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1 Introduction

With the development of swarm intelligence algorithms, multi-agent systems are widely
used in communication networks, wireless sensor networks, and unmanned vehicles. The
consensus problem is a basic problem of MAS because it has a wide range of applications
in formation control, distributed estimation, and congestion control. This is essentially
the agent’s consensus tracking of a given target trajectory through the network. The
multi-agent system is a system abstracted from the biological world, and the biological
population may suddenly change state at certain moments. Due to predation, disease,
and bird migration, changes in population status can occur. For this situation, MAS with
impulsive can well describe the inevitable interference during actual system operation.
The problem of consensus tracking of researching impulsive MAS is to study whether an
agent can return to a predetermined trajectory through information exchange after being
subject to external interference. In this regard, Cui [6] has carried out the relevant research.
Zhang et al. [18, 30, 32] considered the consensus problem of impulsive MAS in the
traditional consensus framework. In addition, impulsive control approach has advantage
in simplicity and flexibility for such kind of systems because the standard continuous state
information is not required. As a consequence, this approach has been offered to study
adaptive consensus and synchronization problems [22,23] and consensus problem [5,26]
for MASs.

Iterative learning control (ILC) is suitable for robots to perform trajectory tracking
tasks within a limited time interval. ILC uses the error information of the previous or
multiple tracking batch measurements to correct the next control input, which can improve
tracking accuracy along the iteration axis. ILC was first proposed in [2] for a robot,
whereas Ahn and Chen [1] applied ILC to the consensus tracking trajectory of a MAS.
Recently, ILC laws have been extensively studied for various types of MASs [19]. Note
that MASs with impulse can generate discontinuous inputs, thus it is still challenging
to consider whether ILC can be successfully applied to collect the sampled error data
from each agent and track continuous or discontinuous trajectory, i.e., achieving leader-
following consensus for nonlinear dynamics of MAS with impulse [4]. In addition, [7, 8]
used Lyapunov stability theory to analyze the coordination performance of MAS.

Under normal circumstances, ILC requires the same length of time for each iteration
cycle [12, 24]. However, in some practical applications, due to the inherent properties
of the system or the needs of the operator, the operation may be terminated early, that
is, the trial lengths of the iteration will be less than the complete trial lengths. People
began to consider ILC with varying trial lengths (VTL). Li et al. [10, 29] considered
continuous-time nonlinear systems and discrete-time linear systems, and designed an
averaging operator based on the above method to construct an ILC scheme. Subsequently,
Li [9] proposed two improved schemes to control discrete real linear systems, and in
literature [11], the ILC problem of nonlinear dynamic systems was considered. Shen et
al. [13, 25, 31] studied the ILC of VTL by using a composite energy function. Liu et
al. [14] used the two-dimensional Kalman filter technology to study the ILC of VTL.

Fractional-order calculus was first proposed in the letter of Leibniz and l’Hôpital, and
it has a history of more than 300 years. In recent years, the viscoelasticity and memory
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effects of fractional calculus have been widely concerned in the field of engineering
applications and become an important research tool in numerical calculations. In general,
fractional ILC has the following advantages:
• Fractional iterative learning law covers PID learning law.
• Fractional iterative learning laws has a weighted function (singular kernel) and has

an additional parameter to adjust the learning procedure.
• Fractional iterative learning laws has a memory function and keeps the global

information fully, which can be used to improve the learning effect.
Recently, Luo et al. [20, 21] studied the fractional ILC problem of fractional multi-agent
systems. Liu et al. [15–17] studied the ILC of VTL for fractional impulsive systems.
However, there are very few works on ILC of impulsive multi-agent systems with varying
trial lengths even for the classical learning laws or fractional learning laws. Note that
impulsive effects often appear in the control of multi-agent systems, and the memory
communication always happen in each agent. In order to achieve the consensus of multi-
agent systems with impulse and past communication, one can try to adopt fractional ILC
approach to deal with this problem. Here fractional ILC will be used to deal with the past
communication in each agent.

Based on the above discussion, this paper introduces new error processing methods
and designs a variety of learning laws to consider the consensus tracking of the target
trajectory by the impulsive multi-agent system. The specific work is as follows:
• For impulsive multi-agent systems with VTL, we first use zeros to replace nonexis-

tent errors and then consider the system’s consensus tracking of the target trajectory
under the DαD-type learning law.

• The domain alignment operator is introduced to deal with errors, and the consensus
of the system under the IβD-type learning law is considered.

• Based on the above, the local average operator is used to improve the control func-
tion, and the control convergence of the DαD and IβD learning laws to impulse
multi-agents is considered, respectively.

Compared with the previous work, this paper uses the memory effect of fractional-order
calculus to adjust the input of the system and combines the domain alignment operator
to design an appropriate learning law to control the multi-agent system in the VTL case.
Combining the two methods, the iterative accuracy and speed of the system are higher.
Fractional-order learning law is more complex than integer-order learning law, and it also
needs to consider the uncertainty caused by varying trial lengths, which makes it more
difficult to construct the learning law and analyze the convergence of the system.

The rest of the paper is organized as follows: Section 2 provides the problem formu-
lation and preliminaries. Section 3 provides the main results of this paper. An illustrative
example is presented in Section 4.

