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Abstract. In this paper, we discuss solvability of infinite system of fractional integral equations
(FIE) of mixed type. To achieve this goal, we first use shifting distance function to establish a new
generalization of Darbo’s fixed point theorem, and then apply it to the FIEs to establish the existence
of solution on tempered sequence space. Finally, we verify our results by considering a suitable
example.
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1 Introduction

Integral equations have multiple practical applications in modelling specific real world
problems and different types of real-life situations, e.g., in laws of physics, in the theory
of radioactive transmission, in the theory of statistical mechanics, and in the cytotoxic ac-
tivity. The theory of infinite systems of fractional integral equations (FIEs) plays a pivotal
role in different fields, which includes various implications in the scaling system theory,
the theory of algorithms, etc. There are many real-life problems, which can be modelled
by infinite systems of integral equations with fractional order in a very effective manner.

In recent times, the fixed point theory (FPT) has applications in various scientific
fields. Also, FPT can be applied seeking solutions for FIE.
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Recently, number of articles have been published in connection: with scalar linear im-
pulsive Riemann–Liouville fractional differential equations with constant delay-explicit
solutions, coupled systems of integral equations of Urysohn Volterra–Chandrasekhar
mixed type, noninstantaneous impulsive fractional integro–differential equations, frac-
tional differential equations, and proximity theory (the readers can consult the papers
[14, 16–18, 22] and references therein).

In [14], Gabeleh and Künzi have established that the existence of best proximity points
for cyclic nonexpansive mappings is equivalent to the existence of best proximity pairs for
noncyclic nonexpansive mappings in the setting of strictly convex Banach spaces by using
the projection operator. They have also discussed the convergence of best proximity pairs
for noncyclic contractions by applying the convergence of iterative sequences for cyclic
contractions.

In [16], Harjani et al. established sufficient condition about the length of the interval
for the existence and uniqueness of mild solutions to a fractional boundary value problem
with Sturm–Liouville boundary conditions when the data function is of Lipschitzian type.
Moreover, they have presented an application of our result to the eigenvalues problem and
its connection with a Lyapunov-type inequality.

In [17], Hristova and Tersian have studied Riemann–Liouville fractional differential
equations with a constant delay and impulses. Also, they have studied the case when the
lower limit of the fractional derivative is fixed on the whole interval of consideration and
the case when the lower limit of the fractional derivative is changed at any point of im-
pulse. The initial conditions as well as impulsive conditions are defined in an appropriate
way for both cases. The explicit solutions are obtained and applied to the study of finite-
time stability.

In [18], Kataria et al. have established the existence of mild solution for noninstan-
taneous impulsive fractional-order integro–differential equations with local and nonlocal
conditions in Banach space. Existence results with local and nonlocal conditions are ob-
tained through operator semigroup theory using generalized Banach contraction theorem
and Krasnoselskii’s fixed point theorem, respectively. Finally, illustrations are added to
validate derived results.

In [22], Nabil has studied the solvability of a coupled system of integral equations
of Urysohn Volterra–Chandrasekhar mixed type. To realize the existence of a solution
of those mixed systems, he has use the Perov’s fixed point combined with the Leray–
Schauder fixed point approach in generalized Banach algebra spaces.

Different real-life situations, which are modeled via FIEs, can be studied using FPT
and measure of noncompactness (MNC) (see [2, 3, 5, 7, 10, 11, 13, 19, 21, 23–26]).

The following notations will be used: (E, ‖·‖E) denotes a Banach space (BS);B[θ,κ]=
{θ ∈ E: ‖θ‖E 6 κ}; Ω – the closure of Ω; ConvΩ – the convex closure of Ω; ME – the
family of all nonempty and bounded subsets of E; NE – the subfamily consisting of all
relatively compact sets; R – the set of real numbers; R+ = [0,∞).

Definition 1. A mapping π : ME → R+ is said to be an MNC in E if the following hold:

(i) If Ω ∈ME and π(Ω) = 0, then Ω is relatively compact;
(ii) kerπ = {Ω ∈ME: π(Ω) = 0} (6= ∅) and kerπ ⊂ NE;
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(iii) Ω ⊆ Ω1 implies π(Ω) 6 π(Ω1);
(iv) π(Ω) = π(Ω);
(v) π(ConvΩ) = π(Ω);

(vi) π(ιΩ + (1− ι)Ω1) 6 ιπ(Ω) + (1− ι)π(Ω1) for ι ∈ [0, 1];
(vii) If Ωσ ∈ME, Ωσ = Ωσ , Ωσ+1 ⊂ Ωσ for σ ∈ N and limσ→∞ π(Ωσ) = 0, then

Ω∞ =
⋂∞
σ=1Ωσ 6= ∅.

