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Abstract. The recent emergence of COVID-19 has drawn attention to the various methods of
disease control. Since no proper treatment is available till date and the vaccination is restricted
to certain age groups, also vaccine efficacy is still under progress, the emphasis has been given
to the method of isolation and quarantine. This control is induced by tracing the contacts of the
infectious individuals, putting them to the quarantine class and based on their symptoms, classifying
them either as the susceptible or sick individuals and moving the sick individuals to the isolated
class. To track the current pandemic situation of COVID-19 in India, we consider an extended
Susceptible-Exposed-Quarantine-Infected-Isolated-Recovered (SEQ1IQ2R) compartmental model
along with calculating its control reproductive number Rc. The disease can be kept in control if
the value of Rc remains below one. This “threshold” value of Rc is used to optimize the period of
quarantine, and isolation and have been calculated in order to eradicate the disease. The sensitivity
analysis of Rc with respect to the quarantine and isolation period has also been done. Partial
rank correlation coefficient method is applied to identify the most significant parameters involved
in Rc. Based on the observed data, 7-days moving average curves are plotted for prelockdown,
lockdown and unlock 1 phases. Following the trend of the curves for the infection, a generalized
exponential function is used to estimate the data, and corresponding 95% confidence intervals are
simulated to estimate the parameters. The effect of control measures such as quarantine and isolation
are discussed. Following various mathematical and statistical tools, we systematically explore the
impact of lockdown strategy in order to control the recent outbreak of COVID-19 transmission in
India.
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1 Introduction

In recent studies on COVID-19, it has been noticed that nearly all individuals included
had symptoms since the presence of symptoms was used to determine whether someone
would be admitted for a test of COVID-19 or not. However, it is possible that some indi-
viduals may be infected and be able to transmit to others without developing symptoms.
Recent studies show that asymptomatic individuals were also screened for infection and
tested positive. The study also suggests the possibility of presymptomatic transmission. In
general, compartmental epidemiological models assume that the onset of symptoms and
the onset of infectiousness coincide, but recent evidence indicates that symptoms may be
delayed relative to when an individual is infectious. Viral loads are measured over time in
symptomatic individuals, studies show that they are at a peak on the first day of symptoms,
suggesting that they were already high before symptoms started [23]. COVID-19, the
recent emergence of the early spread of severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) has been announced as a pandemic by the World Health Organization
(WHO) on March 11, 2020. It was first identified in December 2019 in Wuhan, the capital
of Hubei, China, and now is an increasing concern about COVID-19 worldwide. It be-
longs to the Coronaviridae family in the Nidovirales order [16]. It is a RNA virus and has
symptoms, which are very much similar to normal influenza virus. Also it takes around 3
to 4 days to show the symptoms [15]. It can be transmitted by three main routes includ-
ing direct transmission, contact transmission and aerosol [17]. According to an estimate
by WHO, in early stages, the disease is less contagious than smallpox, chickenpox and
mumps, but more contagious than similar kinds of disease like seasonal flu and MERS.
The estimated disease fatality rate for COVID-19 is 3.4%, which is less than that of
smallpox, SARS and MERS [8]. As of now, almost every country has been affected by this
pandemic with 90.3 millions total cases across the world with more than 19,33,487 deaths.

The first appearance of Human coronaviruses was identified in the mid-1960s. Since
then, considerable outbreaks caused by other variants of corona virus, namely, SARS
in 2003 in mainland China, MERS in 2012 in Saudi Arabia, MERS outbreak in 2015 in
South Korea. As a result, SARS-CoV (2003) infected 8098 individuals with mortality rate
of 9% across 26 countries in the world, and MERS-coronavirus infected more than 2428
individuals and 838 deaths [16]. On the other hand, novel corona virus (2019) infected
90.3 million individuals with around 1.935 million deaths across 218 countries till date of
this writing. After the outbreak of COVID-19 in Wuhan, the infection spread rapidly
to all provinces and cities in China. During the early stages, this spread was due to
insufficient understanding of the transmission mechanism of the virus, as well as increases
in population mobility during the Spring festival. However, after the lockdown of Wuhan
on 23 January 2020 and the strengthening of prevention and control measures in various
regions, the epidemic situation in all provinces and autonomous regions was effectively
contained, and the epidemic situation improved within a short period.

In India, the first case of COVID-19 was reported on January 30, 2020 in Thrissur
district of Kerala. It was an imported case. The patient was a student of Wuhan University,
China. Initially, a gradual increase was observed in the spreading of the disease, but it took
about three months to reach a lethal state. Acknowledging the severity of the situation, the
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Indian Government announced a 21-day country-wide lockdown as a preventive measure
for the COVID-19 outbreak on 24th March, 2020. To study the outbreak and transmission
dynamics in India, Sardar et al. [14] considered a new mathematical model on COVID-19
with and without lockdown effect. By validating the model to the data on notified cases
from five different states and overall India, authors estimated several epidemiologically
important parameters including R0. In the second week of January 2021, India recorded
1.51 lakh deaths due to COVID-19 pandemic, accounting for 7.8% of the global tally of
19.35 lakh. Its cumulative fatality rate (CFR) of 1.4% is lower than the global average of
2.2% [26].