2 Preliminaries and problem formulation

We consider a weighted directed graph composed of the set of vertices V = {1, 2, 3,
. . . , N}, N represents the number of agents in the system, the set of edges E ⊆ V × V ,

Nonlinear Anal. Model. Control, 27(3):445–465, 2022

https://doi.org/10.15388/namc.2022.27.25475


448 X. Cao et al.

and the adjacency matrix Z. SetQ = (V,E,Z). V represents the set of multi-agents. Set
of edge E is composed of directed sequence pairs (i, j), where (i, j) means that agent i
can pass information to agent j, that is, i is called the parent node of j, and j is called the
child node of i. All the sets adjacency with the i agent are called the adjacency sets of the
i agent denoted asMi = {j ∈ V | (j, i) ∈ E}. Z = (zi,j)N is the weighted adjacency
matrix of Q, which is composed of nonnegative elements zi,j . In particular, zi,i = 0;
if (j, i) ∈ E, zi,j = 1, it is means that agent i can receive information from agent j; if
(i, j) /∈ E, zi,j = 0, it is means that agent i cannot receive information from agent j.
The Laplace operator of Q is defined as: µ = D − Z, where D = diag(d1, d2, . . . , dN ).
di represents the entry degree of vertex i, that is, di = ΣNj=1zi,j . In order to describe
the communication relationship between virtual leader and follower, let di = 1 denote
that the i agent can receive the leader’s information directly; otherwise, let di = 0 and
D = diag(d1, d2, . . . , dN ).

In this paper, ‖a‖ is used to represent the 2-norm of vector a, and ‖A‖ is used to
represent the matrix norm compatible with it. The λ-norm of the function v is expressed
as ‖v‖λ: [0,G] → Rn as defined below: ‖v‖λ = supt∈[0,G] e−λt‖v(t)‖, where λ > 0.
The symbol ⊗ denotes the Kronecker product.

Consider a system withN agents, each agent with T impulsive points. Q = (V,E,Z)
represents their interaction topology. The ith agent is controlled by the following nonlin-
ear impulsive systems:

Ẋi(τ) = ~(Xi, τ) +Bui, τ 6= τt,

Xi(τ+) = Mt

(
Xi(τ−)

)
, τ = τt,

yi = C(τ)Xi

(1)

for all i ∈ V and τ ∈ [0,G], where t = 1, 2, . . . , T . This system is right-continuous,
where Xi ∈ Rn is the state vector of the ith agent, ui ∈ Rp is the control function of
the ith agent, B is Rn×p matrix, yi ∈ Rm is the output vector of the ith agent, ~(·, ·) :
[0,G] × Rn → Rn and Mt : Rn → Rn are continuous, C(τ) is a continuous Rm×n
matrix function. Impulsive time sequence is denoted by 0 < τ1 < τ2 < · · · < τT < G.
X (τ+t ) = limh→0+ X (τt + h) and X (τ−t ) = X (τt) represent the right and left limits of
X (τ) at τ = τt, respectively.

We need the following conditions:

(H1) ~(·, ·) satisfies the Lipschitz condition∥∥~(Xi+1, j , τ)− ~(Xi,j , τ)
∥∥ 6 θf‖Xi+1, j −Xi,j‖, θf > 0, (2)

for any τ ∈ [0,G] and Xi+1, j ,Xi,j ∈ Rn.
(H2) Mt(·) satisfies the Lipschitz condition∥∥Mt(x)−Mt(y)

∥∥ 6 θt‖x− y‖, θt > 0, t = 1, 2, . . . , T, (3)

for any x, y ∈ Rn.
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Under assumptions (H1) and (H2), following [28, Remark 4.1], system (1) withX (0) =
X0 has a unique solution in a piecewise continuous functions space

Xi(τ) = X0 +

τ∫
0

[
~(Xi, s) +Bui(s)

]
ds+

∑
0<τt<τ

Mt

(
Xi(τt)

)
, τ ∈ [0,G]. (4)

Let yd(τ) be the expected consensus trace of the MAS on the time interval τ ∈ [0,G],
0 < G < ∞. Here yd(τ) is not necessarily continuous on the whole time interval
[0,G]. We regard the desired trajectory yd(τ) as the virtual leader in the communication
topology and mark it with vertex 0. Then the information exchange among agents can
be represented by an extended communication topology graph Q∗ = (V ∪ {0}, E∗, A∗),
where E∗ represents the edge set, and A∗ represents the weighted adjacency matrix. The
control objective is to design appropriate iterative learning laws such that the output of all
agents can asymptotically converge to the desired trajectory yd(τ).

In order to describe the phenomenon of varying trial lengths, we introduce a random
variable Ki. Ki represents the end time of the ith iteration. Ki satisfies

p(Ki) =

{
1−ν
G , Ki ∈ (0,G),

ν, Ki = G,
i = 1, 2, . . . . (5)

Here p(Ki) represents the probability density function of the random variable Ki, ν ∈
(0, 1), G is the maximum running time of the system. In particular, when Ki = 0, that
is, all the error data of this iteration is lost, so we can think that the current trial is not
running. For the VTL system, we can deal with errors in the following ways (see the
work of Li et al [10]):

ψ∗i+1(τ) =

{
ψi+1(τ) = yd(τ)− yi+1(τ), τ ∈ [0,Li+1],

0, others,
(6)

where ψi(τ) represents the tracking error of the ith iteration. Li+1 = min{Ki,Ki+1}.
Let {ψi ∈ F ([0,Ki], X)}∞i=1 be a function sequence (here X is a normed space).