Here kerπ denotes the kernel of π. Also, Ω∞ ∈ kerπ and π(Ω∞) 6 π(Ωσ) for
σ ∈ N imply π(Ω∞) = 0; hence, Ω∞ ∈ kerπ.

Theorem 1 [Schauder theorem]. (See [1].) Let E be a BS, and let Λ(6= ∅) ⊆ E be
closed and convex. If ∆ : Λ → Λ is continuous and compact, then it admits at least one
fixed point.

Theorem 2 [Darbo theorem]. (See [9].) Let E be a Banach space and Λ ⊆ E be non-
empty, bounded, closed, and convex (NBCC). Let ∆ : Λ→ Λ be continuous, and let there
exist a constant 0 6 τ < 1 with

π(∆Π) 6 τπ(Π), Π ⊆ Λ.
Then ∆ has a fixed point.

With the help of following concepts, we establish our fixed point theorem.

Definition 2. (See [24].) Let functions ∆1, ∆2 : R+ → R. Then the pair (∆1, ∆2) is
called a pair of shifting distance functions (SDF) if:

1. For l,m ∈ R+, if ∆1(l) 6 ∆2(m), then l 6 m;
2. For lk,mk ∈ R+ with limk→∞ lk = limk→∞mk = w, if ∆1(lk) 6 ∆2(mk) for

all k, then w = 0.

Examples of SDF are:

(i) ∆1(ζ) = ln((1 + 2ζ)/2), ∆2(ζ) = ln((1 + ζ)/2);
(ii) ∆1(ζ) = ζ, ∆2(ζ) = λζ, λ ∈ [0, 1).

Definition 3. (See [12].) K̂ will denote the family of all maps k : R+×R+ → R+ with:

1. max{τ, ς} 6 k(τ, ς) for τ, ς > 0;
2. k is continuous and nondecreasing;
3. k(τ1 + τ2, ς1 + ς2) 6 k(τ1, ς1) + k(τ2, ς2).

For example: k(τ, ς) = τ + ς , τ, ς > 0.

2 New results

Theorem 3. Let E be a BS and U ⊆ E be NBCC. Also, let F : U → U be a continuous
mapping with

∆1

[
ψ
{
k
(
ϑ(FV), α

(
ϑ(FV)

))}]
6 ∆2

[
φ
(
ψ
{
k(ϑ(V), α(ϑ(V)

))})
ψ
{
k
(
ϑ(V), α

(
ϑ(V)

))}]
(1)
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for V( 6= ∅) ⊆ U, where k ∈ K̂, ∆1, ∆2 ∈ ∆, α : R+ → R+ is a continuous mapping,
and ϑ is an arbitrary MNC. Moreover, ψ : R+ → R+ is nondecreasing with ψ(t) = 0 iff
t = 0 and φ : R+ → [0, 1). Then F admits a fixed point in U.

Proof. Define a sequence (Cs), where C1 = U and Cs+1 = Conv(FCs), s > 1. Then
FC1 = FU ⊆ U = C1, C2 = Conv(FC1) ⊆ U = C1. Similarly, C1 ⊇ C2 ⊇ C3 ⊇
. . . ⊇ Cs ⊇ Cs+1 ⊇ . . . . Let s1 ∈ N with ϑ(Cs1) = 0, then Cs1 is compact. Applying
Theorem 1, we observe that F admits a fixed point.

If ϑ(Cs) > 0 for s > 0, by (1) we have

∆1

[
ψ
{
k
(
ϑ(Cs+1), α

(
ϑ(Cs+1)

))}]
= ∆1

[
ψ
{
k
(
ϑ
(
Conv(FCs)

)
, α
(
ϑ
(
Conv(FCs)

)))}]
= ∆1

[
ψ
{
k
(
ϑ(FCs), α

(
ϑ(FCs)

))}]
6 ∆2

[
φ
(
ψ
{
k
(
ϑ(Cs), α

(
ϑ(Cs)

))})
ψ
{
k
(
ϑ(Cs), α

(
ϑ(Cs)

))}]
,

which gives

ψ
{
k
(
ϑ(Cs+1), α

(
ϑ(Cs+1)

))}
6 φ

(
ψ
{
k
(
ϑ(Cs), α

(
ϑ(Cs)

))})
ψ
{
k
(
ϑ(Cs), α

(
ϑ(Cs)

))}
.

Since φ : R+ → [0, 1), we have

0 6 ψ
{
k
(
ϑ(Cs+1), α

(
ϑ(Cs+1)

))}
6 ψ

{
k
(
ϑ(Cs), α

(
ϑ(Cs)

))}
.

