
Nonlinear Analysis: Modelling and Control, Vol. 27, No. 3, 496–512
https://doi.org/10.15388/namc.2022.27.26407

Press

New discussion concerning to optimal control
for semilinear population dynamics system
in Hilbert spaces

Rohit Patela,b , Anurag Shuklab , Juan J. Nietoc,1 ,
Velusamy Vijayakumard,2 , Shimpi Singh Jadonb

aDepartment of Mathematics,
Government P.G. College Bisalpur,
Pilibhit-262201, India
rohit2851993@gmail.com
bDepartment of Applied Science,
Rajkiya Engineering College Kannauj,
Kannauj-209732, India
anuragshukla259@gmail.com; shimpisingh2k6@gmail.com
cDepartment of Statistics, Mathematical Analysis and Optimization,
Institute of Mathematics, University of Santiago de Compostela,
Santiago de Compostela 15782, Spain
juanjose.nieto.roig@usc.es
dDepartment of Mathematics, School of Advanced Sciences,
Vellore Institute of Technology,
Vellore-632014, Tamilnadu, India
vijaysarovel@gmail.com

Received: July 11, 2021 / Revised: December 15, 2021 / Published online: February 25, 2022

Abstract. The objective of our paper is to investigate the optimal control of semilinear population
dynamics system with diffusion using semigroup theory. The semilinear population dynamical
model with the nonlocal birth process is transformed into a standard abstract semilinear control
system by identifying the state, control, and the corresponding function spaces. The state and control
spaces are assumed to be Hilbert spaces. The semigroup theory is developed from the properties of
the population operators and Laplacian operators. Then the optimal control results of the system are
obtained using the C0-semigroup approach, fixed point theorem, and some other simple conditions
on the nonlinear term as well as on operators involved in the model.
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1 Introduction

Let us consider ζ, a bounded domain in Rn (n ∈ {1, 2, 3}) along the smooth boundary
region ∂ζ. We considered that a biological population is independent to move in the
ζ environment. Let p(t, g, r) be the population dissemination of human beings of age
g > 0 at location r ∈ ζ for time t > 0. We considered that the population flow is
k∇p(t, g, r), where ∇ is the gradient vector with respect to the spatial variable r, and
k > 0 is a constant. The life expectancy of individual is denoted by g+, σ(t, g, r) is
known as the natural mortality rate, and α(t, g, r) is known as the natural fertility rate
corresponding to individual of age g at location r ∈ ζ for the time t > 0. In this paper,
we have considered that the population distribution p(t, g, r) is differentiable in variables
t and g. Moreover, the natural fertility and mortality rate depends only on age.

Let X = L2((0, g+) × ζ) be a Hilbert space, and let Y = L2([0, b];X) be a func-
tion space. The symbol ‖·‖ is norm in X . We have considered the following semilinear
population dynamics model with nonlocal birth process:

∂p

∂t
+
∂p

∂g
+ σ(g)p− k∆p = Bχw(r)u(t) + F

(
t, p(t)

)
,

(t, g, r) ∈ (0, b)× (0, g+)× ζ,

p(t, g, r) = 0, (t, g, r) ∈ (0, b)× (0, g+)× ∂ζ,

p(t, 0, r) =

g+∫
0

α(g)p(t, g, r) dg, (t, r) ∈ (0, b)× ζ,

p(0) = p0, p0 ∈ X,

(1)

where ∆ is Laplacian operator, u is the control function in Y , which is a supply or removal
of population, and χw is the characteristic function of w, B : Y → Z is a bounded linear
operator, the nonlinear function F : (0, b)×X → X represents an infusion of population
due to some natural or unnatural reasons, and p0 is the initial population distribution. In
some models, ∂/∂Fp = 0 is assumed instead of zero population at the boundary region,
where ∂/∂F denotes the exterior normal derivatives on ∂ζ, and ∂/∂Fp = 0 means that
the population inflow or outflow of the region ζ is zero.