The domain alignment operator is ζ : F ([0,Ki], X) → F ([0,G], X), ψi 7→ ζψi, with
F taken as PC , where PC ([0,G], X) := {x : [0,G] → X: x ∈ C((τi, τi+1], X), i =
0, 1, 2, . . . , N}, and where x(τ+i ) and x(τ−i ) exist with x(τ−i ) = x(τi). ζψi satisfies the
following:

ζψi+1(τ) =

{
ψi+1(τ) = yd(τ)− yi+1(τ), τ ∈ [0,Li+1],

ζψi(τ), others.
(7)

In this paper, we use C0D
α
τ ψ(τ) to represent the Caputo fractional-order left derivative

of the function ψ(τ), RLτD
α
aC(τ) to represent the Riemann–Liouville fractional-order

right derivative of the function ψ(τ) and RLτ I
1−α
a C(τ) to represent the Riemann–Liouville

fractional-order right integral of the function ψ(τ). In this paper, 0 < α < 1. The
following is fractional-order integration by parts formulas.
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Lemma 1. (See [27, Eq. (1)].) If ψ ∈ C1([0, a],R), C ∈ C([0, a],R), and 0 < α < 1,
then

a∫
0

C(τ)C0D
α
τ ψ(τ) dτ =

a∫
0

RL
τD

α
aC(τ)ψ(τ) dτ +

[
RL
τ I

1−α
a C(τ) · ψ(τ)

]∣∣a
0
,

where

C
0D

α
τ ψ(τ) =

1

Γ(1− α)

d

dτ

τ∫
0

ψ(s)− ψ(0)

(τ − s)α
ds,

RL
τD

α
aC(τ) =

−1

Γ(1− α)

d

dτ

a∫
τ

C(s)

(s− τ)α
ds,

RL
τ I

1−α
a C(τ) =

1

Γ(1− α)

a∫
τ

C(s)

(s− τ)α
ds.

Lemma 2. (See [3, Lemma 4.2].) Let for G > 0, the following inequality holds:

x(G) 6 a(G) + θf

G∫
0

x(v) dv +
∑

0<τt<G
θtx(τt),

where x, a ∈ PC ([0,∞),R+), a is nondecreasing, and θf , θt > 0. Then, for G > 0, the
following inequality is valid:

x(G) 6 a(G)

( ∏
0<τt<G

(1 + θt)e
θfG
)
.

3 Main results

We use the symbol σi,j(τ) to represent all the information received by the jth agent in
the ith iteration. Then it can be expressed as the sum of the information transmitted from
other agents to the jth agent and the possible information transmitted from the leader to
the jth agent

σi,j(τ) =
∑
h∈Nj

zj,h
(
yi,h(τ)− yi,j(τ)

)
+ dj

(
yd(τ)− yi,j(τ)

)
. (8)

The jth agent can get information directly from the desired trajectory. That is, if
(0, j) ∈ E∗, then dj = 1; otherwise, dj = 0. Here the first subscript of σ and y indicates
the number of iterations, and the second subscript indicates the sequence number of the
agent. The subscripts of z and d are explained in Section 2. The derivative of the σi,j(τ)
function is defined as follows:

σ̇i,j(τ0) =

{
lim∆τ→0

σi,j(τ0+∆τ)−σi,j(τ0)
∆τ , τ0 6= τt,

lim∆τ→0−
σi,j(τ0+∆τ)−σi,j(τ0)

∆τ , τ0 = τt.

https://www.journals.vu.lt/nonlinear-analysis
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Here τt is defined in formula (1). In order to make the intelligent body track the target
trajectory, the following DαD-type learning laws are employed:

ui+1, j(τ) = ui,j(τ) + P (τ)σ̇i,j(τ) + C(τ)C0D
α
t σi,j(τ), (9)

where P (τ),C(τ) are Rp×p matrix function and are differentiable during the interval
[0,G]. The initial state learning rule is as follows:

Xi+1, j(0) = Xi,j(0) + BP(0)σi,j(0). (10)

Set ψi,j(τ) as the tracking error of the agent; that is, ψi,j(τ) = yd(τ) − yi,j(τ). The
learning law (8) can be written as σi,j(τ) =

∑
h∈Nj

aj,h(ψi,j(τ)−ψi,h(τ)) +djψi,j(τ).
We set all involved quantities of all agents of arbitrary iteration into vector form as

follows:

Xi(τ) =
(
Xi,1(τ)T,Xi,2(τ)T, . . . ,Xi,N (τ)T

)T
,

ui(τ) =
(
ui,1(τ)T, ui,2(τ)T, . . . , ui,N (τ)T

)T
,

ψi(τ) =
(
ψi,1(τ)T, ψi,2(τ)T, . . . , ψi,N (τ)T

)T
,

σi(τ) =
(
σi,1(τ)T, σi,2(τ)T, . . . , σi,N (τ)T

)T
,

yi(τ) =
(
yi,1(τ)T, yi,2(τ)T, . . . , yi,N (τ)T

)T
,

where (·)T is the transpose of (·). Then (9) and (10) can be written as follows:

ui+1(τ) = ui(τ) +
(
(µ+D)⊗ P (τ)

)
ψ̇i(τ) +

(
(µ+D)⊗ C(τ)

)
C
0D

α
t ψi(τ),

Xi+1(0) = Xi(0) +
(
(µ+D)⊗ BP(0)

)
ψi(0).