Clearly, the sequence {ψ{k(ϑ(Cs), α(ϑ(Cs)))}}∞s=1 is nonnegative and nonincreasing;
thus, we can find an r > 0 such that

lim
s→∞

ψ
{
k
(
ϑ(Cs), α

(
ϑ(Cs)

))}
= r.

We claim that r = 0.
Let zs = ψ{k(ϑ(Cs), α(ϑ(Cs)))} and z = sups∈N φ(zs), which gives z ∈ [0, 1).

Therefore,

zs+1 6 φ(zs)zs 6 zzs,

which gives
zs+1 6 zzs 6 z2zs−1 6 · · · 6 zsz1.

Letting s → ∞, we get zs+1 → 0. Hence, lims→∞ ψ{k(ϑ(Cs), α(ϑ(Cs)))} = 0, i.e.,
r = 0, which gives

ψ
{

lim
s→∞

k
(
ϑ(Cs), α

(
ϑ(Cs)

))}
= 0.

By using the properties of ψ and k we get lims→∞ ϑ(Cs) = 0 = lims→∞ α[ϑ(Cs)].
Since Cs ⊇ Cs+1, by Definition 1 we get C∞ =

⋂∞
s=1 Cs ⊆ U is nonempty, closed,

and convex. Also, C∞ is invariant under F. Thus, Theorem 1 implies that F has a fixed
point in C∞ ⊆ U.
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Theorem 4. Let E be a BS and U ⊆ E be NBCC. Also, let F : U → U be a continuous
mapping with

∆1

[
ψ
{
ϑ(FV) + α

(
ϑ(FV)

)}]
6 ∆2

[
φ
(
ψ
{
ϑ(V) + α

(
ϑ(V)

)})
ψ
{
ϑ(V) + α

(
ϑ(V)

)}]
(2)

for V(6= ∅) ⊆ U, where ∆1, ∆2 ∈ ∆, α : R+ → R+ is a continuous mapping, and ϑ is
an arbitrary MNC. Moreover, ψ : R+ → R+ is nondecreasing with ψ(t) = 0 iff t = 0
and φ : R+ → [0, 1). Then F admits a fixed point in U.

Proof. Taking k(l,m) = l +m in Theorem 3, the result follows.

Corollary 1. Let E be a BS and U ⊆ E be NBCC. Also, let F : U → U be a continuous
mapping with

∆1

[
ψ
{
ϑ(FV)

}]
6 ∆2

[
φ
(
ψ
{
ϑ(V)

})
ψ
{
ϑ(V)

}]
(3)

for V( 6= ∅) ⊆ U, where∆1, ∆2∈∆, and ϑ is an arbitrary MNC. Moreover, ψ : R+→R+

is nondecreasing with ψ(t) = 0 iff t = 0 and φ : R+ → [0, 1). Then F has a fixed point
in U.

Proof. The result follows by taking α ≡ 0 in Theorem 4.

Remark 1. If we take ∆1(ς) = ς , ∆2(ς) = ς , ψ(ς) = ς , φ(ς) = λ ∈ [0, 1), then
ϑ(FV) 6 λϑ(V), and Theorem 2 follows as a special case.

Definition 4. (See [8].) An element ($, ι) ∈ Ω × Ω is called a coupled fixed point of
a mapping F : Ω ×Ω → Ω if F($, ι) = $ and F($, ι) = ι.

Theorem 5. (See [4].) Suppose ϑ1, ϑ2, . . . , ϑn are MNCs in E1,E2, . . . ,En, respectively,
and the function F : R+

n → R+ is convex and F(p1, p2, . . . , pn) = 0 if and only if pl = 0,
l ∈ N. Then ϑ(Υ ) = F(ϑ1(Υ1), ϑ2(Υ2), . . . , ϑn(Υn)) defines an MNC in E1 × E2 ×
· · · × En, where Υl denotes the natural projection of Υ into El, l ∈ N.

Example 1. (See [4].) Let ϑ be an MNC on E and F($, ι) = $ + ι, $, ι ∈ R+. Then
ϑcf (Υ ) = ϑ(Υ1) + ϑ(Υ2) is an MNC in E × E, where Υl, l = 1, 2, denotes the natural
projections of Υ .

Theorem 6. Let E be a BS and U ⊆ E be NBCC. Also, let F : U×U→ U be a continuous
with

∆1

[
ψ
[
k
{
ϑ
(
F(V1 × V2)

)
, α
(
ϑ
(
F(V1 × V2)

))}]]
6

1

2
∆2

[
φ
{
ψ
(
k
(
ϑ(V1) + ϑ(V2), α

(
ϑ(V1) + ϑ(V2)

)))}]
× ψ

(
k
(
ϑ(V1) + ϑ(V2), α

(
ϑ(V1) + ϑ(V2)

)))
for all V1,V2 ⊆ U, where k ∈ K̂, α : R+ → R+ is a continuous function satisfying
α($1 + $2) 6 α($1) + α($2), $1, $2 > 0, and ϑ is an arbitrary MNC. Moreover,
ψ : R+ → R+ is nondecreasing such that ψ(t) = 0 iff t = 0, φ : R+ → [0, 1), and
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∆1, ∆2 ∈ ∆ satisfy ψ($1 + $2) 6 ψ($1) + ψ($2) and ∆1($1 + $2) 6 ∆1($1) +
∆1($2). Then F admits a coupled fixed point in U× U.