In recent years, the existence and uniqueness of mild solution, optimal control, time-
optimal control approximate control, and exact control for fractional-order, integer-order,
integro –differential system, neutral system, etc. have been studied by many researcher’s
articles [1–3,7–9,11–24,26–30,32–35]. In [6], the authors obtained the existence and op-
timal control results using Krasnoselskii’s fixed point theorem and minimizing sequence
concept for the second-order stochastic differential equations having mixed fractional
Brownian motion. In [22], the authors discussed the existing result for the mild solution
and optimal control for fractional-order α ∈ (1, 2] semilinear control system by using α-
order sine and cosine family theory, Banach fixed point theorem, and certain assumptions
on nonlinearity.
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Motivations and contributions

In [1, 11, 19], the authors discussed the optimal control for the population of dynamics
by different techniques. Taking the consideration of ideas from the above literature re-
view and motivated by the fact, the optimal control of semilinear population dynamics
system (1) is studied in the semigroup framework approach.

• We have converted the population dynamic system into a abstract control problem.
• The mild solution is defined in terms of integral equation.
• We have discussed the existence and uniqueness of the assumed system by employ-

ing the contraction principle.
• Optimal control results are obtained using Cauchy–Schwarz’s inequality and Gron-

wall’s lemma.

The structure of this article is as follows. Section 1 discusses some literature related
to population dynamics and optimal control theory. Some new notations, important facts,
lemmas, vital definitions, and theoretical results are recalled and problem formulation is
done in Section 2. In Section 3, we assumed some conditions and proved the existence and
uniqueness of mild solution for system (1). Section 4 deals with the optimal control for
the population dynamics system with diffusion. Finally, in the last Section 5, we discussed
the time optimal control.

2 Preliminaries

Definition 1. (See [31].) A one-parameter family {C(τ), τ ∈ R} of bounded linear
operators mapping the Hilbert space V into itself is said to be a strongly continuous
cosine family if and only if

(i) C(0) = I;
(ii) C(s+ τ) + C(s− τ) = 2C(s)C(τ);

(iii) C(τ)x is continuous in τ on R for each fixed x ∈ V ;
(iv) ‖C(τ)‖ 6M for all τ ∈ [0, T ].

If {C(τ), τ ∈ R} is a strongly continuous cosine family in V , then S(τ), τ ∈ R, is
the one-parameter family of operators in V defined by

S(τ)w =

τ∫
0

C(s)w ds, w ∈ V, τ ∈ R.

The infinitesimal generator of a strongly continuous cosine family {C(τ), τ ∈ R} is
the operator A : D(A) ⊆ V → V defined by

Aw =
d2

dt2
C(0)w,

where D(A) is defined as D(A) = {w ∈ V : C(τ)w is a twice continuously differenti-
able function of τ}.
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Definition 2. The characteristic function of a subset ω of a set Ω is a function χω : Ω →
{0, 1} defined as

χω(x) :=

{
1, x ∈ ω,
0, x /∈ ω.

We are focusing here on the subsequent two linear population dynamics models with
diffusion from the literature.

In [5], the behavior of the semigroup of the following linear population dynamics
model with Dirichlet boundary condition type was studied:

∂p

∂t
+
∂p

∂g
+ σ(g)p− k∆p = 0, (t, g, r) ∈ (0, b)× (0, g+)× ζ,

p(t, g, r) = 0, (t, g, r) ∈ (0, b)× (0, g+)× ∂ζ,

p(t, 0, r) =

g+∫
0

α(g)p(t, g, r) dg, (t, r) ∈ (0, b)× ζ,

p(0, g, r) = p0(g, r), (g, r) ∈ (0, g+)× ζ.

Suppose that A : X → X is defined as

Ay =
∂

∂g
+ σ(g)p− k∆p

with domain of A denoted by

D(A) =

{
ψ ∈ X: Aψ ∈ X, ψ|∂ζ = 0, ψ(0, r) =

g+∫
0

α(g)ψ(t, g, r) dg

}
,

and k is the diffusion constant.
In this paper, it has been proven thatA is the infinitesimal generator of a strongly con-

tinuous semigroup (C0-semigroup) S(t), t > 0. This enables us to reformulate system (2)
in the following abstract form:

∂p(t, g, r)

∂t
= Ap(t, g, r), (t, g, r) ∈ (0, b)× (0, g+)× ζ,

p(0, g, r) = p0(g, r), (g, r) ∈ (0, g+)× ζ.