(11)

To study the multi-agent consensus problem with impulsive points, (H1), (H2), and
the following assumptions are necessary in this paper.

Assumption 1. The desired trajectory yd is trackable; that is, there exists a desired input
ud such that yd = CXd.

Assumption 2. The length of the system’s first run time is complete.

In order to make the proof process more concise, we introduce the following symbols
to replace the norm of some variables that frequently appear in the proof process, let
θ0 = max(θt) and

β1 = sup
τ∈[0,G]

∥∥Im ⊗ C(τ)
∥∥,

β2 = sup
τ∈[0,G]

∥∥∥∥(µ+D)⊗
(
d

dτ
BP(τ)

)∥∥∥∥+ sup
τ∈[0,G]

‖(µ+D)⊗BC(τ)‖
‖Γ(1− α)(1− α)(τ − s)α‖

,

I1 =
‖(µ+D)⊗BC(τ)‖

‖Γ(1− α)(1− α)(τ − s)α‖
+

∥∥∥∥(µ+D)⊗
(

d

ds
BP(s)

)∥∥∥∥,
I2 =

∥∥∥∥ (µ+D)⊗BC(τ)

Γ(β)

∥∥∥∥∥∥∥∥−τββ
∥∥∥∥+

∥∥∥∥(µ+D)⊗
(

d

ds
BP(τ)

)∥∥∥∥.
Nonlinear Anal. Model. Control, 27(3):445–465, 2022
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3.1 DαD-type learning law

Considering the multi-agent system (1), under the condition of varying trial lengths,
analyze the convergence of the correction error (6), similar to (8)–(11), we give the
following DαD-type learning law:

ui+1(τ) = ui(τ) +
(
(µ+D)⊗ P (τ)

)
ψ̇∗i (τ) +

(
(µ+D)⊗ C(τ)

)
C
0D

α
t ψ
∗
i (τ),

Xi+1(0) = Xi(0) +
(
(µ+D)⊗ BP(0)

)
ψi(0).

(12)

Theorem 1. For the multi-agent system (1) with Assumption 1, let (H1), (H2) hold, and
the DαD-type learning law (12) is applied. Consider the varying trial lengths as the
iteration number approaches infinity. The corrected tracking error ψ∗i (τ) converges to
zero, i.e., limi→∞ yi,j(τ) = yd(τ) for all τ ∈ [0,G], if

Φ(C,B, P ) < 1, (13)
where

Φ(C,B, P ) :=
∥∥ImN − (µ+D)⊗

(
C(τ)BP(τ)

)∥∥
+ β1

∑
0<τt<G

θt
∥∥(µ+D)⊗ C(τ)BP(τ)

∥∥
represents the compression coefficient in the iterative process, and θt is the Lipschitz
constant in (3).

Proof. We are divided into the following three cases for discussion.

Case 1. τ ∈ [0,Li+1], where Li+1 = min{Ki,Ki+1}.
The tracking error of the jth agent in the (i+ 1)th iteration is

ψ∗i+1, j(τ) = ψ∗i,j(τ)−
(
yi+1, j(τ)− yi,j(τ)

)
.

Then
ψ∗i+1(τ) = ψ∗i (τ)− Im ⊗ C(τ)

(
Xi+1(τ)−Xi(τ)

)
. (14)

From (4) and (12) it can be known that

Xi+1(τ)−Xi(τ) = (µ+D)⊗ BP(0)ψ∗i (0)

+
∑

0<τt<τ

[
Mt

(
Xi+1(τt)

)
−Mt

(
Xi(τt)

)]
+

τ∫
0

[
F (Xi+1, s)− F (Xi, s) + (µ+D)⊗ BP(s)ψ̇∗i (s)

+
(
(µ+D)⊗BC(s)

)
C
0D

α
s ψ
∗
i (s)

]
ds,

where F (Xi, s) = (~(Xi,1, s)T, ~(Xi,2, s)T, . . . , ~(Xi,N , s)T)T.

https://www.journals.vu.lt/nonlinear-analysis
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According to Lemma 1, we can get
τ∫

0

(µ+D)⊗BC(s)

Γ(1− α)

d

ds

s∫
0

ψ∗i (t)− ψ∗i (0)

(s− t)α
dtds

=

τ∫
0

[
−1

Γ(1− α)

d

ds

τ∫
s

(µ+D)⊗BC(t)

(t− s)α
dt

]
· ψ∗i (s) ds

− 1

Γ(1− α)

τ∫
0

(µ+D)⊗BC(t)

(t− 0)α
dt · ψ∗i (0).

