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Abstract. In this paper, we consider mathematical modelling and parameter identification problem
in bioconversion of glycerol to 1,3-propanediol by Klebsiella pneumoniae. In view of the dynamic
behavior with memory and heredity and experimental results in batch culture, a two-stage fractional
dynamical system with unknown fractional orders and unknown kinetic parameters is proposed
to describe the fermentation process. For this system, some important properties of the solution
are discussed. Then, taking the weighted least-squares error between the computational values
and the experimental data as the performance index, a parameter identification model subject to
continuous state inequality constraints is presented. An exact penalty method is introduced to
transform the parameter identification problem into the one only with box constraints. On this basis,
we develop a parallel Particle Swarm Optimization algorithm to find the optimal fractional orders
and kinetic parameters. Finally, numerical results show that the model can reasonably describe the
batch fermentation process, as well as the effectiveness of the developed algorithm.

Keywords: fractional dynamical system, parameter identification, parallel optimization, batch
fermentation.

1 Introduction

Fractional calculus, also known as noninteger-order calculus in the literature, is a gen-
eralization of the ordinary calculus. From the perspective of mathematical classifica-
tion it is a branch of mathematical analysis [5]. Fractional calculus has been widely
used in numerous areas including control systems [1], bioengineering [21], viscoelastic
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mechanics [23], and image encryption [32]. However, its development was very slow
before 1970. In 1970s, researchers discovered that a series of phenomena or processes,
such as fractal geometry, power law phenomena, and memory processes, is closely re-
lated to fractional calculus. In particular, fractional differential equations (FDEs) are
naturally related to system with memory and heredity, and this phenomenon is often
reflected in the field of bioengineering [21, 30]. As a result, the applications of FDEs in
complex biological system with memory and heredity have received particular attention
during the past decades [11, 21, 30, 31]. It is worth noting that there are two most popular
fractional derivatives, i.e., the Caputo fractional derivative and the Riemann–Liouville
fractional derivative. Compared with the initial value problem of FDEs in the Riemann–
Liouville sense, differential equations in the Caputo sense are initialized by the integer-
order derivatives, which enhances its practicability in mathematical modelling of real-
world processes. Thus, FDEs in the Caputo sense will be considered in this paper.

1,3-propanediol (1,3-PD), a colorless, hygroscopic viscous liquid, is widely used in
the production of polyester, polyurethane, and heterocyclic compounds [15]. There are
two main routes to produce 1,3-PD: chemical synthesis and microbial fermentation. The
latter one is becoming increasingly attractive in industrial 1,3-PD production since it has
the advantages of mild conditions, few by-products, and environment friendly. 1,3-PD
microbial production can be used one of three fermentation modes: batch culture, contin-
uous culture, and fed-batch culture. In a batch culture, a quantity of microorganisms and
substrate is poured into the reactor only once at the beginning of the process and nothing is
added to, or removed from the reactor during the culture process. In a continuous culture,
the substrate is continuously injected into the reactor at a certain rate. At the same time,
the culture fluid is taken out at the same rate, and thus the volume of the fermentation
broth in the reactor remains unchanged. The fed-batch culture process is implemented by
switching between batch and feeding processes. Compared with the continuous and fed-
bach cultures, the batch culture is rather simple to operate, and it can be regarded as a part
of fed-batch culture. In particular, glycerol fermentation to 1,3-PD in batch culture can
obtain the highest productivity and yield [9]. Therefore, in this paper, we will focus on
the 1,3-PD batch production. For 1,3-PD batch production, extensive studies have been
carried out in the literature. Mathematical models of glycerol fermentation by Klebsiella
pneumoniae were proposed in [27,35]. On the basis of these models, various identification
problems and optimization algorithms have been investigated in [18–20,39,40]. However,
these parameter identification problems involve only one-stage systems. Recently, nonlin-
ear multistage systems have been proposed to formulate the batch fermentation process
in [6, 12, 37]. Nevertheless, all the dynamic systems mentioned above are based on the
classical ordinary differential equations. As is well known, the physical and chemical
properties of the fermentation process will lead to the existence of memory and hereditary
behavior, and the fractional calculus can reasonably represent the behavioral systems with
memory and heredity in [11, 30]. By the way, various forms of fractional differential
equations and their practical applications have been discussed in [3,10,33]. Also, there are
many successful numerical methods for solving the fractional optimal control problems;
see, for example, [7, 16, 25]. More recently, a fractional dynamic system in batch culture
and its parameter identification problem have been investigated in [24]. Although the
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fractional system in [24] can describe the first two stages (developmental phase and
growth phase) of the batch culture well, the simulation results in the stationary phase
fail to meet the expectation. Hence, fractional dynamic system with only one stage cannot
describe the whole batch fermentation process well.