Note that by Theorem 2 of [5] the C0-semigroup S(t), t > 0, generated by A is compact
when t > g+, otherwise it is not compact because the C0-semigroup generated by the
population operator

A1 = − ∂

∂g
p− σ(g)p

is not compact when t < g+.
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Similarly, in [10] the formulation of C0-semigroup for the following linear population
dynamics system with diffusion in Neuman boundary condition type is studied:

∂p

∂t
+
∂p

∂g
+ σ(g)p− k(g)∆rp = 0, t > 0, g > 0, r ∈ ζ,

∂

∂v
p(t, g, r) = 0, t > 0, g > 0, r ∈ ∂ζ

p(t, 0, r) =

g+∫
0

α(g)p(t, g, r) dg, (t, r) ∈ (0, b)× ζ,

p(0, g, r) = p0(g, r), (g, r) ∈ (0, g+)× ζ, p0 ∈ X.

(2)

We now determine A : X → X as

Ap = − ∂

∂g
p− σ(g)p+ k(g)∆xp.

In that paper, it is shown that the operator A is the infinitesimal generator of a C0-
semigroup S(t), t > 0, using m-dissipativity of the diffusion operator ∆ and the pop-
ulation operator without diffusion. That means the operator A is characterized in the
following way.

Let the operator A1 : D(A1) ⊆ X → X be defined by

A1ψ(g, r) = −∂ψ(g, r)

∂g
− σ(g)ψ(g, r), ψ ∈ D(A1),

where

D(A1) =

{
ψ ∈ X: ψ(·, r) follows the condition of local continuity on (0,∞),

ψ(0, r) =

g+∫
0

α(g)ψ(g, r) dg, a.e. r ∈ ζ, ψg + σψ ∈ X

}
.

Then it is shown that A1 is linear and m-dissipative.
Similarly, let the operator A2 : D(A2) ⊆ X → X be defined by

A2ψ = ∆ψ(g, r), ψ ∈ D(A2),

where

D(A2) =

{
ψ ∈ X: ψ(g, ·) ∈ H2(ζ,R),

∂

∂v
ψ

∣∣∣∣
∂ζ

= 0, a.e. ∆ψ ∈ X
}
.

Then it is shown that A2 is linear and m-dissipative operator. From the above two
operators A : D(A) ⊆ X → X is presented as

Aψ = A1ψ +A2ψ, ψ ∈ D(A),

where D(A) = D(A1) ∩D(A2).
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Therefore, A is linear and m-dissipative since a sum of two m-dissipative operators
is m-dissipative. Hence, A is an infinitesimal generator of the C0-semigroup S(t), t > 0
[25].

Now, we reformulate the abstract form of system (2) as

∂p(t, g, r)

∂t
= Ap(t, g, r), (t, g, r) ∈ (0, b)× (0, g+)× ζ,

p(0, g, r) = p0(g, r), (g, r) ∈ (0, g+)× ζ.

This article deals mainly the optimal control of (1) using C0-semigroup theory.
Now, we consider system (1) as an extension of model (2) to semilinear population

dynamics control system with finite time interval and fixed life expectancy g+ > 0.
Therefore, the abstract form of the population dynamics system (1) can be rewritten as
follows:

∂p(t)

∂t
= Ap(t) +Bχw(r)u(t) + F

(
t, p(t)

)
, t ∈ (0, b],

p(0) = p0, p0 ∈ X, p0 > 0,
(3)

where

D(A) =

{
ψ ∈ X: ψ(·, r) follows the condition of local continuity on [0, a+),

ψ(g, ·) ∈ H2(ζ,R), ψ(0)|∂ζ = 0, a.e. a > 0,

Aψ = ∆ψ + ψa + σ(a) ∈ X, ψ(0, r) =

a+∫
0

α(a)ψ(a, r) dg, a.e. r ∈ ζ

}
.

Assume that the integral cost function is presented as

J(p, u) :=

b∫
0

T
(
t, p(t), u(t)

)
dt

subject to
∂p(t)

∂t
= Ap(t) +Bχw(r)u(t) + F

(
t, p(t)

)
, t ∈ (0, b],

p(0) = p0, p0 ∈ X, p0 > 0.

Uad := {υ(·): [0, b]→ X is measurable, u(t) ∈ Y a.e.} is defined as admissible set.
Also, it is clear that Uad is nonvoid. Uad ⊂ L2([0, b];X) is closed, convex, and

bounded. Also, for every u ∈ Uad, Bu ∈ L2([0, b];Y ).
Let p represent the mild solution, and let u ∈ Uad represent the control, then Aad

is a set of state-control pairs (p, u), which are admissible. Hence, the optimal control
problem is given by

Determine a pair (p0, u0) ∈ Aad such that

J
(
p0, u0

)
:= inf

{
J(p, u): (p, u) ∈ Aad = δ

}
.