Then

Xi+1(τ)−Xi(τ)

= (µ+D)⊗ BP(τ)ψ∗i (τ) +
∑

0<τt<τ

[
Mt

(
Xi+1(τt)

)
−Mt

(
Xi(τt)

)]
+

τ∫
0

[
F (Xi+1, s)− F (Xi, s)

]
ds− 1

Γ(1− α)

τ∫
0

(µ+D)⊗BC(t)

tα
dt · ψ∗i (0)

−
τ∫

0

[
1

Γ(1− α)

d

ds

τ∫
s

(µ+D)⊗BC(t)

(t− s)α
dt+ (µ+D)⊗

(
d

ds
BP(s)

)]
× ψ∗i (s) ds. (15)

Taking norm to both sides of (15), according to (2) and (3), we can get∥∥Xi+1(τ)−Xi(τ)
∥∥

6
∥∥(µ+D)⊗ BP(τ)

∥∥‖ψ∗i ‖λeλτ +
∑

0<τt<τ

θt
∥∥Xi+1(τt)−Xi(τt)

∥∥
+ I1‖ψ∗i ‖λ

eλτ − 1

λ
+ θf‖Xi+1 −Xi‖λ

eλτ − 1

λ

+

∥∥∥∥‖(µ+D)⊗BC(τ)‖τ1−αψ∗i (0)

Γ(1− α)(1− α)

∥∥∥∥. (16)

In a similar way, we can get∥∥Xi+1(τs)−Xi(τs)
∥∥e−λτs

6
∥∥(µ+D)⊗ BP(τ)

∥∥‖ψ∗i ‖λ +
∑

0<τt<τs

θte
−λ(τs−τt)

∥∥Xi+1(τt)−Xi(τt)
∥∥e−λτt

+ θf‖Xi+1 −Xi‖λ
1− e−λτs

λ
+ I1‖ψ∗i ‖λ

1− e−λτs

λ

+

∥∥∥∥‖(µ+D)⊗BC(τ)‖
Γ(1− α)(1− α)

∥∥∥∥∥∥ψ∗i (τ)
∥∥τ1−αe−λτs , (17)
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where maxτ>0 τ
1−αe−λτ = (−α/λ)1−αeα−1. According to Lemma 2, we can get

‖Xi+1 −Xi‖λ 6
[∥∥(µ+D)⊗ BP(τ)

∥∥+ GI1 +

∥∥∥∥‖(µ+D)⊗BC(τ)‖τ1−G

Γ(1− α)(1− α)

∥∥∥∥]
×

∏
0<τt<G

(1 + θt)e
θfG‖ψ∗i ‖λ. (18)

Substituting (15) into (14) and taking the norm, we can get∥∥ψ∗i+1(τ)
∥∥ 6 ∥∥ImN − (µ+D)⊗

(
C(τ)BP(τ)

)∥∥∥∥ψ∗i (τ)
∥∥

+ β1

∥∥∥∥ ∑
0<τt<τ

θt
[
Xi+1(τt)−Xi(τt)

]∥∥∥∥+ θfβ1

τ∫
0

∥∥Xi+1 −Xi
∥∥ds

+ β1β2

τ∫
0

∥∥ψ∗i (s)
∥∥ ds+ β1

∥∥∥∥ τ1−αψ∗i (0)

Γ(1− α)(1− α)

∥∥∥∥, (19)

where ∥∥∥∥∥ 1

Γ(1− α)

d

ds

τ∫
s

(µ+D)⊗BC(t)

(t− s)α
dt

∥∥∥∥∥ 6 ‖(µ+D)⊗BC(τ)‖
‖Γ(1− α)(1− α)(τ − s)α‖

.

Then, taking λ-norm to (19), according to (16) and (17), we have

‖ψ∗i+1‖λ 6
∥∥ImN − (µ+D)⊗

(
C(τ)BP(τ)

)∥∥∥∥ψ∗i (τ)
∥∥
λ

+ β1
∑

0<τt<G
θt
∥∥(µ+D)⊗ BP(τ)

∥∥‖ψ∗i ‖λ
+ β1

∑
0<τt<G

θt
∑

0<τt<G
θte
−λ(G−τt)‖Xi+1 −Xi‖λ

+ β1
∑

0<τt<G
θtθf

∥∥Xi+1 −Xi
∥∥
λ

1−e−λG

λ
+ β1

∑
0<τt<G

θtI1‖ψ∗i ‖λ
1−e−λG

λ

+ β1
∑

0<τt<G
θt

∥∥∥∥‖(µ+D)⊗BC(τ)‖
Γ(1− α)(1− α)

∥∥∥∥∥∥ψ∗i (τ)
∥∥
λ

(
1− α
λ

)1−α

eα−1

+ θfβ1
1− e−λG

λ
‖Xi+1 −Xi‖λ + β1β2

1− e−λG

λ

+ β1

∥∥∥∥ 1

Γ(1− α)(1− α)

∥∥∥∥∥∥ψ∗i (τ)
∥∥
λ

(
1− α
λ

)1−α

eα−1. (20)

Substitute (18) into (20) and then set λ→∞, we obtain

‖ψ∗i+1‖λ 6 Φ(C,B, P )‖ψ∗i ‖λ. (21)
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Case 2. τ ∈ [Li+1,max{Ki,Ki+1}].
Whether ψi or ψi+1 loses data in the interval τ ∈ [Li+1,max{Ki,Ki+1}], the control

function ui+1 cannot be updated in the interval τ ∈ [Li+1,max{Ki,Ki+1}], so ui+1 = ui
on τ ∈ [Li+1,max{Ki,Ki+1}].

Case 3. τ ∈ [max{Ki,Ki+1},G], then ψ∗i = ψ∗i+1 = 0.
In summary, when Ki = Ki+1 = G, according to (21) and (13), we can get ‖ψ∗i+1‖λ <

‖ψ∗i ‖λ as i→∞, according to (5). Since ν > 0, then the number of times Li+1 takes the
value G, which is also infinite times. By (6), (21), and (13) we have limi→∞ ‖ψ∗i+1‖λ = 0.
The proof is completed.