Proof. We observe that ϑcf (V) = ϑ(V1) + ϑ(V2) is an MNC on E×E for any bounded
subset V ⊆ E× E, where V1,V2 are natural projections of V. Consider Fcf : U× U→
U×U defined by Fcf (l,m) = (F(l,m),F(m, l)). It is trivial to see that Fcf is continuous.
Let V ⊆ U× U. We obtain

∆1

[
ψ
[
k
{
ϑcf
(
Fcf (V)

)
, α(ϑcf

(
Fcf (V)

))}]]
6 ∆1

[
ψ
[
k
{
ϑcf
(
F(V1 × V2)× F(V2 × V1)

)
,

α
(
ϑcf
(
F(V1 × V2)× F(V2 × V1)

))}]]
= ∆1

[
ψ
[
k
{
ϑ
(
F(V1 × V2)

)
+ ϑ

(
F(V2 × V1)

)
,

α
(
ϑ
(
F(V1 × V2)

)
+ ϑ

(
F(V2 × V1)

))}]]
6 ∆1

[
ψ
[
k
{
ϑ
(
F(V1 × V2)

)
+ ϑ

(
F(V2 × V1)

)
,

α
(
ϑ
(
F(V1 × V2)

))
+ α

(
ϑ
(
F(V2 × V1)

))}]]
6 ∆1

[
ψ
[
k
{
ϑ
(
F(V1 × V2)

)
, α
(
ϑ
(
F(V1 × V2)

))}
+ k
{
ϑ
(
F(V2 × V1)

)
, α
(
ϑ
(
F(V2 × V1)

))}]]
6 ∆1

[
ψ
[
k
{
ϑ
(
F(V1 × V2)

)
, α
(
ϑ
(
F(V1 × V2)

))}]]
+∆1

[[
k
{
ϑ
(
F(V2 × V1)

)
, α
(
ϑ
(
F(V2 × V1)

))}]]
6 ∆2

[
φ
{
ψ
(
k
(
ϑ(V1) + ϑ(V2), α

(
ϑ(V1) + ϑ(V2)

)))}]
× ψ

(
k
(
ϑ(V1) + ϑ(V2), α

(
ϑ(V1) + ϑ(V2)

)))
= ∆2

[
φ
{
ψ
(
k
(
ϑcf (V), α

(
ϑcf (V)

)))}]
ψ
(
k
(
ϑcf (V), α

(
ϑcf (V)

)))
.

By Theorem 3 we conclude that Fcf has a fixed point in U×U, i.e., F has a coupled fixed
point.

Corollary 2. Let E be a BS and U ⊆ E be NBCC. Also, let F : U × U → U be a
continuous function satisfying

∆1

[
ψ
[
ϑ
(
F(V1 × V2)

)
+ α

(
ϑ
(
F(V1 × V2)

))]]
6

1

2
∆2

[
φ
{
ψ
(
ϑ(V1) + ϑ(V2) + α

(
ϑ(V1) + ϑ(V2)

))}]
× ψ

(
ϑ(V1) + ϑ(V2) + α

(
ϑ(V1) + ϑ(V2)

))
for all V1,V2⊆U, where α : R+→R+ is a continuous function satisfying α($1+$2)6
α($1) + α($2), $1, $2 > 0, and ϑ is an arbitrary MNC. Also, ψ : R+ → R+ is non-
decreasing such that ψ(t) = 0 if and only if t = 0, φ : R+ → [0, 1) and ∆1, ∆2 ∈ ∆
satisfy ψ($1 +$2) 6 ψ($1) + ψ($2) and ∆1($1 +$2) 6 ∆1($1) +∆1($2). Then
F has a coupled fixed point in U× U.

Proof. We obtain the desired result by choosing k(l,m) = l +m in Theorem 6.
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2.1 Measure of noncompactness

Banaś and Krajewska [6] introduced the notions of tempering sequence and space of
tempered sequences. Namely, a fixed positive nonincreasing real sequence α = (ασ)∞σ=1

is called a tempering sequence.
Recently, Rabbani et al. [26] denoted by W a collection of all real or complex se-

quences ν = (νσ)∞σ=1 with
∑∞
σ=1 α

p
σ|νσ|p <∞ (1 6 p <∞). Clearly,W forms a linear

space over R or C, and this space is denoted byW :≡ `αp for 1 6 p < ∞. It is easy to
observe that `αp for 1 6 p <∞ is a Banach space with the norm

‖ν‖`αp =

( ∞∑
σ=1

αpσ|νσ|p
)1/p

.

