure gradient of the form is supposed to induce the pulsating flow

− ∂P

∂x
= λ0 + ελ1e

it. (12)

Since the pressure gradient conferred in Eq. (12) causes the flow of velocity, microrotation
and temperature are declared as
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it. (13)

By substituting Eqs. (12)–(13) in Eqs. (8)–(10) and equating the coefficients of like power
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1
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The corresponding BCs are

u0 = 0, N0 = 0, θ0 = 0, u1 = 0, N1 = 0, θ1 = 0 at y = 0,

u0 = 0, N0 = 0, θ0 = 1, u1 = 0, N1 = 0, θ1 = 0 at y = 1.
(20)

Further, the nondimensionl heat transfer rate (Nusselt number) at the walls is assigned as

Nu = A4

[(
dθ0
dy

)
y=0,1

+ εeit
(
dθ1
dy

)
y=0,1

]
. (21)

The system of Eqs. (14)–(19) is solved with boundary conditions (20) by adopting the
shooting technique with Runge–Kutta fourth-order approach. The step size is fixed as
0.001 (i.e., ∆y = 0.001). 1 · 10−10 accuracy is fixed for the convergence criteria.

The comparison with the results of Venkatesan and Reddy [31] for (θ′0)y=0 and
(θ′1)y=0 for Al2O3 nanoparticle is presented in Table 2. The comparison shows that
there is a good agreement between the present results and the results of Venkatesan and
Reddy [31]. Further, to check the correctness of the present results, we made a comparison
between the present results and the results obtained by NDsolve using MATHEMATICA
software, which are given in Table 3. It is observed that there is a good agreement between
the present results and the results obtained by NDsolve.

Advantages and limitations of shooting method

The shooting method works by considering the boundary conditions as a multivariate
function of initial conditions at some point, reducing the boundary value problem to

Table 2. Comparison with the results of Venkatesan and Reddy [31] for
θ′0 and θ′1 at y = 0 with the presence of Al2O3 for different values of
Ec, M , and Rd when R = 1, M = 1, Pr = 21, Ec = 1, Rd = 1,
t = π/3, λ0 = 1, λ1 = 1, K = 0, n = 0, and Pj = 0.

Parameter Values Venkatesan–Reddy [31] Present results
(θ′0)y=0 (θ′1)y=0 (θ′0)y=0 (θ′1)y=0

Ec 0.1 2.3652 0.0423 2.36308 0.04211
0.3 2.4456 0.1270 2.44260 0.12634
0.5 2.5260 0.2117 2.52211 0.21057

M 1 2.5260 0.2117 2.52211 0.21057
2 2.4966 0.1638 2.49307 0.16310
3 2.4625 0.1189 2.45931 0.11860

Rd 1 2.5260 0.2117 2.52211 0.21057
2 1.7822 0.1697 1.77668 0.16819
3 1.5254 0.1355 1.52092 0.13383
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Table 3. Comparison of present and NDsolve results for heat transfer
rate at y = 0 for different values of R, Q, and M when t = π/2,
Pr = 21, K = 1, R = 2, Ec = 1, Rd = 2, Q = −2, and φ = 0.05.

Parameter Values (Nu)y=0

Present results NDsolve
R 1 0.68935 0.68926

2 0.68955 0.68946
3 0.68959 0.68950

Q −1 0.99716 0.99787
−1.5 0.81460 0.81444
−2 0.68955 0.68946

M 0 0.77193 0.77372
2 0.68955 0.68946
4 0.55061 0.54754

finding the initial conditions that give a root. The advantage of the shooting method is
that it takes advantage of the speed and adaptivity of methods for initial value problems.
The limitations of the method is that it is not as robust as finite difference or collocation
methods: some initial value problems with growing modes are inherently unstable even
though the BVP itself may be quite well posed and stable.

4 Results and discussion

In the present section, numerical simulations are used to test the dominant features of the
flow behaviour of nanofluid. The static values of t = π/2, M = 2, R = 2, K = 1,
Ec = 1, n = 1, Rd = 2, Q = 1, Pr = 21, λ0 = 1, and λ1 = 1 are considered
for graphical results unless otherwise stated. The current scenario deals with the impacts
of several parameters on velocity, microrotation, temperature, and Nusselt number (heat
transfer rate) of Au-blood micropolar nanofluid with the help of graphical outcomes,
which are presented in Figs. 2–7.

4.1 Velocity distribution

The velocity distributions for various values of coupling parameter (K), gyration pa-
rameter (n), Hartmann number (M ), nanoparticles volume fraction (φ), and frequency
parameter (R) are shown in Figs. 2(a)–2(e). Figure 2(a) exhibits the variations of the
velocity of nanofluid with different values of coupling parameter (K). From Fig. 2(b) one
can notice that the velocity falls with the enhancement of Hartmann number (M ). The
reason for the fall in the velocity is because of the retarding forces upon the utilization of
magnetic field, which act opposite to the flow direction. Hence there is a fall in velocity.
Figure 2(c) presents the impact of gyration parameter (n) on the velocity of nanofluid.
This figure shows that the velocity is increasing with a rise of the gyration parameter.
Figure 2(d) describes that the velocity slows down with the enhancement of nanopar-
ticle volume fraction (φ). The reason behind this is the combined influence of thermal
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(a) Impact of K (b) Impact of M

(c) Impact of n (d) Impact of φ

(e) Impact of R

Figure 2. Impact of various parameters K, M , n, φ, and R on the velocity distribution.
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coefficient and density extension of the base fluid with nanoparticle mass density is signi-
fied. Figure 2(e) elucidates that there is an enhancement in the velocity of nanofluid with
an increment on frequency parameter (R).