From the perspective of understanding the dynamics of the pandemic, several disease
modeling approaches have been tried. Compartmental models are the simplest way out
to study an epidemic. As the dynamics of the disease depends upon contact between
people, an age-structured model can be helpful in providing key insights, which can
be instrumental in developing policies to control the outbreak [21]. This kind of model
can be used to study the effect of physical distancing measures ranging from staying
at home, leaving home for essential services, closure of schools and colleges and the
reopening of nonessential sectors. Some authors tried to show the closure effects in terms
of resetting the susceptible people with good old SIR model, but this oversimplification
does not allow to understand measures taken in different fields like school, work or
other activities [2]. Delay differential equations had been also used in predicting future
condition along with examination of health care capacity in the pandemic in vaccine-free
scenario [1]. Recently, Rohith and Devika [12] proposed an SEIR model with nonlinear
incidence rates and studied the dynamics and control of COVID-19 pandemic. In order to
verify its efficacy, the control strategies are then compared with real-time data. Besides
this, attention has been drawn to the strategies of isolation and quarantine as a method of
disease control [7]. The controlled reproduction number Rc is another component, which
is of great significance since it represents the value of the basic reproduction number
in presence of control measures. The disease will be eliminated if Rc < 1 and when
Rc > 1, it means that each individual affected by a transmittable disease is expected
to infect exponentially, and the disease is expected to spread through the susceptible
population. On the other hand, the disease gets fade away of the population when Rc < 1
and thus the disease transmission can be regulated to either one or less than that for each
case [22]. Tian et al. [20] presented a study on the effects of control strategies on COVID-
19 transmission in Wuhan during the first 50 days from December 31, 2019 to February
19, 2020. They claimed that lockdown measure makes the people outside Wuhan to cope
with the COVID-19 ahead of time. In this paper, we proposed a new compartment model
to track the current pandemic situation in India, calculated the controlled reproduction
numberRc, perform the sensitivity analysis ofRc with respect to quarantine and isolation
period. To identify the role of the significant parameters, PRCC test has been applied.

The paper is organized as follows: In Section 2, a new mathematical model is con-
structed, including the effect of quarantine and isolation. Section 3 deals with the posi-
tivity and boundedness of the solution. Also disease-free equilibrium and control repro-
duction number are calculated. Sensitivity analysis of control reproduction number Rc
with respect to the control parameters ρ and σ have been carried out in Section 4. We
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have used partial rank correlation coefficient (PRCC) method to describe the relationship
amongRc and other parameters. The estimation of epidemiological parameters is done in
Section 5, corresponding to the various classified time span including initial prelockdown
phase, lockdown phases and the unlock 1 phase together with the effect of quarantine and
isolation in the model, and the main contribution of this work is concluded in Section 6.

2 Formulation of the mathematical model

We have designed a compartmental model following the approach considered in Mart-
cheva [11]. We split the total population of sizeN into individuals, who are susceptible to
the disease S; exposed individuals E; quarantined individuals Q1, infective nonisolated
individuals I; isolated individuals Q2; and recovered and immune individuals R. We
assume that immunity is permanent. We denote the active population, that is, nonquar-
antined and nonisolated individuals, by A = N − Q, (Q = Q1 + Q2). Assuming that
sick individuals and the traced individuals, who had either a journey history or were in
contact with the infected individuals, stay at home and undergo some kind of isolation
and quarantine, that reduces their ability to infect others. For simplicity, we assume that
they do not infect anybody [11]. We further assume that the disease is basically fatal,
especially, with the presence of comorbidity (a realistic assumption for COVID-19). The
step by step model formulation can be described as follows:

Susceptible population S(t). The class of healthy individuals, who are capable of
contracting the disease, are called susceptible individuals. Here in this case, a constant
recruitment of individuals is occurring at a rate Λ. Susceptible individuals S come into
contact with infectious I at a rate β and exposed individuals E at a rate βq, and that move
to the exposed class E. Traced susceptible individuals move to the quarantine class Q1 at
a rate ρ. Susceptible are reduced by a natural mortality rate µ. Quarantined individuals,
those who show no symptoms, return to the susceptible class at a rate η1 at the end of
the quarantine. Thus, the rate of change of the size of S is determined by the following
equation:

dS

dt
= Λ− βS(I + qE)

N −Q
− ρS − µS + η1Q1.