3.2 IβD-type learning law

Considering the multi-agent system (1) and the correction error (7), similar to (8)–(11),
we give the following IβD-type learning law:

ui+1(τ) = ui(τ) +
(
(µ+D)⊗ P (τ)

)
˙ζψi(τ) +

(
(µ+D)⊗ C(τ)

)
RL
0 I

β
τ ζψi(τ),

Xi+1(0) = Xi(0) +
(
(µ+D)⊗ BP(0)

)
ψi(0).

(22)

Theorem 2. For system (1) with Assumptions 1, 2, let (H1) and (H2) hold, and the
IβD-type learning law (22) is applied. Consider the varying trial lengths as the iteration
number approaches infinity. The corrected tracking error ζψi(τ) converges to zero, i.e.,
limi→∞ yi,j(τ) = yd(τ) for all τ ∈ [0,G], if

Φ(C,B, P ) < 1, (23)
where

Φ(C,B, P ) :=
∥∥ImN − (µ+D)⊗

(
C(τ)BP(τ)

)∥∥
+ β1

∑
0<τt<G

θt
∥∥(µ+D)⊗ C(τ)BP(τ)

∥∥,
and θt is the Lipschitz constant in (3).

Proof. Since the IβD-type learning law uses the domain alignment operator (formula (7),
ζ(·)) to correct ψi(τ), Assumption 2 is needed.

When τ ∈ (Li+1,G], according to (7), we have

‖ζψi+1‖λ = ‖ζψi‖λ. (24)

When τ ∈ [0,Li+1], the tracking error of the jth agent in the (i + 1)th iteration is
ζψi+1, j(τ) = ζψi,j(τ)− (yi+1, j(τ)− yi,j(τ)), and

ζψi+1(τ) = ζψi(τ)− Im ⊗ C(τ)
(
Xi+1(τ)−Xi(τ)

)
.
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From (4) we obtain

Xi+1(τ)−Xi(τ)

= (µ+D)⊗ BP(τ)ζψi(τ) +
∑

0<τt<τ

[
Mt

(
Xi+1(τt)

)
−Mt

(
Xi(τt)

)]
+

τ∫
0

[
F (Xi+1, s)− F (Xi, s)

]
ds+

τ∫
0

(
(µ+D)⊗BC(s)

)
RL
0 Iβs ζψi(s) ds

−
τ∫

0

(µ+D)⊗
(

d

ds
BP(s)

)
· ζψi(s) ds, (25)

where ∥∥∥∥∥
τ∫

0

((µ+D)⊗BC(s))RL0 Iβs ζψi(s) ds

∥∥∥∥∥
6

∥∥∥∥ (µ+D)⊗BC(τ)

Γ(β)

∥∥∥∥∥∥∥∥−τββ
∥∥∥∥∥∥ζψi(τ)

∥∥
λ

eλτ − 1

λ

and ∥∥∥∥∥
τ∫

0

(µ+D)⊗
(

d

ds
BP(s)

)
· ζψi(s) ds

∥∥∥∥∥
6

∥∥∥∥(µ+D)⊗
(

d

ds
BP(τ)

)∥∥∥∥∥∥ζψi(τ)
∥∥
λ

eλτ − 1

λ
.

Taking norm to both sides of (25), according to (2) and (3), we can get

‖ζψi+1‖λ 6
∥∥ImN − (µ+D)⊗

(
C(τ)BP(τ)

)∥∥∥∥ζψi(τ)
∥∥
λ

+ β1
∑

0<τt<G
θt
∥∥(µ+D)⊗ BP(τ)

∥∥‖ζψi‖λ
+ β1

∑
0<τt<G

θt
∑

0<τt<G
θte
−λ(G−τt)‖Xi+1 −Xi‖λ

+ β1
∑

0<τt<G
θtθf‖Xi+1 −Xi‖λ

1− e−λG

λ

+ β1
∑

0<τt<G
θtI2‖ζψi‖λ

1− e−λG

λ
+ θfβ1

1− e−λG

λ
‖Xi+1 −Xi‖λ

+ β1I2‖ζψi‖λ
1− e−λτ

λ
(26)
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and ∥∥Xi+1(τ)−Xi(τ)
∥∥

6
∥∥(µ+D)⊗ BP(τ)

∥∥‖ζψi‖λeλτ +
∑

0<τt<τ

θt
∥∥Xi+1(τt)−Xi(τt)

∥∥
+ θf‖Xi+1 −Xi‖λ

eλτ − 1

λ
+ I2

∥∥ζψi(τ)
∥∥
λ

eλτ − 1

λ
. (27)

According to (27) and Lemma 2, we can get∥∥Xi+1 −Xi
∥∥
λ
6
[∥∥(µ+D)⊗ BP(τ)

∥∥+ GI2
]

×
∏

0<τt<G
(1 + θt)e

θfG‖ζψi‖λ. (28)

Substitute (28) into (26) and then set λ→∞,

‖ζψi+1‖λ 6 Φ(C,B, P )‖ζψi‖λ. (29)

By (7), (24), (29), and (23) we have limi→∞ ‖ψi+1‖λ = 0. The proof is completed.

3.3 DαD-type learning law with local average operator 1

Li et al. [11, Eq. (11)] introduced the local average operator (LAO)

AL
{
uk(·)

}
:=

1

m∗

m∗∑
j=1

uk−j+1(·).

This operator effectively utilizes the information from the most recent m∗ experiments,
where m∗ is any known positive integer.