If ασ = 1 for all σ ∈ N, then `αp = `p for 1 6 p <∞.
A Hausdorff MNC χ`αp for a nonempty bounded set Bα of `αp (1 6 p < ∞) can be

given by (see [26])

χ`αp (Bα) = lim
σ→∞

[
sup
ν∈Bα

(∑
k>σ

αpk|νk|
p

)1/p ]
. (4)

Let us denote by C(I, `αp ) the space of all continuous functions on I = [0, a], a > 0, with
the values in `αp (1 6 p <∞), which is also a Banach space with the norm

‖ν‖C(I,`αp )
= sup

ς∈I

∥∥ν(ς)
∥∥
`αp
,

where ν(ς) = (νσ(ς))∞σ=1 ∈ C(I, `αp ).
Let Eα(6= ∅) be a bounded subset of C(I, `αp ) and ς ∈ I ,

Eα(ς) =
{
ν(ς): ν(ς) ∈ Eα

}
.

Thus, an MNC for Eα ⊂ C(I, `αp ) can be defined by

χC(I,`αp )

(
Eα
)

= sup
t∈I

χ`αp
(
Eα(t)

)
.

3 Infinite systems of mixed type fractional integral equations

Let ς ∈ R+ and Re($) > 0. The Hadamard fractional integral of order $, applied to the
function f ∈ Lp[a, b], 1 6 p <∞, 1 < a < b <∞, for ς ∈ [a, b], is defined by [15]

Jαf(ς) =
1

Γ($)

ς∫
a

(
ln
ς

ξ

)$−1
f(ξ)

dξ

ξ
.

Therefore, we have

Jαf(ς) =
1

Γ($)

ς∫
1

(
ln
ς

ξ

)$−1
f(ξ)

dξ

ξ
, α > 0, ς > 1.
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Let f ∈ L1[a, b], 0 6 a < b < ∞, and $ > 0 be a real number. The Riemann–
Liouville fractional integral of order $ is defined by [20]

Iαf(ς) =
1

Γ($)

ς∫
a

f(ξ)

(ς − ξ)1−$
dξ, ς ∈ (a, b).

Consider the following infinite system of mixed-type fractional integral equations:

Θρ(ς) = Λρ
(
ς, lρ(ς, Θ(ς)), I$Pρ(ς, Θ(ς)), J$Qρ

(
ς, Θ(ς)

))
, ρ ∈ N, (5)

where 0 < $ < 1, ς ∈ I = [1, T ], and Θ(ς)) = {Θρ(ς)}∞ρ=1 ∈ E, where E is a Banach
sequence space.

Assume:

(i) The functions Λρ : I × R× R× R→ R are continuous and satisfy∣∣Λρ(ς, lρ(ς, Θ(ς)
)
, I, J

)
− Λρ

(
ς, lρ

(
ς, Θ̄(ς)

)
, Ī, J̄

)∣∣p
6 γ1(ς)

∣∣lρ(ς, Θ(ς)
)
− lρ

(
ς, Θ̄(ς)

)∣∣p + γ2(ς)|I − Ī|p + γ3(ς)|J − J̄ |p,

and lρ : I × C(I, `αp )→ R are continuous with∣∣lρ(ς, Θ(ς)
)
− lρ

(
ς, Θ̄(ς))

∣∣p 6 γ4(ς)
∣∣Θ(ς)− Θ̄(ς)

∣∣p
forΘ(ς) = (Θρ(ς))

∞
n=1, Θ̄(ς) = (Θ̄ρ(ς))

∞
ρ=1 ∈ C(I, `αp ); lρ(ς, Θ(ς)), lρ(ς, Θ̄(ς)),

I, J, Ī, J̄ ∈ R, and γ1, γ2, γ3, γ4 : I → R+; (ρ ∈ N) are continuous functions.
Also,

∞∑
ρ=1

αpρ
∣∣Λρ(ς, 0, 0, 0)

∣∣p
converges to zero for all ς ∈ I , and

sup
ς∈I

γ2(ς) = γ̂2, sup
ς∈I

γ3(ς) = γ̂3, sup
ς∈I

γ1(ς)γ4(ς) = Γ1

with 21−1/pΓ
1/p
1 < 1. Let

∑∞
ρ=1 α

p
ργ2(ς) and

∑∞
ρ=1 α

p
ργ3(ς) be convergent for

all ς ∈ I .
(ii) The functions Pρ, Qρ : I × C(I, `αp )→ R (ρ ∈ N) are continuous, and

P̂ρ = sup
{∣∣Pρ(ς, Θ(ς)

)∣∣: ς ∈ I; Θ(ς) ∈ C
(
I, `αp

)}
,

Q̂ρ = sup
{∣∣Qρ(ς, Θ(ς)

)∣∣: ς ∈ I; Θ(ς) ∈ C
(
I, `αp

)}
.