Exposed population E(t). In the transmission dynamics of the exposed populations,
a continuous flow of susceptible individuals S, who come into a contact with infectious I
at a rate β and exposed individuals E at a rate βq. Traced exposed individuals move to
the quarantine class at a rate ρ. At the end of the quarantine period, a number of exposed
individuals, who are not traced move to the infected class at a rate γ. Exposed individuals
have the natural mortality rate µ. Thus, the governing equation is

dE

dt
= β

S(I + qE)

N −Q
− (ρ+ µ+ γ)E.

Quarantine population Q1(t). In order to prevent the spread of a disease, the traced
individuals coming in contact with the infectious one are taken separately, these individ-
uals are called quarantined. ρ denotes the rate of movement of the exposed individuals to
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the quarantine class. Quarantined individuals Q1, those who have no symptoms return to
the susceptible class at a rate η1. After the end of the quarantine state, the sick individuals
are move to the isolated classQ2 at a rate η2. The natural mortality rate for the quarantined
is µ. The resulting equation become

dQ1

dt
= ρS + ρE − (µ+ η1 + η2)Q1.

Infected population I(t). The individuals, who can become the cause of an infection
and are able to transmit the disease, are called infectious. An inflow of infected exposed
individual at a rate γ. The infected, who are tested positive of COVID-19, are isolated at
a rate σ. COVID-19 is a fatal disease in some cases, d denotes the disease related death
rate. µ denotes the natural death rate. Therefore, the corresponding equation is

dI

dt
= γE − (µ+ σ + d)I.

Isolated population Q2(t). In case of a contagious disease, the process of isolation is
used to separate the infectious one from the healthy susceptible individual. Usually, the
hospitals are places to keep those isolated individuals in order to reduce the spread of
the disease. In our model, the isolated individuals are kept isolated at a rate σ. After the
quarantine stage, those who have showed symptoms and tested positive of COVID-19,
are kept to the isolated compartment at a rate η2. Some of the isolated individuals are
getting recovered at a rate r. Isolated individuals have natural mortality rate µ. The rate
of change of isolated individual is given as

dQ2

dt
= σI + η2Q1 − (r + µ)Q2.

Recovered population R(t). The class of individuals, who recovers and return to the
healthy susceptible class, are called removed/recovered individuals R. In this case the
recovered individuals are moving in this compartment with a rate r. Natural death rate for
the recovered individuals is µ. Therefore, the recovered compartment is changing with
time as

dR

dt
= rQ2 − µR.

The above assumptions result in the following system of ordinary differential equation:

dS

dt
= Λ− βS(I + qE)

N −Q
− (µ+ ρ)S + η1Q1,

dE

dt
= β

S(I + qE)

N −Q
− (µ+ ρ+ γ)E,

dQ1

dt
= ρS + ρE − (µ+ η1 + η2)Q1,

dQ2

dt
= σI + η2Q1 − (µ+ r)Q2,

dI

dt
= γE − (µ+ σ + d)I,

dR

dt
= rQ2 − µR

(1)
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with initial condition S(0) > 0, E(0) > 0, Q1(0) > 0, I(0) > 0, Q2(0) > 0, R(0) > 0.
The biological meaning of all the parameters and their numerical values are given in
Table 1 (p. 10) and are taken from [11] and other literature.

3 Mathematical analysis

3.1 Positivity and boundedness of the solution

In this section, we provide the proof for the positivity and boundedness of solutions of
system (1) with initial conditions (S(0), E(0), Q1(0), I(0), Q2(0), R(0)) ∈ R6

+. We state
the following propositions.

Proposition 1. System (1) is invariant in R6
+.

Proof. By rewriting system (1) as

dX

dt
=M

(
X(t)

)
, X(0) = X0 > 0,

X = (S,E,Q1, I, Q2, R)
T, M(X(t)) = (M1(X),M2(X), . . . ,M6(X))T, we note that

dS

dt

∣∣∣∣
S=0

= Λ+ η1Q1 > 0,
dE

dt

∣∣∣∣
E=0

= β
SI

N −Q
> 0,

dQ1

dt

∣∣∣∣
Q1=0

= ρS + ρE > 0,
dQ2

dt

∣∣∣∣
Q2=0

= σI + η2Q1 > 0,

dI

dt

∣∣∣∣
I=0

= γE > 0,
dR

dt

∣∣∣∣
R=0

= rQ2 > 0.

The above is true for any point belonging to the interior of R6
+ or on the boundary of

the hyperplanes. It implies that system (1) is invariant in R6
+.

Proposition 2. System (1) is bounded in the region

Ω =

{
(S,E,Q1, I, Q2, R) ∈ R6

+: S + E +Q1 + I +Q2 +R 6
Λ

µ

}
.

Proof. The overall population N = S + E +Q1 + I +Q2 +R obeys

dN

dt
=

dS

dt
+

dE

dt
+

dQ1

dt
+

dI

dt
+

dQ2

dt
+

dR

dt

= Λ− µN − dI.