In this paper, a two-stage fractional differential dynamical system in the sense of
Caputo is proposed to formulate the batch fermentation process. For this system, some
important properties of the solution are discussed. By taking the weighted least-squares
error function as the cost function, we then present a parameter identification model
subject to continuous state inequality constraints. To solve this parameter identification
problem, an exact penalty method is used to transform the problem into the one only
with box constraints. Furthermore, considering the fact that the number of fractional
orders and kinetic parameters to be identified is very large, we develop a parallel Particle
Swarm Optimization (PPSO) algorithm to solve the transformed problem. Numerical
simulations show that the two-stage fractional dynamical system can reasonably describe
the fermentation process, and the developed algorithm is applicable and effective.

The remaining of the paper is organized as follows. A two-stage fractional dynamical
system of batch culture is established and some properties of the solution are discussed in
Section 2. A parameter identification model is given in Section 3. A numerical solution
approach based on the exact penalty method and PPSO algorithm is proposed in Sec-
tion 4. Numerical simulations are given in Section 5. Conclusions are finally drawn in
Section 6.

2 Two-stage fractional dynamical system and its properties in batch
process

2.1 Fractional calculus

Before establishing the fractional fermentation model, some of the most popular defini-
tions in fractional calculus will be introduced, and we refer the reader to book [2] for
detail.

Definition 1. For a function f ∈ L1([a, b],R), the Riemann–Liouville fractional integral
of order α > 0 is defined by

aI
α
t f(t) =

1

Γ(α)

t∫
a

(t− τ)α−1f(τ) dτ, t ∈ [a, b],

where L1([a, b],R) is the set of Lebesgue measurable functions from [a, b] to R, and Γ(·)
is the Gamma function.

Definition 2. For a function f , if f (m) ∈ L1([a, b],R), then the Caputo fractional deriva-
tive of order α > 0 is defined by

C
aD

α
t f(t) =

1

Γ(m− α)

t∫
a

(t− τ)(m−α−1)f (m)(τ) dτ, t ∈ [a, b],
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where m = dαe is the smallest integer greater than or equal to α, and f (m) denotes the
standard m-order derivative of function f .

Note that the Caputo fractional derivative of order α > 1 can be converted to the
one of order within range (0, 1] [42]. Thus, for simplicity, we assume that α ∈ (0, 1]
throughout the paper.

2.2 Two-stage fractional dynamical system in batch culture

At the beginning of the batch fermentation process, an appropriate number of substrates,
i.e., biomass and glycerol, is added to the reactor, and no input or output is performed
during the process. In particular, the memory and hereditary effects in enzyme reactions
and microbial growth can be reasonably described by the characteristics of fractional
calculus [11, 21, 30].

Based on the work [6,24], we formulate the batch fermentation process as the follow-
ing two-stage fractional differential equations:

C
0D

α1
t x1(t) = c1x1(t)x2(t)− d1x1(t),

C
0D

α2
t x2(t) = −c2x1(t)x2(t) + d2x1(t), t ∈ [0, t1],

C
0D

αi
t xi(t) = cix1(t)x2(t)− dix1(t), i = 3, 4, 5,

(1)

C
t1D

α6
t x1(t) = c6x1(t)x2(t)− d6x1(t),

C
t1D

α7
t x2(t) = −c7x1(t)x2(t) + d7x1(t), t ∈ (t1, T ],

C
t1D

αi+5

t xi(t) = c(i+5)x1(t)x2(t)− d(i+5)x1(t), i = 3, 4, 5,

(2)

where xi(t), i = 1, 2, . . . , 5, are, respectively, the concentrations of biomass, glycerol,
1,3-PD, ethanol, and acetate at time t; 0 < αj 6 1, j = 1, 2, . . . , 10, are fractional orders;
t1 is a given switching time; T is a given terminal time of the fermentation process;
ck, k = 1, 2, . . . , 10, denote the kinetic parameters of biomass growth, glycerol con-
sumption, 1,3-PD formation, ethanol formation, and acetate formation, respectively; and
dk, k = 1, 2, . . . , 10, denote the inhibitory effects of cell death on cell growth, glycerol
consumption, 1,3-PD formation, ethanol formation, and acetate formation, respectively.