Considering system (1) and the correction error (6), similar to (8)–(11), we give the
following DαD-type learning law with local average operator:

ui+1(τ) =



ui(τ) + ((µ+D)⊗ P (τ))ψ̇∗i (τ) + ((µ+D)⊗ C(τ))C0D
α
t ψ
∗
i (τ),

τ ∈ [0,G], i 6 m∗,

1
m∗

∑m∗

j=1(((µ+D)⊗ P (τ))ψ̇∗
i+1−j(τ)

+ ((µ+D)⊗ C(τ))C0D
α
t ψ
∗
i+1−j(τ)) + ui(τ),

τ ∈ [0,G], i > m∗,

Xi+1(0) =

{
Xi(0) + ((µ+D)⊗ BP(0))ψi(0), i 6 m∗,

1
m∗

∑m∗

j=1((µ+D)⊗ BP(0))ψi+1−j(0) + Xi(0), i > m∗,

(30)

wherem∗ is any known positive integer. It means that the learning law can use the tracking
error of the previous m∗ iterations to adjust the next input, and j is the ergodic of m∗.
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Due to the lack of iterative information, only using the tracking error of the last iteration
to adjust the input will slow down the convergence speed. The local average operator can
make full use of the tracking error of multiple iterations to adjust the input so that the
convergence speed is faster.

Theorem 3. For system (1) with Assumption 1, let (H1) and (H2) hold, and the DαD-
type learning law (30) is applied with local average operator. Consider the varying trial
lengths as the iteration number approaches infinity. The corrected tracking error ψ∗i (τ)
converges to zero, i.e., limi→∞ yi,j(τ) = yd(τ) for all τ ∈ [0,G], if

Φ(C,B, P ) < 1, (31)
where

Φ(C,B, P ) :=
∥∥ImN − (µ+D)⊗

(
C(τ)BP(τ)

)∥∥
+ β1

∑
0<τt<G

θt
∥∥(µ+D)⊗ C(τ)BP(τ)

∥∥,
and θt is the Lipschitz constant in (3).

Proof. When i 6 m∗, the proof of the theorem is similar to Theorem 1.
When i > m∗, we only need to analyze a few key steps, and the rest of the proof is

similar to Theorem 1.
According to (30) and similar to (14)–(20), we can get∥∥Xi+1(τ)−Xi(τ)

∥∥
6
∥∥(µ+D)⊗ BP(τ)

∥∥ max
j=1,...,m∗

‖ψ∗
i+1−j‖λeλτ +

∑
0<τt<τ

θt
∥∥Xi+1(τt)−Xi(τt)

∥∥
+ I1 max

j=1,...,m∗
‖ψ∗

i+1−j‖λ
eλτ − 1

λ
+ θf‖Xi+1 −Xi‖λ

eλτ − 1

λ

+

∥∥∥∥‖(µ+D)⊗BC(τ)‖τ1−α maxj=1,...,m∗ ψ∗i+1−j(0)

Γ(1− α)(1− α)

∥∥∥∥.
From Theorem 1 and the above analysis we know

‖ψ∗i+1‖λ 6 Φ(C,B, P ) max
j=1,...,m∗

‖ψ∗
i+1−j‖λ. (32)

By (6), (32), and (31) we have limi→∞ ‖ψ∗i+1‖λ = 0. The proof is completed.

3.4 IβD-type learning law with local average operator 2

To characterize local average operator 2, we set $(·) : N+ × [0,G] ⇒ N+, where
$(i) = {j̃ mod Kj̃ = G, j̃ < i, j̃ ∈ N+}. Define the symbol $(i)j̃ ∈ $(i) with
i > $(i)1 > $(i)2 > · · · 1. $(i) is the set of serial numbers of all trials with full trial
length before the ith iteration, num($(i)) is the number of elements in $(i).
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Considering system (1) and the correction error (6), similar to (8)–(11), we give the
following IβD-type learning law with local average operator:

ui+1(τ) =



ui(τ) + ((µ+D)⊗ P (τ))ψ̇∗i (τ) + ((µ+D)⊗ C(τ))RL0 I
β
τ ψ
∗
i (τ),

τ ∈ [0,G], num($(i)) 6 m∗,

ui(τ) + 1
m∗

∑m∗

j̃=1(((µ+D)⊗ P (τ))ψ̇∗
i+1−j̃(τ)

+ ((µ+D)⊗ C(τ))RL0 I
β
τ ψ
∗
i+1−j̃(τ)),

τ ∈ [0,G], num($(i)) > m∗,

Xi+1(0) =


Xi(0) + ((µ+D)⊗ BP(0))ψi(0), num($(i)) 6 m∗,

1
m∗

∑m∗

j̃=1((µ+D)⊗ BP(0))ψi+1−j̃(0) + Xi(0),

num($(i)) > m∗,

(33)

where m∗ is any known positive integer. The design idea of this learning law is similar
to the learning law (formula (30)), but the set $(·) is introduced here, which makes the
learning law only use the complete iterative error and discard the incomplete iterative
error. The advantage of this method is to further accelerate the convergence speed, but it
needs several complete iterations as the basis.