In absence of the disease (initially, when I = 0),

dN

dt
= Λ− µN.
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Figure 1. The time series of the population in
system (1).

Figure 2. The controlled reproduction number as
a decreasing function of ρ for different values of β.

This shows that the population size N tends to its carrying capacity Λ/µ as t → ∞,
implying that the solution of (1) exists in the region defined by

Ω =

{
(S,E,Q1, I, Q2, R) ∈ R+

6 : S + E +Q1 + I +Q2 +R 6
Λ

µ

}
. �

Figure 1 shows that initially the number of susceptible is high enough, but finally it
approaches asymptotically towards zero, while recovered individuals are gradually rising
with time. Besides this, the number of infected, quarantined and isolated individuals
show a growth in the beginning and eventually reduces the slopes of the curves as time
progresses. Exposed population exhibits a downturn towards the end of the time scale.
These time series behavior is supporting the real world phenomena. Figure 2 is plotted
to show the inverse relationship between the controlled reproduction number Rc and the
quarantine rate ρ with various values of transmission rate β. Here it is clear that as the
value of β is getting larger, the slope of the curve is declining faster.

3.2 Disease-free equilibrium and control reproduction number

Looking for the equilibria of system (1), we discover that there is always a disease-free
equilibrium E0(S0, E0, Q0

1, I
0, Q0

2, R
0), where, S0 = Λ/µ,E0 = Q0

1 = I0 = Q0
2 =

R0 = 0. The controlled reproduction number is the value of the basic reproduction num-
ber in presence of control measures (quarantine and isolation) [5]. It is a dimensionless
quantity and is denoted byRc. We can calculate this quantity by using the next-generation
operator method [4, 6]. For this, we construct the compartments, which are infected from
system (1) and decompose the right-hand side as

dX

dt
= F − V,

where F and V respectively represents the rate of appearance of new infections and the
transitional terms such as recruitment, deaths, disease transmission and recovery. In this
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case,

F =


βS(I+qE)
S+E+I+R

0
0
0

 , V =


(ρ+ µ+ γ)E

−ρS − ρE + (µ+ η1 + η2)Q1

−γE + (µ+ σ + d)I
−σI − η2Q1 + (µ+ r)Q2

 .

Now we calculate the Jacobian of F and V at DFE, E0 as

F =
∂F
∂X

=


qβS(S+I+R)
(S+E+I+R)2 0 βS(S+E+R)

(S+E+I+R)2 0

0 0 0 0
0 0 0 0
0 0 0 0


and

V =
∂V
∂X

=


ρ+ µ+ γ 0 0 0
−ρ µ+ η1 + η2 0 0
−γ 0 µ+ σ + d 0
0 η2 −σ µ+ r

 ,

J0 =
∂F
∂X

=


−(µ+ ρ) −βq η1 −β 0 0

0 βq − (µ+ ρ+ γ) 0 β 0 0
ρ ρ −(µ+ η1 + η2) 0 0 0
0 γ 0 −(µ+ σ + d) 0 0
0 0 η2 σ −(µ+ r) 0
0 0 0 0 r −µ

 .

Following Heffernan et al. [9], Rc = ρ(FV −1), where ρ is the spectral radius of the
next-generation matrix FV −1. Thus, from model (1) we have the following expression
for Rc:

Rc =
βγ

(ρ+ µ+ γ)(µ+ σ + d)
+

βq

ρ+ µ+ γ
.

Here, in absence of the control measures (isolation rate σ = 0 and quarantine rate ρ = 0),
the basic reproduction number R0 can be written as

R0 =
βγ

(µ+ γ)(µ+ d)
+

βq

µ+ γ
.

The first part of the controlled reproduction number indicates the number of secondary
infections generated by the infectious individuals, and in the second part, it can be found
the secondary infection generated by the exposed individuals; γ/(γ + ρ + µ) represents
the part of the exposed individuals, which progresses to the infectious class. Clearly, the
reproduction number is a decreasing function of the quarantined rate ρ and the isolation
rate σ. The critical isolation rateRc = 1 is given by σ∗ = βγ/(ρ+µ+γ−βq)−(µ+d).
The reproduction number, as a function of σ and ρ, is plotted in Fig. 3.
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Figure 3. Region representing Rc > 1, the pointed endemic situation with a red point, and the closest point on
the curve Rc = 1 in black, corresponding to the values q = 0.4 and q = 0.6, respectively.

Theorem 1. The disease-free equilibrium E0(Λ/µ, 0, 0, 0, 0, 0) is locally asymptotically
stable.