For brevity, we define α1 := (α1, α2, . . . , α5)>, α2 := (α6, α7, . . . , α10)>, p :=
(c1, c2, . . . , c10, d1, d2, . . . , d10)>, and x(t) := (x1(t), x2(t), . . . , x5(t))>. Moreover,
denote the right-hand side of equations (1) and (2) by

f1(x(t), p) :=
(
f1

1

(
x(t), p

)
, f1

2

(
x(t), p

)
, . . . , f1

5

(
x(t), p)

)>
(3)

and
f2(x(t), p) :=

(
f2

1

(
x(t), p

)
, f2

2

(
x(t), p

)
, . . . , f2

5

(
x(t), p)

)>
. (4)

Then equations (1) and (2) can be rewritten as the following two-stage fractional dynam-
ical system:

C
0D

α1

t x(t) = f1
(
x(t), p

)
, t ∈ [0, t1], x(0) = x0, (5)

C
t1D

α2

t x(t) = f2
(
x(t), p

)
, t ∈ (t1, T ], x

(
t+1
)

= x(t1), (6)
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where x0 ∈ R5 is a given initial state; and x(t+1 ) is the right-hand limit of x(t) at t1. Note
that the two-stage dynamical system (5) and (6) is essentially similar to the short-memory
fractional differential equations mentioned in [34], both of which make full use of the
memory characteristics of the Caputo derivative in a given time horizon.

In system (5) and (6), the fractional orders and kinetic parameters need to be identified.
Thus, define the admissible set of fractional orders as

F :=
{

(α1, α2, . . . , α10)>
∣∣ αj ∈ [ε, 1], j = 1, 2, . . . , 10

}
,

where ε > 0 is a given constant. Furthermore, define the admissible set of kinetic param-
eters as

P :=
{

(c1, c2, . . . , c10, d1, d2, . . . , d10)>
∣∣ ck ∈ [0, 1], dk ∈ [0, 1], k = 1, 2, . . . , 10

}
.

According to the biological significance, there are critical concentrations of biomass,
glycerol, 1,3-PD, ethanol, and acetate in the batch fermentation process. Outside these
critical concentrations, cells will cease to grow or even die. Therefore, define the admis-
sible set W as

x(t) ∈W :=

5∏
i=1

[x∗i, x
∗
i ], t ∈ [0, T ], (7)

where x∗1 = 0.001 g L−1, x∗i = 0 mmol L−1, i = 2, 3, 4, 5, are the lower concen-
tration thresholds of biomass, glycerol, 1,3-PD, ethanol, and acetate for cell growth,
respectively; and x∗1 = 10 g L−1, x∗2 = 2039 mmol L−1, x∗3 = 939.5 mmol L−1, x∗4 =
360.9 mmol L−1, and x∗5 = 1026 mmol L−1 are the corresponding upper concentration
thresholds [24].

2.3 Properties of the two-stage fractional dynamical system

For system (5) and (6), some important properties will be discussed, e.g., the existence
and uniqueness of the solution and the continuity of the solution with respect to fractional
orders and kinetic parameters.

Property 1. For any t∈ [0, T ], x(t)∈W , and p∈P , f `, `= 1, 2, defined by (5) and (6)
satisfy:

(i) f ` are continuously differentiable with respect to x(t) and p.
(ii) There exists a constant M > 0 such that, for any t ∈ [0, T ], ‖f `(x(t), p)‖ 6 M

for all (x(t), p) ∈W × P , where ‖·‖ is the Euclidean norm.

Proof. (i) According to the expressions of f `, ` = 1, 2, in (3) and (4), this conclusion can
be obtained. (ii) The boundedness of f ` can be verified by (1) and the compactness of W
and P .

Property 2. The functions f ` : W × P → R5, ` = 1, 2, defined by (3) and (4) are
Lipschitz continuous, that is, for any t ∈ [0, T ], x1(t), x2(t) ∈ W , and p1, p2 ∈ P , there
exists a constant L > 0 such that∥∥f `(x1(t), p1

)
− f `

(
x2(t), p2

)∥∥ 6 L
(∥∥x1(t)− x2(t)

∥∥+
∥∥p1 − p2

∥∥).
https://www.journals.vu.lt/nonlinear-analysis
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Proof. By Property 1 and the differential mean value inequality [26] we have, for any
t ∈ [0, T ], x1(t), x2(t) ∈W , and p1, p2 ∈ P ,∥∥f `(x1(t), p1

)
− f `

(
x2(t), p2

)∥∥
6
∥∥f `(x1(t), p1

)
− f `

(
x2(t), p1

)∥∥+
∥∥f `(x2(t), p1

)
− f `

(
x2(t), p2

)∥∥
6

∥∥∥∥∂f `(x1(t) + θ1(x2(t)− x1(t)), p1)

∂x

∥∥∥∥ · ∥∥x1(t)− x2(t)
∥∥

+

∥∥∥∥∂f `(x2(t), p1 + θ2(p2 − p1))

∂p

∥∥∥∥ · ∥∥p1 − p2
∥∥, (8)

where θ1, θ2 ∈ (0, 1). Furthermore, by the compactness of W and P there exists a con-
stant L > 0 such that∥∥∥∥∂f `(x1(t) + θ1(x2(t)− x1(t)), p1)

∂x

∥∥∥∥ 6 L, t ∈ [0, T ], ` = 1, 2, (9)∥∥∥∥∂f `(x2(t), p1 + θ2(p2 − p1))

∂p

∥∥∥∥ 6 L, t ∈ [0, T ], ` = 1, 2. (10)

Combining (9), (10) with (8) gives∥∥f `(x1(t), p1
)
− f `

(
x2(t), p2

)∥∥ 6 L
(∥∥x1(t)− x2(t)

∥∥+
∥∥p1 − p2

∥∥)
for any t ∈ [0, T ], x1(t), x2(t) ∈W , and p1, p2 ∈ P .