Theorem 4. For system (1) with Assumption 1, let (H1) and (H2) hold, and the IαD-
type learning law (33) is applied with local average operator. Consider the varying trial
lengths as the iteration number approaches infinity. The corrected tracking error ψ∗i (τ)
converges to zero, i.e., limi→∞ yi,j(τ) = yd(τ) for all τ ∈ [0,G], if

Φ(C,B, P ) < 1, (34)
where

Φ(C,B, P ) :=
∥∥ImN − (µ+D)⊗

(
C(τ)BP(τ)

)∥∥
+ β1

∑
0<τt<G

θt
∥∥(µ+D)⊗ C(τ)BP(τ)

∥∥,
and θt is the Lipschitz constant in (3).

Proof. When num($(i)) 6 m∗, the proof of the theorem is similar to Theorem 2. When
num($(i)) > m∗, we only need to analyze a few key steps, and the rest of the proof is
similar to Theorem 2.

According to (33) and similar to (25) and (27), we can get∥∥Xi+1(τ)−Xi(τ)
∥∥

6
∥∥(µ+D)⊗ BP(τ)

∥∥ max
j̃=1,...,m∗

‖ψ∗
i+1−j̃‖λeλτ +

∑
0<τt<τ

θt
∥∥Xi+1(τt)−Xi(τt)

∥∥
+ θf‖Xi+1 −Xi‖λ

eλτ − 1

λ
+ I2 max

j̃=1,...,m∗

∥∥ψ∗
i+1−j̃(τ)

∥∥
λ

eλτ − 1

λ
.
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From Theorem 2 and the above analysis we know

‖ψ∗i+1‖λ 6 Φ(C,B, P ) max
j̃=1,...,m∗

‖ψ∗
i+1−j̃‖λ. (35)

By (6), (35), and (34) we have limi→∞ ‖ψ∗i+1‖λ = 0. The proof is completed.

4 Numerical simulation

We consider the following I-MAS consisting of five agents:

Ẋi(τ) =

(
sin(Xi,1(τ))

cos(Xi,1(τ) + Xi,2(τ))

)
+

(
1 −3
−2 5

)
ui, τ 6= 2, 4,

Xi(τ+t ) = 0.01Xi(τt), τt = 2, 4,

yi =

(
−3 1
4 −3

)
Xi,

(36)

where for all i ∈ V , τ ∈ [0, 6], Xi,1 and Xi,2 represent the two states of the ith agent,
respectively. Initial value are X1(0) = (1, 2)T, X2(0) = (−2, 0)T, X3(0) = (2,−1)T,
X4(0) = (3,−2)T. The communication topology is shown in Fig. 1. The probability
density function of Ki, i = 1, 2, . . . , is

p(Ki) =

{
0.1, Ki ∈ (0, 6),

0.4, Ki = 6.

The target trajectory, i.e., the trajectory of vertex 0 is as follows: yd = (yd1, yd2)T,
where

yd1 = τ(τ − 2)(τ − 6), τ ∈ [0, 6],

and

yd2 =


τ(cos(τ)− 2), τ ∈ [0, 2],

τ(cos(τ)− 2) + 1, τ ∈ (2, 4],

τ(cos(τ)− 2) + 2, τ ∈ (4, 6].

The remaining parameters of learning laws are P = C =
(
2.2 1.4
0.8 0.5

)
, m∗ = 5, α = 0.6,

β = 0.8, and u1(τ) = [0, 0]T. Φ(C,B, P ) = 0.9545 < 1, which satisfies the condition of

Figure 1. The topological graph for (36).
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Figure 2. The output error (DαD-type and IβD-type).

Figure 3. The output error (DαD-type and IβD-type with LAO).

Table 1. Tracking errors of each agent.

Agent 1 2 3 4

DαD 4.5E–03 8.9E–03 9.3E–03 1.0E–02
IβD 4.0E–04 7.7E–04 1.1E–03 1.4E–03
DαD with LAO 3.7E–04 1.0E–03 1.5E–03 1.8E–03
IβD with LAO 1.5E–03 4.3E–03 6.0E–03 8.8E–03

Theorems 1–4. Therefore, the multi-agent system can uniformly track the target trajectory
under the given learning control. Figures 2 and 3 show that the error between the output
value and the target trajectory gradually converges to 0.

Figures 4–7 shows the iterative learning process of the second state output trajectory
with DαD-type and IβD-type learning law with LAO.

When the iteration reaches 60, the consensus errors of four learning laws are shown
in Table 1. It should be noted that the error correction method of IβD without LAO is
different from that of IβD with LAO (see (6) and (7)).
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Figure 4. The trajectory of the first iteration (DαD-type and IβD-type with LAO).

Figure 5. The trajectory of the 12th iteration (DαD-type and IβD-type with LAO).

Figure 6. The trajectory of the 24th iteration (DαD-type and IβD-type with LAO).
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Figure 7. The trajectory of the 60th iteration (DαD-type and IβD-type with LAO).

5 Conclusion

We introduce four ILC schemes for I-MAS with VTL via the domain alignment operator
to correct the tracking error. In particular, the idea of local average operators to optimize
the control function is applied to optimize the control function. Convergence results for
I-MAS are shown and a numerically example is illustrated. In the future, on the one hand,
we will consider the case of non fixed time impulse and non instantaneous impulse, and
the actual model is often subject to the uncertainty of impulse interference, including the
uncertainty of interference time point and the uncertainty of interference duration; on the
other hand, we will consider the case of different running batch length between different
agents, so we need to design the appropriate topological relationship to solve the problem
Ensure the integrity of the iterative process.
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