Proof. The Jacobian matrix of system (1) around E0(Λ/µ, 0, 0, 0, 0, 0) is given by J0.
Clearly, −µ and −(µ + r) are the two eigenvalues of J0. The other four eigenvalues are
obtained from the submatrix

J1 =


−(µ+ ρ) −βq η1 −β

0 βq − T 0 β
ρ ρ −(µ+ η1 + η2) 0
0 γ 0 −(µ+ σ + d)

 ,

where T = µ+ ρ+ γ. These eigenvalues are the roots of the characteristic equation

λ4 +A1λ
3 +A2λ

2 +A3λ+A4 = 0,

where

A1 = 4µ+ 2ρ+ γ + η1 + η2 + σ + d− βq,
A2 = (µ+ ρ)(µ+ ρ+ γ − βq) + (µ+ η1 + η2)(µ+ σ + d)

+ (2µ+ 2ρ+ γ − βq)(2µ+ η1 + η2 + σ + d)− βγ − η1ρ,
A3 = (µ+ ρ)(µ+ ρ+ γ − βq) + (µ+ η1 + η2)(µ+ σ + d)

× (2µ+ 2ρ+ γ − βq)(2µ+ η1 + η2 + σ + d)

− βγ(2µ+ ρ+ η1 + η2)− η1ρ(2µ+ σ + ρ+ γ + d− βq),
A4 = (µ+ ρ)(µ+ η1 + eta2)[(µ+ ρ+ γ − βq)(µ+ σ + d)

− βγ]− η1ρ[(µ+ ρ+ γ − βq)(µ+ σ + d)− βγ]
= ((µ+ ρ)(µ+ η2) + µη1)(µ+ ρ+ γ)(µ+ σ + d)(1−Rc). �

On solving, we have that other four eigenvalues of J0 are obtained as −µ + η2,
−(µ + ρ + η1), (−(βq + σ + d + ρ + γ + 2µ) ±

√
(βq + σ + d− ρ− γ)2 + 4βγ)/2.

Therefore, all the eigenvalues of J0 are negative, and hence, trace J0 < 0 and det J0 > 0.
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By Routh–Hurwitz criteria, we can conclude the local asymptotic stability of the disease-
free equilibrium E0(Λ/µ, 0, 0, 0, 0, 0).

In Fig. 3, we have plotted the region Rc > 1 corresponding to two different values
of q = 0.4 and q = 0.6. The region for q = 0.6 is larger and symmetric. The red point
denotes the coordinates of the point provided in Table 2. The region Rc > 1 contains
the point; hence, the corresponding rates of quarantine and isolation are same as given
in Table 1. Therefore, the removal of the disease is not possible. Our aim will be to
compute the required values of the rates of the quarantine and isolation obtained by small
change to the values given in Table 1 for which the eradication of the disease is possible.
To establish this, we try to find out the point on the curve representing Rc = 1 and the
nearest to the red point. Following the approach given in [11], we consider (x, y) be the
coordinates of the black point. The square of the distance between the two points is given
by (x−0.1)2+(y−0.2)2, where (0.1, 0.2) is a coordinate of the red point. Furthermore,
we replace ρ with x and σ with y in Rc. From the equation Rc = 1 we express σ as
a function of ρ. The process of minimization leads us to differentiate the function with
respect to x and equate the derivative to zero. This yields the equation

(x− 0.1) +
(
f(x)− 0.2

)
f ′(x) = 0.

The corresponding coordinates of the black point is given as (0.122, 0.227) and (0.150,
0.2522) for the values of q as 0.4 and 0.6, respectively. This gives us the idea how to
modify the values of the rates of quarantine and isolation in order to eliminate the disease.
If c denotes the coordinate of the black point, then the optimal new periods for quarantine
and isolation can be given as 1/c. These optimal periods that will cause expulsion are
listed in Table 2. Table 2 suggests that changing the value of q from 0.4 to 0.6, the contact
tracing and quarantining has improved radically from 8 days to 6 days, while isolation
should refine from 4 days to 3 days for the elimination of the disease.

Table 1. Description of the parameters involved in model (1).

Parameter Significance Values (per day)
Λ Recruitment rate of susceptible individuals 12, 00, 000
β Transmission rate 0.25
ρ Quarantine rate 0.21
µ Natural death rate 0.00003914
d Disease related death rate 0.001
γ Rate of developing symptoms 0.2
σ Isolation rate 0.1
η1 Rate of coming back to susceptible class 0.1
η2 Rate of development to infectiousness 0.1
r Recovery rate for isolated individual 0.1
q Reduction of infectivity of exposed individuals 0.18

Table 2. Optimal periods for quarantine and isolation.