Theorem 1. For each (α, p) ∈ F × P , the two-stage fractional system defined by (5)
and (6) has a unique continuous solution x(·|α, p). Moreover, xi(·|α, p), i = 1, 2, . . . , 5,
satisfy the following integral equations:

xi(t|α, p) =

xi(0) + 1
Γ(α1

i )

∫ t
0
(t− τ)α

1
i−1f1

i (x(τ |α, p), p) dτ, t ∈ [0, t1],

xi(t1) + 1
Γ(α2

i )

∫ t
t1

(t− τ)α
2
i−1f2

i (x(τ |α, p), p) dτ, t ∈ (t1, T ].

Proof. Using a similar proof as given for Theorem 3.4 in [42] with Properties 1 and 2, we
can complete the proof.

Theorem 2. The solution x(·|α, p) of system (5) and (6) is continuous with respect to
(α, p) ∈ F × P .

Proof. Case 1: t ∈ [0, t1].
For any (α, p) ∈ F × P , there exists two real numbers η1 and η2 such that β =

α+ η1 ∈ F , and q = p+ η2 ∈ P . Furthermore,∥∥x(t|α, p)− x(t|β, q)
∥∥

=
∥∥x(t|α, p)− x(t|β, p) + x(t|β, p)− x(t|β, q)

∥∥
6
∥∥x(t|α, p)− x(t|β, p)

∥∥+
∥∥x(t|β, p)− x(t|β, q)

∥∥. (11)

Nonlinear Anal. Model. Control, 27(2):350–367, 2022

https://doi.org/10.15388/namc.2022.27.26234


356 C. Liu et al.

According to Properties 1 and 2, the first part of inequality (11) can be rewritten as∥∥xi(t|α, p)− xi(t|β, p)∥∥
6

L

Γ(αi)
·

∥∥∥∥∥
t∫

0

(t− s)αi−1
(
xi(s|α, p)− xi(s|β, p)

)
ds

∥∥∥∥∥
+A1

i (t), i = 1, 2, . . . , 5,

where

A1
i (t) =

M

Γ(αi)
·

∥∥∥∥∥
t∫

0

[
1− Γ(αi)

Γ(βi)
(t− s)βi−αi

]
(t− s)αi−1 ds

∥∥∥∥∥.
By generalized Gronwall inequality in [36] we have∥∥xi(t|α, p)− xi(t|β, p)∥∥

6 A1
i (t) +

t∫
0

[ ∞∑
m=1

Lm(t− s)mαi−1

Γ(mαi)
A1
i (s)

]
ds, i = 1, 2, . . . , 5. (12)

Furthermore, the second part of inequality (11) can be expressed as∥∥xi(t|β, p)− xi(t|β, q)∥∥
6

L

Γ(βi)
·

∥∥∥∥∥
t∫

0

(t− s)βi−1
(
xi(s|β, p)− xi(s|β, q)

)
ds

∥∥∥∥∥
+A2

i (t), i = 1, 2, . . . , 5,

where

A2
i (t) = L ·

∥∥∥∥∥
t∫

0

(t− s)βi−1

Γ(βi)
ds

∥∥∥∥∥ · ‖pi − qi‖.
Similarly, we have∥∥xi(t|β, p)− xi(t|β, q)∥∥

6 A2
i (t) +

t∫
0

[ ∞∑
m=1

Lm(t− s)mβi−1

Γ(mβi)
A2
i (s)

]
ds, i = 1, 2, . . . , 5. (13)

Note that β → α and q → p as η1, η2 → 0. Thus, from (12) and (13) we have
‖xi(t|α, p) − xi(t|β, p)‖ → 0 and ‖xi(t|β, p) − xi(t|β, q)‖ → 0, i = 1, 2, . . . , 5, as
η1, η2 → 0, which imply ‖x(t|α, p)− x(t|β, q)‖ → 0 as η1, η2 → 0.
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Case 2: t ∈ (t1, T ].
From Case 1, for i = 1, 2, . . . , 5, we have∥∥xi(t1|α, p)− xi(t1|β, p)∥∥ 6 ε1i ,

∥∥xi(t1|β, p)− xi(t1|β, q)∥∥ 6 ε2i .