4.2 Microrotation distribution

The influence of coupling parameter (K), Hartmann number (M ), gyration parameter
(n), nanoparticles volume fraction (φ) on microrotation is presented in Figs. 3(a)–3(d).
Figures 3(a) and 3(b) describe that the micro velocity is increasing near the bottom
wall at the same time it is falling at the top wall by varying (K) and (M ). Figure 3(c)
demonstrates that by varying the gyration parameter (n) the microrotation velocity is
decreasing near a bottom wall when it rising at the top wall. The opposite trend can be
noticed from Fig. 3(d) by varying volume fractions (φ).

(a) Impact of K (b) Impact of M

(c) Impact of n (d) Impact of φ

Figure 3. Impact of various parameters K, M , N , and φ on the microrotation distribution.
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4.3 Temperature distribution

Figures 4(a)–4(d) and 5 are presented to see the impacts of Eckert number (Ec), radia-
tion parameter (Rd ), heat source/sink parameter (Q), coupling parameter (K), Hartmann
number (M ) on the profiles of temperature distribution (θ) of the nanofluid. Figure 4(a)
displays that the temperature accelerates with an enhancement in Eckert number. Because
Ec is correlated between the heat enthalpy and differences in kinetic energy, when we
increase Ec, it leads to boost the kinetic energy of particles by reducing enthalpy factor,
which rises the temperature. Figure 4(b) describes that there is a decrease in temperature
distributions for the rising values of (Rd ). Such decrease may be due to the physical fact
that rising the radiation parameter reduces the thickness of the thermal boundary layer.
Figure 4(c) reveals the temperature differences for various heat source/sink parameter
values. It is clear that the temperature boosts up with the rising of heat source (Q > 0) due
to the heat generation in the working nanofluid, while it reduces with enhancing of a heat

(a) Impact of Ec (b) Impact of Rd

(c) Impact of Q (d) Impact of K

Figure 4. Impact of various parameters Ec, Rd , Q, and K on the temperature distribution.
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Figure 5. Impact of M on the temperature distribution.

sink (Q < 0) due to the heat amalgamation. Figure 4(d) shows that the temperature is
decreasing, while the coupling parameter (K) increases. Because the coupling parameter
is against the flow of temperature profile, this results in the decrease in θ. Figure 5 presents
that increasing Hartmann number (M ) decreases the temperature, this is maybe due to
the Lorentz force effect created by applied an magnetic field, which reduces the thermal
boundary layer thickness.

4.4 Nusselt distribution

Figures 6(a), 6(b), and 7(a)–7(c) depict the behaviour of the rate of heat transfer (Nu)
of Au-blood nanofluid at the bottom wall (y = 0) against R for various parameters
Ec, φ, M , Rd , and K. From these figures it is noticed that the rate of heat transfer
is increasing function of R. Figure 6(a) elucidates that the heat transfer rate is rising

(a) Impact of Ec (b) Impact of φ

Figure 6. Impact of various parameters Ec and φ on Nusselt number distribution.
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(a) Impact of M (b) Impact of Rd

(c) Impact of K

Figure 7. Impact of various parameters M , Rd , and K on Nusselt number distribution.

with a rise in Ec. It is due to enhancing viscous dissipation accelerates the rate of heat
transfer on the wall. Figure 6(b) presents that the Nusselt number is decreasing with an
increment of nanoparticle volume fraction (φ). A similar trend is seen from Figs. 7(a)–7(c)
with an improvement of Hartmann number, radiation parameter, and coupling parameter,
respectively.

5 Conclusion

The current study investigates the pulsating MHD flow of Au-blood micropolar nanofluid
in a channel with the presence of Joule heating and thermal radiation. Micropolar fluid
is chosen as blood (base fluid) and gold (Au) as nanoparticles. The considered model
is important in the study of biological fluid modeling, polymer engineering, sediments
in rivers, and nanodrug delivery. The numerical results for dimensionless fluid flow
variables are obtainded by hiring a shooting technique with the aid of Runge–Kutta fourth-

https://www.journals.vu.lt/nonlinear-analysis
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order scheme. The impacts of relevant parameters on the velocity, microrotation, and
temperature distributions of Au-blood nanofluid are investigated in detail by plotting
graphs. The main outcomes are outlined as follows:

• Strengthening magnetic field dwindling the current flow due to the Lorentz forces
produced by an applied magnetic field, which act opposite to the flow direction.

• The velocity of nanofluid is reducing with an enhancement of coupling parameter
and nanoparticles volume fraction.

• The velocity is increasing with an enhancement of the gyration parameter and
frequency parameter.

• The temperature profile is rising with the rise of the heat source parameter.
• Magnifying viscous dissipation producing the additional energy, which encourages

the temperature.
• The temperature profile is reducing with an increase of radiation parameter, cou-

pling parameter, magnetic field.
• The heat transfer rate of nanofluid against frequency parameter is increasing with

an improvement of the Eckert number.
• The heat transfer is decreasing with an increase of Rd , φ, K, and M .
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