Strategy q = 0.4 q = 0.6

1/ρ 8.187 6.660
1/σ 4.459 3.965
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4 Sensitivity analysis of control reproduction number

4.1 Sensitivity and elasticity of the control parameters

Besides various control measures, it is important to describe the relative significance of
the quarantine and isolation strategies with the controlled reproduction number Rc. We
perform the sensitivity analysis of Rc as given in [3] to identify the significant parameters
contributing variability in the outcome of the nondimensional quantity Rc for system (1).
The sensitivity index of Rc with respect to the parameter ρ is

ζρRc
=
∂Rc
∂ρ

= − βγ

(ρ+ µ+ γ)2(µ+ σ + d)
− βq

(ρ+ µ+ γ)2
.

The elasticity index of quantity Rc with respect to the parameter ρ is given by

ερRc
= − ρ

ρ+ µ+ γ
.

On putting the above values of the parameters, we have that ερRc
= −0.374945 implies

10% increase in ρ and about 3.74945% decrease inRc. Using mathematical and statistical
techniques, the sensitivity analysis has been performed to regulate the significance of the
epidemic model parameters. The sensitivity indices narrate us whether or not the infec-
tious diseases will develop throughout the individuals. It is mainly utilized to describe the
effectiveness of the reproduction number Rc to variation in the parameters of the system
and also to point out the relative change in a state variable when a system parameter
changes. The sensitivity index ofRc with respect to the parameter σ is defined as follows:

ζσRc
=
∂Rc
∂σ

= − βγ

(ρ+ µ+ γ)(µ+ σ + d)2
.

The elasticity index of quantity Rc with respect to the parameter σ is given by

εσRc
= − σγ

(µ+ σ + d)(γ + q(σ + µ+ d))
.

Numerical calculation gives that εσRc
= −0.0362 implies 10% increase in σ and will pro-

duce 0.3625% decrease in Rc. Besides this, it can be easily formulated that the sensitivity
index of Rc with regards to the transmission rate β is

εβRc
= 1,

free from any parameters. This represents that Rc is the increasing function with respect
to β. It implies that in the control and management of COVID-19, the probability of
disease transmission is comparatively higher.

4.2 Global sensitivity analysis using partial rank correlation coefficient method

In this subsection, we will present the sensitivity analysis of the controlled reproduction
number Rc to determine which parameters are important in contributing variability in the
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Table 3. Parameters analyzed in sensitivity analysis.

Parameter Distribution Range Parameter Distribution Range
β Uniform [0.125, 0.5] γ Uniform [0.1, 0.4]
ρ Uniform [0.105, 0.42] σ Uniform [0.05, 0.2]
µ Uniform [0.00002, 0.00008] q Uniform [0.09, 0.36]
d Uniform [0.0005, 0.002]

Table 4. Partial rank correlation coefficient sensitivity indices.

Parameters Sensitivity index Parameters Sensitivity index
β 0.9394 γ 0.7358
ρ −0.7988 σ −0.9232
µ −0.0025 q 0.2641
d −0.0233

consequence of the nondimensional quantity Rc for system (1). It is necessary to know
the relative importance of the different parameters responsible for the transmission of
COVID-19 in order to control and reduce human morbidity and mortality occurring due
to corona virus [13]. Although the transmission of COVID-19 is directly related to the
basic reproduction number R0 in the beginning, but we have considered various control
measures such as quarantine and isolation. We concentrate our studies regarding the
controlled reproduction number Rc corresponding to system (1). The sensitivity indices
of Rc show how crucial each parameter to the disease transmission. Here we use partial
rank correlation coefficient (PRCC) method to find parameters that have a high impact on
Rc and should be targeted by intervention strategies. It will be ideal to use both PRCC and
extended Fourier amplitude sensitivity test (eFAST) to represent the relationship between
the parameters, and output is not previously known. However, we discuss here only about
the PRCC analysis.

The correlation coefficient measures the degree of linear relationship between two
variables. It varies between −1 to +1. Partial correlation characterizes the same only
while remaining inputs as discounted. Similarly, when the data are rank-transformed and
a linear regression model is being described, it is called partial rank correlation (PRC). It
measures the sensitivity for linear but monotonic relationships between the variables as
long as little to no correlation exists between the inputs [10]. Thus, PRCC allows us to se-
lect which specific parameters should be considered for acquiring our goal. Since a priori
information is not available, we assume the parameters as random variables with corre-
sponding probability density function as of uniform distribution. Parameter values and
ranges are adopted using the technique involved in Wu et al. [24]. The PRCC sensitivity
results are carried out for Rc and are listed in Table 4 and also illustrated using bar charts
in Fig. 4. The correlation value requires both a magnitude and a direction of either positive
or negative. It is absolute and nondimensional value in the range from −1 to +1 without
any units. As this value approaches closer to±1, the linear relationship becomes stronger
between the two variables, regardless of the direction, and the zero correlation corre-
sponds to no linear association among the variables. The calculated sensitivity indices of
Rc with the six different parameters involved in model (1) are shown in Table 4. The most
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Figure 4. Bar diagram showing the measure of sensitivity indices ofRc with the various parameters of model (1)
and their reference values as mentioned in Table 4.