Then, using the similar proof as given for Case 1, we conclude∥∥xi(t|α, p)− xi(t|β, p)∥∥
6 B1

i (t) +

t∫
t1

[ ∞∑
m=1

Lm(t− s)mαi−1

Γ(mαi)
B1
i (s)

]
ds, i = 1, 2, . . . , 5, (14)

where

B1
i (t) = ε1i +

M

Γ(αi)
·

∥∥∥∥∥
t∫

t1

[
1− Γ(αi)

Γ(βi)
(t− s)βi−αi

]
(t− s)αi−1 ds

∥∥∥∥∥.
Similarly,∥∥xi(t|β, p)− xi(t|β, q)∥∥

6 B2
i (t) +

t∫
t1

[ ∞∑
m=1

Lm(t− s)mβi−1

Γ(mβi)
B2
i (s)

]
ds, i = 1, 2, . . . , 5, (15)

where

B2
i (t) = ε2i + L ·

∥∥∥∥∥
t∫

t1

(t− s)βi−1

Γ(βi)
ds

∥∥∥∥∥ · ‖pi − qi‖.
Note that ε1i , ε

2
i → 0, i = 1, 2, . . . , 5, β → α, and q → p as η1, η2 → 0. Thus, from

(14) and (15) we have ‖xi(t|α, p)− xi(t|β, p)‖ → 0 and ‖xi(t|β, p)− xi(t|β, q)‖ → 0,
i = 1, 2, . . . , 5, as η1, η2 → 0, which imply ‖x(t|α, p)− x(t|β, q)‖ → 0 as η1, η2 → 0.

Based on Cases 1 and 2, we obtain that ‖x(t|α, p) − x(t|β, q)‖ → 0, t ∈ [0, T ] as
η1, η2 → 0, which completes the proof.

3 Parameter identification problem

Parameter identification is the problem of adjusting the values of parameter to make the
predicted values of the system consistent with the experimental data as much as possible.
In this section, we will discuss the parameter identification problem involving the two-
stage fractional dynamical system.

In batch culture, we have Ns measured experimental data. Let yl = (yl1, y
l
2, . . . , y

l
5)>

be the measured concentrations of biomass, glycerol, 1,3-PD, ethanol, and acetate at the
measured moment tl, l ∈ {1, 2, . . . , Ns}. Furthermore, considering that the measured
data at the later stage are more practical than the data measured in the initial stage, we
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propose the following weighted least-squares error function [14]:

J(α, p) =
1

Ns

5∑
i=1

Ns∑
l=1

tl
(xi(tl|α, p)− yli)2

(ymax
i )2

, (16)

where xi(tl|α, p) is the calculated value for the ith component at time tl; and ymax
i =

maxl∈{1,...,Ns}{yli} is the maximum measured concentration of the ith component. Then
the parameter identification model (PIM) in the batch culture can be stated as

(PIM) min J(α, p) such that x(t|α, p) ∈W , t ∈ [0, T ], (α, p) ∈ F × P .

Theorem 3. For problem (PIM), there exists at least one optimal pair (α∗, p∗) ∈ F ×P
such that

J(α∗, p∗) 6 J(α, p) ∀(α, p) ∈ F × P. (17)

Proof. By Theorem 2 the solution x(·|α, p) of system (5) and (6) is continuous on F×P .
Then we define the feasible set of problem (PIM) as

V =
{

(α, p) ∈ F × P
∣∣ x(t|α, p) ∈W, t ∈ [0, T ]}.

Clearly, V is a nonempty set. According to the compactness of sets F and P , V is
a bounded set. Let {(α%, p%)}∞%=1 ⊆ V denote any sequence, and let (α%, p%) → (α, p)
as % → ∞. Based on Theorem 2 and the compactness of W , we have x(t|α, p) ∈ W ,
t ∈ [0, T ]. Thus, (α, p) ∈ V , which indicates that the feasible set V is closed. Fur-
thermore, since the cost function J(α, p) is also continuous on F × P by (16), we
conclude that problem (PIM) has at least one optimal pair such that (17) holds. The proof
is complete.

4 Numerical solution approach

Problem (PIM) is a parameter optimization problem subject to continuous state inequality
constraints (7). In this section, a numerical solution approach will be developed based on
an exact penalty method and a PPSO algorithm.

4.1 Exact penalty method

In solving problem (PIM), it is computationally difficult since continuous state inequality
constraints (7) must hold at infinite number of points in [0, T ]. Fortunately, constraints
transcription techniques [8, 29] and exact penalty methods [17, 38] have been proposed
to overcome these difficulties. In the exact penalty method [17], it only requires that the
penalty parameter is large enough but finite, and its adjustable parameters are fewer. Thus,
the exact penalty method [17] is applied to problem (PIM) to deal with continuous state
inequality constraints (7).