Also, supρ∈N P̂ρ = P̂ , supρ∈N Q̂ρ = Q̂, and limρ→∞ P̂ρ = limρ→∞ Q̂ρ = 0.
(iii) Define an operator T from I × C(I, `αp ) to C(I, `αp ) as (ς, Θ(ς)) → (TΘ)(ς),

where

(TΘ)(ς) =
{
Λρ
(
ς, lρ

(
ς, Θ(ς)

)
, I$Pρ

(
ς, Θ(ς)

)
, J$Qρ

(
ς, Θ(ς)

))}∞
ρ=1

.

Finally, let Bp,α = {z ∈ C(I, `αp ): ‖z‖C(I,`αp )
6 r}.
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Theorem 7. If conditions (1)–(3) hold, then equation (5) admits a solution in C(I, `αp ),
p > 1.

Proof. For arbitrary fixed x ∈ I ,∥∥Θ(ς)
∥∥p
`αp

=
∑
ρ>1

αpn
∣∣Λρ(ς, lρ(ς, Θ(ς)

)
, I$Pρ

(
ς, Θ(ς)

)
, J$Qρ

(
ς, Θ(ς)

))∣∣p
6 2p−1

∑
ρ>1

αpρ
∣∣Λρ(ς, lρ(ς, Θ(ς)

)
, I$Pρ

(
ς, Θ(ς)

)
, J$Qρ

(
ς, Θ(ς)

))
− Λρ(ς, 0, 0, 0)

∣∣p + 2p−1
∑
n>1

αpρ
∣∣Λρ(ς, 0, 0, 0)

∣∣p
6 2p−1

∑
ρ>1

αpρ
[
γ1(ς)γ4(ς)

∣∣Θρ(ς)∣∣p + γ2(ς)
∣∣I$Pρ(ς, Θ(ς)

)∣∣p
+ γ3(ς)

∣∣I$Qρ(ς, Θ(ς)
)∣∣p]

6 2p−1
∑
ρ>1

αpρ

[
γ1(ς)γ4(ς)

∣∣Θρ(ς)∣∣p
+ γ2(ς)

{
P̂ (T − 1)$

Γ($ + 1)

}p
+ γ3(ς)

{
Q̂(lnT )$

Γ($ + 1)

}p]

6 2p−1
[
Γ1

∥∥Θ(ς)
∥∥p
`αp

+ Γ2

{
P̂ (T − 1)$

Γ($ + 1)

}p
+ Γ3

{
Q̂(lnT )$

Γ($ + 1)

}p]
.

Therefore,(
1− 2p−1Γ1

)∥∥Θ(ς)
∥∥p
`αp

6 2p−1
[
Γ2

{
P̂ (T − 1)$

Γ($ + 1)

}p
+ Γ3

{
Q̂(lnT )$

Γ($ + 1)

}p]
implies

‖Θ(ς)‖p`αp 6
2p−1[Γ2P̂

p(T − 1)p$ + Γ3Q̂
p(lnT )p$]

(1− 2p−1Γ1){Γ($ + 1)}p
= rp (say).

Hence, ‖Θ‖C(I,`αp )
6 r.

Consider the operator T : I ×Bp,α → Bp,α given by

(TΘ)(ς) =
(
Λρ
(
ς, lρ

(
ς, Θ(ς)

)
, I$Pρ

(
ς, Θ(ς)

)
, J$Qρ

(
ς, Θ(ς)

)))∞
ρ=1

=
(
(TnΘ)(ς)

)∞
ρ=1

,

where Θ(ς) ∈ Bp,α, ς ∈ I .
By assumption (iii), (TΘ)(ς)∈C(I, `αp ) for Θ(ς)∈C(I, `αp ). Also, ‖TΘ‖C(I,`αp )

6r,
hence, T is a self-mapping on Bp,α.