significant parameters are the transmission rate β, the quarantine rate ρ and the isolation
rate σ. Besides these, another influential parameter is the rate of developing symptoms
γ as can be seen from Table 4 and bar charts in Fig. 4. The correlation coefficients that
are 6 0.35 are generally considered to represent low or weak correlation [19]. In this
case, the reduction of infectivity of exposed individuals q has correlation value as 0.2641,
and also the natural mortality rate µ and disease related death rate d have significantly
lower correlation. From Table 4 it can be observed that the parameters related to control
measures (ρ and σ) have an inverse relationship whereas if the rate of quarantine and
isolation increases, the value of controlled reproduction number Rc decreases. Therefore,
the sensitivity analysis suggest about the effectiveness of the control measures.

5 Estimation of epidemiological parameters

5.1 Data analysis

On March 22, 2020, the Indian government introduced the implementation of the nation-
wide lockdown strategy in India to shut down the movement and to control the transmis-
sion of COVID-19. Since March 01, 2020, based on the data provided by World Health
Organization [25], we have analyzed the set of data reported for the confirmed cases of
COVID-19 in India.

In order to get an overall idea about the set of data and while plotting those to avoid
the peaks of the curve, we have considered here the 7-days moving average of the corre-
sponding data set. The set of data are classified into the following groups:

• The initial prelockdown phase (March 01–21, 2020)
• Lockdown 1.0 (March 25–April 14, 2020)
• Lockdown 2.0 (April 15–May 03, 2020)
• Lockdown 3.0 (May 4–17, 2020)
• Lockdown 4.0 (May 18–31, 2020)
• Unlock 1.0 (June 1–30, 2020)
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Figure 5. 7-days moving average of the infected cases in India for the six different group of data set.

During the lockdown phases, a strict community control strategy is applied to maintain
the physical distancing since it become the only preventive measure in order to control
the disease. This will lead to the control strategy by constructing the quarantine centers
and keeping the infected individual isolated from the social contact/ movement. These are
introduced in model (1), ρ and σ measure the rate of quarantine and isolation, respectively.
Strict lockdown is the only way to control the community contact. In Fig. 5, the number
of infected in each day is plotted along the y-axis, and the number of days are plotted in
x-axis. In all the six figures, it has been shown that initially a gradual increase can be seen
in the spread of the virus, and the number of infected are in
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Figure 6. Observed data curve is approximated by exponential growth curve.

scattered form. During the lockdown phase, the infection is still increasing its rate, but
as the unlock 1.0 started, a massive gain in the number of infected can be observed from
the Fig. 5. The 7-days moving average curves signify the growing pattern in the data set
for the advancement of time. This increasing trend of the curves leads us to approximate
the data curves by some known mathematical functions. Following Sun et al. [18], we
assume an exponential growth curve for the cumulative number of confirmed cases in
India for each of the groups as mentioned earlier. We consider the cumulative number
of confirmed cases in India from March 01, 2020 to June 30, 2020 with the form y(t) =
a exp(bx+c)+d, where a, b, c and d are positive constants, to be estimated. The resulting
curves are shown in Fig. 6.

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


Modeling the recent outbreak of COVID-19 in India 269

Figure 7. 95% confidence interval for the observed data for the before lockdown stage (March 1–21), the first,
the second and the third phases of lockdown (March 25–April 14, April 15–May 3, May 4–17, respectively).

Figure 8. 95% Confidence interval for the observed data for the overall lockdown phases and the phase of
unlock 1 (June 1–30).

To estimate the parameters a, b, c and d, the least-square approximation is used, and
95% confidence interval has been shown in Figs. 7 and 8. The estimated values of the
parameter has also been shown in Table 5. In statistics, a confidence interval measures
the probability that a parameter will fall between a pair of values around the mean for
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Table 5. Confidence interval for the parameters involved in the exponential growth curve.

Parameters 95% confidence interval Parameters 95% confidence interval
a (0.5094, 0.8593) c (2.3554, 2.5948)
b (0.1530, 0.1785) d (−19.7617, 19.9890)

a certain proportion of times. The exact values of the corresponding confidence interval
is given as (0.6844, 0.1658, 2.4751, 0.1136).