Let
hi
(
x(t|α, p)

)
:= xi

(
t|α, p

)
− x∗i ,

hi+5

(
x(t|α, p)

)
:= x∗i − x

(
t|α, p

)
, i = 1, 2, . . . , 5.
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Then the continuous state inequality constraints (7) can be equivalently converted to the
following form:

H(α, p) = 0,

where H(α, p) =
∑10
ρ=1

∫ T
0

[max{hρ(x(t|α, p)), 0}]2 dt.
Let ζ > 0 be a given constant, and let ζ ∈ [0, ζ] be a new decision variable. The

penalty function is defined as

J̃δ(α, p, ζ) :=


J(α, p) if ζ = 0, H(α, p) = 0,

J(α, p) + ζ−µH(α, p) + δζν if ζ ∈ (0, ζ],

∞ if ζ = 0, H(α, p) 6= 0,

(18)

where δ > 0 is a penalty parameter; and µ and ν are two positive constants satisfying
1 6 ν 6 µ.

Then we can transform problem (PIM) into the penalty problem as follows:

(PIMδ) min(α,p,ζ)∈F×P×[0,ζ] J̃δ(α, p, ζ).

Based on the derivation in [17], it is clear that J̃δ is an exact penalty function. As
a result, the optimal solution of problem (PIM) can be obtained by solving a sequence of
problem (PIMδ).

4.2 Optimization algorithm

For each δ > 0, problem (PIMδ) is a parameter optimization problem. Various opti-
mization methods can be selected to find the optimal fractional orders and kinetic pa-
rameters such as gradient-based algorithm [28]. Nevertheless, the gradient-based opti-
mization method is easy to trap into the local optimum, which is obviously not desired.
Furthermore, because there are a large number of parameters to be identified when solving
problem (PIMδ), the time cost of estimating candidate parameters is quite expensive. As
a result, we will develop a PPSO algorithm to solve problem (PIMδ) for each δ > 0.

The Particle Swarm Optimization (PSO) algorithm, proposed by Professor Eberhart
and Dr. Kennedy in 1995 [13], is a swarm cooperation-based random search algorithm
developed by simulating the foraging behavior of birds in a group. In a standard PSO
algorithm, each particle is regarded as a feasible solution to the optimization problem.
Each particle has a current velocity and flies at that speed in a given space. In order
to get the optimal solution of the optimization problem, each particle should fly to the
globally optimized position through dynamically adjusting the flight speed by its own
and the group’s experiences. With the rapid growth of computing size, the serial PSO
algorithm will produce high computational cost. Thus, some parallel PSO algorithms
were developed in [22, 39, 41]. However, problem (PIMδ) is a penalty problem with
penalty parameter δ. As a result, we propose the following PPSO algorithm to solve
problem (PIMδ) for each δ. Here σ = (α1, . . . , α10, c1, . . . , c10, d1, . . . , d10, ζ)> ∈ R31

denotes the decision vector of problem (PIMδ).
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Algorithm 1

Step 1. Allocate np slave processors. Initialize the total number of particles psize.
Compute the number of particles on each processor ns = psize/np. Initialize data and
variables on the master processor.

(i) Load experimental data yli, i = 1, 2, . . . , 5, l = 1, 2, . . . , Ns.
(ii) Set the lower and upper bounds of the decision vector σlow and σupp, the tolerance

parameter ς , the cognitive and social parameters c1 and c2, a sufficient large
number Λ, and the maximal iteration Kmax.

(iii) Set the global optimal solution gbest := 0, the global optimal fitness value
J̃min
δ := Λ.

(iv) Set q := 1.

Step 2. Broadcast data and variables on master processor to all slave processors.
Step 3. Execute the following steps on each slave processor, and denote the identifier of
each slave processor by τ (τ = 1, 2, . . . , np).

(i) Randomly initialize ns decision vectors from the horizon [σlow, σupp], randomly
initialize ns velocities from the uniform distribution U(0, 1), denote the decision
vector and velocity of particles by στ,s(q) and vτ,s(q), s = 1, 2, . . . , ns.

(ii) Set J̃δ(pbestτ,s(q − 1)) := Λ, s = 1, 2, . . . , ns.
(iii) Solve system (5) and (6), compute the cost function (18), update J̃δ(pbestτ,s(q))

and pbestτ,s(q) by

J̃δ(pbest
τ,s(q)) =

{
J̃δ(σ

τ,s(q)) if J̃δ(στ,s(q)) 6 J̃δ(pbest
τ,s(q − 1)),

J̃δ(pbest
τ,s(q − 1)) otherwise,

pbestτ,s(q) =

{
στ,s(q) if J̃δ(στ,s(q)) 6 J̃δ(pbest

τ,s(q − 1)),

pbestτ,s(q − 1) otherwise.