Let Θ̄(ς) = (Θ̄ρ(ς))
∞
ρ=1 ∈ Bp,α and ε > 0 be such that

‖Θ − Θ̄‖C(I,`αp )
<

ε

31/pΓ
1/p
1

= δ.
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Then, for arbitrary fixed ς ∈ I ,∣∣(TρΘ)(ς)− (TρΘ̄)(ς)
∣∣p

=
∣∣Λρ(ς, lρ(ς, Θ(ς)), I$Pρ

(
ς, Θ(ς)

)
, J$Qρ

(
ς, Θ(ς)

))
− Λρ

(
ς, lρ

(
ς, Θ̄(ς)

)
, I$Pρ

(
ς, Θ̄(ς)

)
, J$Qρ

(
ς, Θ̄(ς)

))∣∣p
6 γ1(ς)

∣∣lρ(ς, Θ(ς)
)
− lρ

(
ς, Θ̄(ς)

)∣∣p
+ γ2(ς)

∣∣I$Pρ(ς, Θ(ς)
)
−I$Pρ

(
ς, Θ̄(ς)

)∣∣p
+ γ3(ς)

∣∣J$Qρ(ς, Θ(ς)
)
− J$Qρ

(
ς, Θ̄(ς)

)∣∣p
6 γ1(ς)γ4(ς)

∣∣Θρ(ς)− Θ̄ρ(ς)∣∣p
+ γ2(ς)

{
1

Γ($)

t∫
1

|Pρ(ς, Θ(ρ))−Pρ(ς, Θ̄(ρ))|
(t− s)1−$

ds

}p

+ γ3(ς)

{
1

Γ($)

t∫
1

|Qρ(ς, Θ(ρ))−Qρ(ς, Θ̄(ρ))|
s(ln t− ln s)1−$

ds

}p
.

Since Pρ, Qρ are continuous for all ρ ∈ N, so we have ‖Θ − Θ̄‖C(I,`αp )
< ε/(31/pΓ

1/p
1 )

for all ρ ∈ N, ς ∈ I ,

αρ
∣∣Pρ(ς, Θ(ρ)

)
− Pρ

(
ς, Θ̄(ρ)

)∣∣ < εΓ(1 +$)

31/pγ̂
1/p
2 (T − 1)$

and

αρ
∣∣Qρ(ς, Θ(ρ)

)
−Qρ

(
ς, Θ̄(ρ)

)∣∣ < εΓ(1 +$)

31/pγ̂
1/p
3 (lnT )$

.

Therefore,∑
n>1

αpρ
∣∣(TρΘ)(ς)− (TρΘ̄)(ς)

∣∣p
6 Γ1

∑
ρ>1

αpρ
∣∣Θρ(ς)− Θ̄ρ(ς)∣∣p + γ̂2

{
1

Γ($)

εΓ(1 +$)

31/pγ̂
1/p
2 (T − 1)$

(T − 1)$

$

}p
+ γ̂3

{
1

Γ($)

εΓ(1 +$)

31/pγ̂
1/p
2 (lnT )$

(lnT )$

$

}p
< Γ1‖Θ − Θ̄‖pC(I,`αp )

+
εp

3
+
εp

3
< Γ1

εp

3Γ1
+

2εp

3
= εp.

Thus, ‖TΘ−TΘ̄‖pC(I,`αp )
< εp when ‖Θ− Θ̄‖pC(I,`αp )

< εp/(2φ̂); hence, T is continuous
on Bp,α.
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Finally,

χ`αp (TBp,α)

= lim
n→∞

sup
Θ∈Bp,α

{∑
ρ>n

αpρ
∣∣Λρ(ς, lρ(ς, Θ(ς)

)
, I$Pρ

(
ς, Θ(ς)

)
, J$Qρ

(
ς, Θ(ς)

))∣∣p}1/p

6 lim
n→∞

sup
Θ∈Bp,α

{
2p−1

∑
ρ>n

αpρ

[
γ1(ς)γ4(ς)

∣∣Θρ(ς)∣∣p
+ γ2(ς)

(
P̂ (T − 1)$

Γ($ + 1)

)p
+ γ3(ς)

(
Q̂(lnT )$

Γ($ + 1)

)p]}1/p

6 21−1/p lim
n→∞

sup
Θ∈Bp,α

{[
Γ1

∑
ρ>n

αpρ
∣∣Θρ(ς)∣∣p +

(
P̂ (T − 1)$

Γ($ + 1)

)p∑
ρ>n

αpργ2(ς)

+

(
Q̂(lnT )$

Γ($ + 1)

)p∑
ρ>n

αpργ3(ς)

]}1/p

,

i.e.,
χ`αp (TBp,α) 6 21−1/pΓ

1/p
1 χ`αp (Bp,α).

Therefore,
χC(I,`αp )

(TBp,α) 6 21−1/pΓ
1/p
1 χC(I,`αp )

(Bp,α).

Thus, by assumption (i) and Remark 1 one gets that T admits a fixed point in Bp,α ⊆
C(I, `αp ). Hence, equation (5) admits a solution in C(I, `αp ).