Nonlinear Anal. Model. Control, 27(3):496–512, 2022
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The linear system corresponding to (3) is given by

∂p(t)

∂t
= Ap(t) +Bχw(r)u(t), t ∈ (0, b],

p(0) = p0, p0 ∈ X, p0 > 0.

Then we will make use of the C0-semigroup S(t), t > 0, operator for the mild solution
of (3) defined below:

p(t) = S(t)p0 +

t∫
0

S(t− s)
[
Bχwu(s) + F

(
s, p(s)

)]
ds, 0 6 t 6 b. (4)

Suppose p(t) ∈ X is mild solution of (3), then we define the population distribution
p(t, g, r) in the following manner:

p(t, g, r) = S(t)p0(g, r)

+

t∫
0

S(t− s)
[
Bχwu(s, g, r) + F

(
s, p(s, g, r)

)]
ds, 0 6 t 6 b.

Here we give the verification of the natural fertility rate of the population in relation to
the mild solution of (1):

p(t, 0, r) =

g+∫
0

α(g)p(t, g, r) dg

=

g+∫
0

α(g)

{
S(t)p0 +

t∫
0

S(t− s)
[
Bχwu(s) + F

(
s, p(s)

)]
ds

}
dg

=

g+∫
0

α(g)S(t)p0 dg +

g+∫
0

α(g)

t∫
0

S(t− s)Bχwu(s) dsdg

+

g+∫
0

α(g)

t∫
0

S(t− s)F
(
s, p(s)

)
dsdg. (5)

On the other hand, when we put g = 0 in the integral equation (5), we have

p(t, 0, r) = S(t)p0(0, r)

+

t∫
0

S(t− s)
[
Bχwu(s, 0, r) + F

(
s, p(s, 0, r)

)]
ds

https://www.journals.vu.lt/nonlinear-analysis
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= S(t)

g+∫
0

α(g)p0(g, r) dg +

t∫
0

S(t− s)Bχwu(s, 0, r) ds

+

t∫
0

S(t− s)F

(
s,

g+∫
0

α(g)p(s, g, r) dg

)
ds. (6)

From (5) and (6) we establish the following conditions:

t∫
0

S(t− s)Bχwu(s, 0, r) ds =

g+∫
0

α(g)

t∫
0

S(t− s)Bχwu(s) dsdg,

t∫
0

S(t− s)F

(
s,

g+∫
0

α(g)p(s, g, r) dg

)
ds =

g+∫
0

α(g)

t∫
0

S(t− s)F
(
s, p(s)

)
dsdg,

which can be simplified as

Bχwu(s, 0, r) =

g+∫
0

α(g)Bχwu(s) dg, 0 6 t 6 b,

F

(
s,

g+∫
0

α(g)p(s, g, r) dg

)
=

g+∫
0

α(g)F
(
s, p(s)

)
dg.

3 Basic assumptions, existence and uniqueness results

In this article the following assumptions are important to obtain existence and uniqueness
results.

(A1) (i) α ∈ L∞(0, g+), α(g) > 0, a.e. g ∈ (0, g+). There exists g0, g1 ∈ (0, g+),
g0 6 g1, such that α(g) = 0, a.e. g ∈ (0, g+) ∪ (g1, g+), and α(g) > 0
a.e. in (g0, g1).

(ii) σ ∈ C([0, g+]), σ(g) > 0, a.e.
∫ g+
0

σ(g) dg =∞ and
∫ g
0
σ(g) dg <∞.

(iii) p0(g, r) > 0 a.e. in (0, g+)× ζ.
(iv) F (t, p) : X → [0,∞).

(A2) The C0-semigroup S(t) is uniformly bounded, i.e., there exists M > 0 such
that ‖S(t)‖ 6M for all t > 0.

(A3) For each t > 0, F follows the Lipschitz continuity with respect to the population
distribution p, i.e., ‖F (t, p1) − F (t, p2)‖ 6 l‖p1 − p2‖ for some constant
number l.

(A4) t→ F (t, p) for all t is measurable.
(A5) There exist k > 0 such that ‖F (t, p)‖ 6 k{1 + ‖p‖}.

Nonlinear Anal. Model. Control, 27(3):496–512, 2022
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For the biological significance of assumption (A1), one can refer to [1, 11, 19].
The interpretation of the integral condition in (A1)(ii) is that each individual dies

before age g+. Hence, the approximate controllability could not hold at age g+.