(iv) If s < ns, then set s := s+ 1, and go to Step 3(iv). Otherwise, go to Step 4.

Step 4. Gather J̃δ(pbestτ,s(q)), pbestτ,s(q), s = 1, 2, . . . , ns, from slave processor τ into
the master processor.
Step 5. Assign the master processor to execute the following operations.

(i) Choose the minimal values J̃min
δ and record gbest as follows:

J̃min
δ = min

τ∈{1,...,np}
s∈{1,...,ns}

J̃δ
(
pbestτ,s(q)

)
, gbest = arg min

τ∈{1,...,np}
s∈{1,...,ns}

J̃δ
(
pbestτ,s(q)

)
.

(ii) If q > Kmax or J̃min
δ 6 ς , then take σ∗δ = gbest and stop. Otherwise, set q := q+1,

broadcast gbest and q to all slave processors.
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Step 6. Execute the following procedure on each slave processor.

(i) Update particle velocities and positions by the following iterative formulas:

vτ,sκ (q) = (−1 + c1 · r1
s,κ) · vτ,sκ (q − 1) + c2 · r2

s,κ · (pbest
τ,s
κ (q − 1)

− στ,sκ (q − 1)) + c2 · r3
s,κ ·

(
gbestκ − στ,sκ (q − 1)

)
,

στ,sκ (q) = στ,sκ (q − 1) + ω · vτ,sκ (q),

where τ = 1, 2, . . . , np; s = 1, 2, . . . , ns, κ = 1, 2, . . . , 31; r1
s,κ, r2

s,κ, r3
s,κ are the

random numbers in [0, 1]; and ω = 0.3 · exp(1/(1 + (q · 0.7)/Kmax)).
(ii) If στ,sκ (q) violates the bound constraint, then execute the following operations:

στ,sκ (q) =

{
2σlow,κ − στ,sκ (q) if στ,sκ (q) < σlow,κ,

2σupp,κ − στ,sκ (q) if στ,sκ (q) > σupp,κ,

and go to Step 3(iii).

On the basis of Algorithm 1, we propose the following algorithm to solve prob-
lem (PIM).

Algorithm 2
Step 1. Choose initial values of δ > 0, γ > 1, δ̃ > 0, and ς̃ > 0.
Step 2. Solve problem (PIMδ) by Algorithm 1 to give (α∗δ , p∗δ , ζ∗δ ).
Step 3. If ζ∗δ > ς̃ , then set δ := γδ and go to Step 4. Otherwise, take (α∗δ , p

∗
δ) as an

optimal solution of problem (PIM) and stop.
Step 4. If δ > δ̃, then stop and output abnormal exit. Otherwise, set (α, p, ζ) := (α∗δ ,
p∗δ , ζ

∗
δ ) and go to Step 2.

Remark 1. In Algorithm 2, δ is a penalty parameter; γ is an increment factor; δ̃ is
a maximum penalty parameter; ς̃ is an error tolerance. If Algorithm 2 is abnormally
terminated in Step 4, the parameters µ and ν can be modified to resume Algorithm 2.

5 Numerical simulations

In the numerical simulation, Algorithm 2 is used to solve problem (PIM) to find the
optimal fractional orders and kinetic parameters, and all computations are implemented in
Matlab 2018a environment on a Intel Core i5-7400 (64-bit, 8GB RAM, 3.4GHz) machine.
Here the two-stage fractional dynamical system is solved by the implicit trapezoidal
product-integration rule [4], and the step-size for integration is taken as 2−8. The initial
state, the switching moment, and the terminal time are taken as x0 = (0.2245, 509.8913,
0, 0, 0)>, t1 = 5.75 h, and T = 7.75 h, respectively [24]. In Algorithm 1, np, psize, σlow,
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Table 1. The optimal fractional orders and parameters in two-stage fractional
dynamical system.

Fractional order Value Parameter Value Parameter Value
α1 0.9713 c1 0.0016 d1 0.1761
α2 0.8813 c2 0.1681 d2 0.1017
α3 0.7317 c3 0.1031 d3 0.2037
α4 0.6223 c4 0.0310 d4 0.0385
α5 0.8636 c5 0.0380 d5 0.3165
α6 0.9876 c6 0.0017 d6 0.0009
α7 0.8640 c7 0.2065 d7 0.2015
α8 0.6996 c8 0.1894 d8 0.1161
α9 0.9995 c9 0.0621 d9 0.0023
α10 0.9760 c10 0.0528 d10 0.0008

σupp, ς , c1, c2, Λ, and Kmax are, respectively, 2, 100, 0, 1, 10−3, 2, 2, 10000, and 600.
In Algorithm 2, the initial values of δ, γ, δ̃, and ς̃ are, respectively, 5, 5, 103, and 10−8.
The above parameters are determined on the basis of a large number of experiments.
By running Algorithm 2 the obtained optimal values of fractional orders and kinetic
parameters are listed in Table 1.