Example 2. Consider

Θρ(ς) =
Θρ(ς)

12ς2
+

1

Γ( 1
2 )ρ2

ς∫
0

cos(Θρ(ς))

(ς + ρ)(ς − w)1/2
dw

+
1

Γ( 1
2 )ρ4

ς∫
0

(
ln
ς

w

)1/2
sin2(Θρ(ς))

ς + ρ2
dw

w
, (6)

where ς ∈ I = [1, 2], ρ ∈ N. Here

Λρ
(
ς, lρ(Θ), I(Θ), J(Θ)

)
=
lρ(Θ)

2
+ I(Θ) + J(Θ), lρ(Θ) =

Θρ(ς)

6ς2
,

I(Θ) =
1

Γ( 1
2 )ρ2

ς∫
0

cos(Θρ(ς))

(ς−w)1/2
dw, J(Θ) =

1

Γ( 1
2 )ρ4

ς∫
0

(
ln
ς

w

)1/2

sin2
(
Θρ(ς)

) dw

w
,

Pρ
(
ς, Θ(ς)

)
=

cos(Θρ(ς))

ς + ρ
, Qρ

(
ς, Θ(ς)

)
=

sin2(Θρ(ς))

ς + ρ2
, $ =

1

2
, and T = 2.
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Let αρ = 1/ρ. We have Λ(ς, 0, 0, 0) = 0, so
∑∞
ρ=1 α

p
ρ|Λ(ς, 0, 0, 0)|p converges to zero.

Let Θ(ς) ∈ `αp for some fixed ς ∈ I . Then∑
n>1

αpρ
∣∣Λρ(ς, lρ(Θ), I(Θ), J(Θ)

)∣∣p
=
∑
n>1

1

ρp

∣∣∣∣∣Θρ(ς)12ς2
+

1

Γ( 1
2 )ρ2

ς∫
0

cos(Θρ(ς))

(ς + ρ)(ς − w)1/2
dw

+
1

Γ( 1
2 )ρ4

ς∫
0

(
ln
ς

w

)1/2
sin2(Θρ(ς))

ς + ρ2
dw

w

∣∣∣∣∣
p

6
2p−1

12p

∑
ρ>1

1

ρp
∣∣Θρ(ς)∣∣p +

2p−1

(Γ( 1
2 ))p

[
(T − 1)1/2 + (lnT )1/2

]p∑
ρ>1

1

ρp

is convergent as Θ(ς) ∈ C(I, `αp ), and
∑
ρ>1 1/ρp is convergent for p > 1. Therefore,

for fixed ς ∈ I , {
Λρ
(
ς, lρ(Θ), I(Θ), J(Θ)

)}∞
ρ=1
∈ `αp ,

i.e., {
Λρ
(
ς, lρ(Θ), I(Θ), J(Θ)

)}∞
ρ=1
∈ C

(
I, `αp

)
.

It is obvious that Λρ is continuous for all ρ ∈ N and∣∣Λρ(ς, lρ(Θ), I(Θ), J(Θ)
)
− Λρ

(
ς, l̄ρ(Θ), Ī(Θ), J̄(Θ)

)∣∣p
6

1

2

∣∣lρ(Θ)− l̄ρ(Θ)
∣∣p + 22p−2

∣∣I(Θ)− Ī(Θ)
∣∣p + 22p−2

∣∣J(Θ)− J̄(Θ)
∣∣p;

also, γ1(ς) = 1/2, γ2(ς) = γ3(ς) = 22p−2. Moreover,∣∣lρ(Θ)− lρ(Θ̄)
∣∣p =

1

6pς2p
∣∣Θρ(ς)− Θ̄ρ(ς)∣∣p,

i.e., γ4(ς) = 1/(6pς2p), and also, lρ is continuous for all ρ ∈ N. It can be observed that
γ1, γ2, γ3, γ4 are all continuous, and

γ̂2 = γ̂3 = 22p−2 and Γ1 =
1

2.6p
,

which gives

21−1/pΓ
1/p
1 = 3−12−2/p < 1.

The functions Pρ, Qρ are continuous, and

P̂ρ =
1

1 + ρ
, Q̂ρ =

1

1 + ρ2
, P̂ = Q̂ =

1

2
, and lim

ρ→∞
P̂ρ = lim

ρ→∞
Q̂ρ = 0.
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Also, ∑
ρ>1

αpργ2(ς) =
∑
ρ>1

22p−2

ρp
and

∑
ρ>1

αpργ3(ς) =
∑
ρ>1

22p−2

ρp

are convergent for p > 1.
Thus, all conditions (1)–(3) of Theorem 7 are satisfied, hence, equation (6) admits

a solution in C(I, `αp ).
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