Lemma 1. (See [28].) According to the control u, the mild solution of (3) is assumed to
be (4) on [0, b]. Then there exists Mph = Mph(u) > 0 such that∥∥p(t)∥∥ 6Mph, t ∈ [0, b].

Proof. Let p(t) described by (4) be the mild solution (3). Provided that t ∈ [0, b], by
applying assumption (A5) and Cauchy–Schwartz inequality we have

p(t) = S(t)p0 +

t∫
0

S(t− s)
[
Bχwu(s) + F

(
s, p(s)

)]
ds.

Then ∥∥p(t)∥∥ 6 ∥∥S(t)
∥∥‖p0‖+

t∫
0

∥∥S(t− s)
∥∥∥∥[Bχwu(s) + F

(
s, p(s)

)]∥∥ds

6M‖p0‖+M‖B‖‖u‖+Mk

t∫
0

[
1 +

∥∥p(s)∥∥]ds

6M‖p0‖+M ·MB‖u‖+Mkb+Mk

t∫
0

∥∥p(s)∥∥ds

6M ′ +Mk

t∫
0

∥∥p(s)∥∥ds.

By referring Gronwall’s inequality we have ‖p(t)‖ 6Mph for all t ∈ [0, b].

Theorem 1. Assume that (A1)–(A5) are fulfilled, then corresponding to each control
function u ∈ Uad, system (3) has a unique mild solution in L2([0, b];X).

Proof. Let p0 ∈ X and consider W = C{0, b;X}, the Banach space of all continuous
functions from [0, b] to X along with supremum norm.

We now define Φ : C[0, b;X]→ C[0, b;X] such that

(Φp)(t) = S(t)p0 +

t∫
0

S(t− s)
[
Bχwu(s) + F

(
s, p(s)

)]
ds.

Clearly, Φ is well defined. We need to verify that (4) represents the mild solution on
[0, b1]. It is enough to verify that Φ has a unique fixed point in C([0, b];X). By applying
the fixed point technique we are able to verify this discussion.

Assume that r ∈ R and r > 0. Assume that Br denotes the closed ball in C[0, b1;X]
with radius r:

Br :=
{
p(·) ∈ C[0, b1;X]: ‖p‖C([0,b1];X) 6 r

}
.

https://www.journals.vu.lt/nonlinear-analysis
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Clearly, Br is bounded and closed subset of C[0, b1;X]. For any p(·) ∈ Br, we have

‖Φp‖X 6M‖p0‖+M‖B‖‖u‖+Mkb1 +Mk

b1∫
0

∥∥p(s)∥∥ds

6M‖p0‖+M‖B‖‖u‖+Mkb1 +Mkb1r.

Now, let M [‖p0‖+ ‖B‖‖u‖+ kb1 + kb1r] < r. Then

M
[
‖p0‖+ ‖B‖‖u‖+ kb1

]
< r(1−Mkb1).

For positive right-hand side,
Mkb1 < 1. (7)

Therefore, if (7) holds, the Φ maps Br into itself.
Now, we will prove that Φn is a contraction on Br. Let p1, p2 ∈ Br. With the help

of definition of Br, there exists r > 0 such that ‖p1‖, ‖p2‖ < r. Hence, condition (A3)
yields ∥∥(Φp1)(t)− (Φp2)(t)

∥∥ 6MLb
{
‖p1 − p2‖

}
.

Following the same method n times, we have∥∥Φnp1 − Φnp2∥∥ 6 (MLb)n

n!

{
‖p1 − p2‖

}
. (8)

Conclusion (8) is achieved easily by continuing n times the above procedure. There exist
n such that (MLb)n/n! < 1. Hence, Φn is contraction for sufficiently large n. Using
contraction principle in C[0, b1;X], Φn has a unique fixed point p, which represents mild
solution of (3). In the same manner, we will show that (4) is the mild solution on [b1, b2],
b1 < b2. Continuing this process, we will achieve that (4) represents mild solution on the
maximal existence interval [0, b), b <∞.

Our aim is here to verify the uniqueness. Let us consider any two solutions p1 and p2,
we have ∥∥p1(t)− p2(t)

∥∥ 6M t∫
0

∥∥F (s, p1)− F (s, p2)
∥∥ds

6Ml

t∫
0

∥∥p1(s)− p2(s)
∥∥ds.

By applying Gronwall’s inequality we conclude that p1(t) = p2(t) for all t ∈ [0, b].