5.2 Effect of quarantine and isolation

Simulation results for the number of confirmed COVID-19 cases with various lockdown
strategies dates (March 25, April 15, May 04 and May 18) in India are shown in Fig. 9. We
will discuss about the effect of ρ, σ, η1 and η2 on the epidemic trend and the final scale.
The implementation of the lockdown measures in India indicates that the lower rate of the
quarantine ρ and isolation σ, the peak of the newly infected people in the city will increase
and higher the final scale. In Fig. 9, the highest dark blue curve corresponds to the value

Figure 9. Simulation results for change of the number of infective with respect to: (a) the quarantine rate ρ,
(b) the isolation rate σ, (c) the rate of return to susceptible class η1 and (d) the rate of progression to
infectiousness η2.
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of the number of infected for ρ = 0.01, and as the value of ρ get increased, the peak of the
curve decreases as we can see from the red, yellow, violet and other curves. Likewise, for
the isolation rate σ become larger, the peak of the curve flattens as indicated by the blue,
green, violet curves, respectively. This shows an obvious influence of quarantining and
isolating of the infected individuals. As much as we can trace the infected individuals and
keep them distant from the susceptible population, it would be more effective to control
and take step towards the eradication of the disease.

On the other hand, the infection data curve shows that as the value of η1 rises, the
peak and the scattering of the infected curve falls downward. Although, the increase in
η2 leads to opposite nature of the curve. The value of η2 is highest for the violet curve,
and for that, it can be seen that the scattering of the curve is smaller than the rest curves.
Thus, in conclusion, one can say that apart from proper medical treatment, the consistent
effort of quarantine and isolation can lead to an effective control measure for COVID-19.
Since no proper vaccination is still available for all and the disease is highly contagious,
the quarantining and isolation are the most effective strategies now a days in India. The
lockdown strategy strength can be enhanced by proper way of tracing the individuals,
who have get in contact with the infected, testing them and finally categorize them into
the susceptible and infected class.

6 Conclusions and discussions

In this paper, an epidemic SEQ1IQ2R model is designed to describe the transmission
dynamics of COVID-19 in India. The positivity and boundedness of the proposed model
is established. Explicit Euler method with the time step size∆t = 0.01 is used to integrate
system (1) on Matlab R2016b platform. The control reproduction number Rc has been
calculated, and its nature with respect to quarantine rate is simulated for different values
of transmission coefficient β. Then an optimal period for quarantine and isolation has
been calculated (c.f. Fig. 3). The sensitivity analysis of Rc with respect to the control
parameters ρ and σ has been performed. Also, to identify the influence of the parameters,
we used the PRCC method. Next, on the basis of the data given in [25], for the initial
prelockdown phase (March 01, 2020 onwards) up to the first unlock phase (June 30,
2020), we estimated the parameters, which are used to trace data curve. Using the least
squares approximation for the parameters, 95% confidence interval had been established.
The effect of control strategies such as the quarantine rate, isolation rate, rate of coming
back to the susceptible class and rate of progression to infectiousness are shown by the
simulated figures.

From Fig. 5 we can see a gradual increase in the number of daily infected cases.
Initially, in the prelockdown stage, the rate of increase of the number of daily cases are
gradually increasing. When the lockdown started, the 7-days moving average curve shows
that the number of cases per day in India rapidly increased, but due to the governmental
policies like, the process of quarantine and isolation restricted this increment, and the
outbreak was under control. As the unlock phase started, the prevalence was out of control.
The nature of the data curve seems to be always increasing, and thus, an exponential
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growth curve is used to approximate the observed data as shown in Fig. 6. Further,
Figs. 7 and 8 explain the 95% confidence interval for the corresponding approximated
exponential curves. Incidentally, the generalized form of exponential growth curve ap-
proximates the cumulative data curve appropriately, which indicates that the growth rate
of COVID-19 is expeditious in nature, but in the presence of the control measures and
strict lockdown, the disease propagation can be managed. The controlled reproductive
number Rc of COVID-19 has been initially estimated by the WHO in the range between
1.4 and 2.5 as declared in the statement regarding the outbreak of SARS-CoV-2 dated
23rd January 2020 mentioned in Viceconte and Petrosillo [22]. Several studies are still
now trying to develop the proper measure of control and to estimate the reproduction
number of the current pandemic. Other important factors are that no proper treatment
facilities are available for all such as required number of hospital beds, enough supply of
oxygen and shortage of the medicine like remdesivir. Also, the vaccination procedure is
restricted from some particular age group of people, and it is not of absolute efficacy to
stay distant to COVID-19, but only to stay at home and maintaining physical distances in
the society. Although, tracing out the infected individuals and their surroundings, testing
sufficient number of the individuals and treating them in a proper way such as by keeping
them isolated, one can take steps towards the progress in the way to get away from this
current pandemic situation.

In our model, we have taken both the strategies of quarantine and isolation and showed
the relationship of the quarantine and isolation rate with the controlled reproduction
number Rc. Further, models on COVID-19 can be constructed either by incorporating
time-delay as a latent period to have the symptoms or by taking reaction–diffusion sys-
tem for modeling the spread dynamics. One may update the proposed model system in
the reaction–diffusion platform in order to explore the temporal as well as the spatial
dynamics that will strengthen our study in a new direction in future.
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