Based on the obtained optimal fractional orders and kinetic parameters, we plot the
concentrations of biomass, glycerol, 1,3-PD, ethanol, and acetate in Fig. 1. For compari-
son, the one-stage fractional dynamic system with fractional orders and kinetic parameters
in [24] is also solved. The obtained concentrations of biomass, glycerol, and 1,3-PD are
also plotted in Fig. 1. From Fig. 1 we can see that, compared with the results in [24], our
computed concentrations of biomass, glycerol, 1,3-PD, ethanol, and acetate can better
describe the experimental data in [35]. In addition, Table 2 shows the relative errors
between the calculated values and experimental data in this work, as well as the relative
errors in [24], where the relative errors are defined as

ei =

∑Ns

l=1 | xi(tl|α, p)− yli |∑Ns

l=1 y
l
i

, i = 1, 2, 3, 4, 5.

From Table 2 it can be seen that the relative errors of the two-stage fractional model
in this work are significantly smaller than those in [24]. This also confirms that our two-
stage fractional dynamical system can reasonably describe the batch fermentation process.
To further test the performance of our proposed PPSO algorithm, a serial PSO (SPSO)
algorithm with the same parameters as in PPSO algorithm is also developed to solve
problem (PIMδ). We perform 30 test runs in solving problem (PIMδ) with SPSO and
PPSO algorithms. The obtained optimal costs, worst costs, average costs, and average
iteration time are listed in Table 3. From Table 3 it can be seen that the optimal cost,
the worst cost, the average cost, and the average iteration time obtained by our PPSO
algorithm are all superior to those obtained by the SPSO algorithm. The convergence
curves of the cost function by the PPSO and SPSO algorithms are also depicted in Fig. 2.
From Fig. 2 we can see that the convergence of PPSO algorithm is faster than SPSO
algorithm. From the above results we confirm that the developed PPSO algorithm is
highly effective and efficient in solving problem (PIM).

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


Modelling and parameter identification for a microbial batch process 363

0 1 2 3 4 5 6 7 8

Fermentation time (h)

0

0.5

1

1.5

2

2.5

3

3.5

4

B
io

m
a

s
s
 (

g
L

-1
)

Simulation using two-stage fractional system.

Simulation using one-stage fractional system in [24].

Experimental data in [35].

0 1 2 3 4 5 6 7 8

Fermentation time (h)

0

100

200

300

400

500

600

G
ly

c
e

ro
l 
(m

m
o

lL
-1

)

Simulation using two-stage fractional system.

Simulation using one-stage fractional system in [24].

Experimental data in [35].

0 1 2 3 4 5 6 7 8

Fermentation time (h)

0

50

100

150

200

250

300

1
,3

-P
D

 (
m

m
o
lL

-1
)

Simulation using two-stage fractional system.

Simulation using one-stage fractional system in [24].

Experimental data in [35].

0 1 2 3 4 5 6 7 8

Fermentation time (h)

0

10

20

30

40

50

60

70

80

90

E
th

a
n

o
l 
(m

m
o

lL
-1

)

Simulation using two-stage fractional system.

Experimental data in [35].

0 1 2 3 4 5 6 7 8

Fermentation time (h)

0

20

40

60

80

100

120

A
c
e
ta

te
 (

m
m

o
lL

-1
)

Simulation using two-stage fractional system.

Experimental data in [35].

Figure 1. Concentration changes of substrates and products with respect to fermentation time.

Table 2. Relative errors.

i ei in this work ei in [24]
1 3.3566% 3.7075%
2 5.6962% 12.4731%
3 6.2008% 12.4494%
4 20.6061% –
5 3.8861% –
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Table 3. Computational results by using PPSO and SPSO algorithms.

Algorithm Optimal Worst Average Average
cost cost cost iteration time (s)

PPSO 0.1278 0.2086 0.1612 4.5083
SPSO 0.1380 0.2268 0.1797 9.4250
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Figure 2. Convergence curves of PPSO and SPSO.

6 Conclusions

In this paper, we have considered the parameter identification problem in batch process.
A two-stage fractional dynamical system in the sense of Caputo is proposed to describe
the batch process. Taking the error between the calculated values and the experimental
data as the performance index, we present a parameter identification model subject to
continuous state inequality constraints. By applying an exact penalty method the pa-
rameter identification problem is transformed into the one only with box constraints.
A parallel Particle Swarm Optimization algorithm is developed to solve the resulting prob-
lem. Numerical results show that our proposed two-stage fractional dynamical system is
reasonable and the proposed parallel algorithm is efficient. For further research, it will be
of interest to investigate the optimal switching control problem involving the proposed
two-stage fractional dynamical system.
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