4 Optimal control

The existence of optimal control for the considered system with diffusion is discussed in
this section.
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Define

L : [0, b]×X × Y → R ∪∞

with the following conditions:

(C1) L is Borel measurable.
(C2) For all t ∈ [0, b], the function T (t, p, u) is sequentially lower semicontinuous

on X × Y .
(C3) For p ∈ X , convexity is fulfilled by T (t, p, u) on Y .
(C4) There exists l ∈ [0,∞), j ∈ (0,∞), α ∈ [0,∞), and α ∈ L1([0, T ];R) with

the condition T (t, p, u) > l‖p‖+ j‖u‖Y + α(t).

Theorem 2. If (C1)–(C4) and (A1)–(A5) hold, then for system (3), there exists at least
an optimal pair (p0, u0) ∈ Aad, and

J(p0, u0) :=

t∫
0

T
(
t, p0(t), u0(t)

)
dt 6 J(p, u), (p, u) ∈ Aad.

Proof. If greatest lower bound of {J(p, u)|(p, u) ∈ Aad} is +∞, then, obviously, we
obtain the result. So, we will assume that greatest lower bound of {J(p, u)|(p, u) ∈ Aad}
as δ < +∞. From above conditions (C1)–(C4) it is clear that δ > −∞. With the help of
greatest lower bound, there exist a sequence of state-control pair (pm, um) ∈ Aad} such
that J(pm, um)→ δ as m→ +∞ assuming (pm, um) ∈ Aad} as minimizing sequence.
We know that Lp([0, b];U) is a reflexive separable Banach space, {um} is a bounded
subset of L2([0, b];X), and also {um} ⊆ Uad, m ∈ N, so there is relabeled sequence
{um} and u0 ∈ Lp([0, b];X) such that um → u0 (weakly converges as m → +∞)
in Lp([0, b];X). As we know that the admissible set Uad ⊂ Lp([0, b];X) is bounded,
closed, and convex, so Mazur’s lemma forces us to conclude that u0 ∈ Uad.

Now, let us assume that corresponding to sequence of controls {um}, the sequence of
solutions of system (3) be given by {pm}, that is,

pm(t) = S(t)p0 +

t∫
0

S(t− s)
[
Bχwu

m(s) + F
(
s, pm(s)

)]
ds.

From definition of Br we can easily prove that there exists r > 0 for which

‖pm‖ 6 r, m = 0, 1, . . . .

Let corresponding to control u0 ∈ Uad, p0 denotes the mild solution, which is given by

p0(t) = S(t)p0 +

t∫
0

S(t− s)
[
Bχwu

0(s) + F
(
s, p0(s)

)]
ds.
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Using (A3) and Cauchy–Schwarz inequality, we obtain∥∥pm(t)− p0(t)
∥∥

6

t∫
0

∥∥S(t− s)
[
Bχwu

m(s)−Bχwu0(s)
]
‖ ds

+

t∫
0

∥∥S(t− s)
[
F
(
s, pm(s)

)
− F

(
s, p0(s)

)]∥∥ ds

6M

t∫
0

∥∥B(s)um(s)−B(s)u0(s)
∥∥ ds+Ml

t∫
0

∥∥pm(s)− p0(s)
∥∥ds.

By referring Gronwall’s lemma

∥∥pm(t)− p0(t)
∥∥ 6M∗( t∫

0

∥∥B(s)um(s)−B(s)u0(s)
∥∥ds

)
6M∗

∥∥Bum −Bu0∥∥
Y
, (9)

where M∗ > 0 is a constant.
Because B is strongly continuous,∥∥Bum −Bu0∥∥

Y
→ 0 as m→∞. (10)

From (9) and (10) we conclude that∥∥pm(t)− p0(t)
∥∥
X
→ 0 as m→∞.

This implies that ‖pm − p0‖X → 0 as m → ∞, i.e., pm → p0 when m → ∞ (all
converge strongly).

By referring [4, Thm. 2.1], under (C1)–(C4), assumptions of Balder are fulfilled. So,
with the help of theorem of Balder’s, we get

(p, u)→
t∫

0

T
(
t, p(t), u(t)

)
dt, (11)

L2([0, b];X) ⊂ L1([0, b];X) in the weak topology and strong topology of L1([0, b];Y ),
(11) is sequentially lower semicontinuous. Hence, on L2([0, b];X), with condition (C4)
and weakly lower semicontinuity of J , J > −∞. Greatest lower bound of J is achieved
at u0 ∈ Uad, i.e.,

δ := lim
m→∞

T
(
t, pm(t), um(t)

)
dt >

t∫
0

T
(
t, p0(t), u0(t)

)
dt

= J
(
p0, u0

)
> δ. �
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5 Time optimal control

Let us assume two distinct members p0, p1 ∈ X with the condition p(t;F ;u) = p1,
p(0)=p0 such that u∈Uad. Define the transition time tu satisfying p(tu;F ;u)=p1.

The time value t0 of tu for which there exists an admissible control satisfying
p(tu;F ;u) = p1 is said to be the optimal time, and a control u0 ∈ Uad such that
p(t0;F ;u0) = p1 is said to be the time optimal control. Now, we need to verify that
there exist admissible control such that p(t0;F ;u0) = p1 with respect to {p0, p1}.
Theorem 3. Assume that (A1)–(A5) are fulfilled, then corresponding to {p0, p1}, there
exist a time optimal control.

Proof. By referring the methodologies presented in [14, 21, 35], with certain modifica-
tions, we present the existence of time optimal control.

Consider
t0 := inf

{
t: p(t;F ;u) = p1, u ∈ Uad

}
.

Then there is a nonincreasing sequence {tm}, which converges to {t0}, and we consider
{um} ⊆ Uad, a sequence of controls having state trajectories as

pm(tm;F ;u)

:= S(t)p0 +

t∫
0

S(t− s)
[
Bχwu

m(s) + F
(
s, pm(s)

)]
ds t ∈ [0, T ],

satisfying pm(tm;F ;um) = p1 for all m = 1, 2, . . . .
Note that pm(tm;F ;um) ∈ L2([0, T ];X) since {um} is bounded, weakly sequen-

tially compact. Therefore, we fix um → u0 in L2([0, T ];Y ).
Let X has the dual space as X∗ and p∗ ∈ X∗. So, the dual pair (pm, p∗) is given by(

pm
(
tm; g;um

)
, p∗
)

=

(
S(t)p0 +

t0∫
0

S(tm − s)
[
Bχwu

m(s) + F
(
s, pm(s)

)]
ds, p∗

)

+

tm∫
t0

(
S(tm − s)

[
Bχwu

m(s) + F
(
s, pm(s)

)]
ds, p∗

)
. (12)

In view of (A5) and Lemma 1, we have∥∥∥∥∥
( tm∫
t0

S(t− s)
[
Bχwu

m(s) + F
(
s, pm(s)

)]
ds, p∗

)∥∥∥∥∥
6M

[
‖B‖

tm∫
t0

∥∥um(s)
∥∥ ds+

tm∫
t0

k
(∥∥pm(s)

∥∥+ 1
)

ds

]
‖p∗‖

6
[
M‖B‖‖u‖L2([0,T ];Y ) +Mk(Mph + 1)

]
‖p∗‖.
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In the right-hand side of equation (12), the first and third term converge strongly to S(t)p0
and 0, respectively. The convergence of second term is given with the help of weak
convergence of um to u0 and assumption (A4), we achieve

t0∫
0

S(tm − s)
[
Bχwu

m(s) + F
(
s, pm(s)

)]
ds

→
t0∫
0

S(t0 − s)
[
Bχwu

0(s) + F
(
s, p0(s)

)]
ds

strongly in L2([0, T ];X). As m→∞, it becomes

(p1, p
∗) =

(
S(t)p0 +

t0∫
0

S(t− s)
[
Bχwu

m(s) + F
(
s, pm(s)

)]
ds, p∗

)
.

Since p∗ was arbitrary, we have

p1 = S(t)p0 +

t0∫
0

S(t− s)
[
Bχwu

m(s) + F
(
s, pm(s)

)]
ds = p

(
t0;F ;u0

)
.

Thus, the time optimal control is u0, and the corresponding trajectory is p(t0;F ;u0).

6 Conclusion

The primary focus of our article is to prove the optimal control of the semilinear popu-
lation dynamics system using C0-semigroup theory. The main outcomes are proved by
applying Lipschitz continuity, Banach contraction principle, and well-known Gronwall’s
inequality. One may extend the optimal control outcomes of the assumed system, non-
local and impulsive with suitable modifications. We can also study the optimal control
of assumed population dynamics systems in stochastic and fractional-order systems by
utilizing stochastic and fractional calculus.
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